
A Vectorized Sparse Matrix Multiply for
Compressed Row Storage Format

Ed D’Azevedo1, Mark Fahey2, Richard Tran Mills2

1Computer Science and Mathematics Division
2National Center for Computational Sciences

Oak Ridge National Laboratory

ICCS 2005
May 23, 2005

This research supported by the Laboratory Directed Research and Development Program of Oak Ridge National
Laboratory (ORNL). This work was performed using resources at the National Center for Computational
Sciences at ORNL, which is supported by the U.S. Department of Energy under Contract Number DE-AC05-
00OR22725.

Important kernel: Solve sparse linear systems

 Bulk of time spent solving, large, sparse linear systems
 Can solve with direct methods (Gaussian-elimination)

 Guaranteed to find solution
 But hard to scale to large systems, many processors

 Iterative methods practical for large problems
 Can scale to large problem sizes; easy to parallelize
 Require less time to find solution

Problem for users of Cray-X1 and other vector machines:
 Modern iterative solver packages designed for scalar architectures

 Out-of-box performance is terrible due to short vector lengths!
 We describe a vectorized sparse mat-vec,

a vital component of Krylov subspace methods

bAx =

Outline

 Review sparse matrix storage formats, mat-vec algorithms

 Describe CSRPERM algorithm
 With vectorization of CSR data in place
 With rearrangement using ELLPACK storage

 Initial performance results on the Cray-X1 at NCCS/ORNL,
using CSRPERM matrix implementation in PETSc

Compressed Sparse Row (CSR)

 CSR is most widely-used format for general sparse matrices
 Stores matrix in three arrays:

 val: nonzero elements in row-by-row fashion
 col_ind: column index of each element of val
 row_ptr: points to beginning of each row in val

=

550000

0444300

353433032

02402221

0140011

A

val 11 14; 21 22 24; 31 33 34 35; 43 44; 55
col_ind 1 4; 1 2 4; 1 3 4 5; 3 4; 5

row_ptr 1 3 6 10 12 13

 Mat-vec proceeds directly through val, operating row-by-row.
 Poor performance on vector machines b/c of short row vectors

 1st order star-type FD stencil: 5 elements per row in 2D, 7 elements in 3D

ELLPACK/ITPACK Format (ELL)

 If all rows have similar # nonzeros, can use ELLPACK format
 Uses two N x NZMAX arrays constructed by:

 Shifting all nonzeros left
 Columns of shifted “matrix” stored consecutively in val
 Corresponding col_ind array stores column indices

val(:,1) 11 14 0 0
val(:,2) 21 22 24 0
val(:,3) 31 33 34 35
val(:,4) 43 44 0 0
val(:,5) 55 0 0 0

col_ind(:,1) 1 4 0 0
col_ind(:,2) 1 2 4 0
col_ind(:,3) 1 3 4 5
col_ind(:,4) 3 4 0 0
col_ind(:,5) 5 0 0 0

=

550000

0444300

353433032

02402221

0140011

A

 Mat-vecs proceed along columns of val
 Long vectors + regular access yields good compiler vectorization

Jagged Diagonal Format (JAD)

 Jagged Diagonal (JAD) storage eliminates zero padding of ELL.
 To construct:

 Permute matrix, ordering rows by decreasing number of nonzeros
 First JAD: leftmost nonzeros of row 1, row2, etc. of PA
 Second JAD: next nonzeros from row 1, row2, etc.

?
?
?
?
?
?

?

?

?
?
?
?
?
?

?

?

?

550000

0444300

0140011

02402221

353433032

PA

jdiag 31 21 11 43 5; 33 22 14 44; 34 24; 35
col_ind 1 1 1 3 5; 3 2 4 4; 4 4; 5

jd_ptr 1 6 10 12

perm 3 2 1 4 5

 Mat-vecs proceed along jagged diagonals; yields long vector lengths
 Significant memory traffic to repeatedly read/write result vector y

CSR with permutation (CSRPERM)

 Like JAD, sort (permute) rows based on # nonzeros
 Construct groups of rows w/ same # nonzeros

 Mat-vec computed one group at a time:
 Performs mat-vec for a group in same manner as ELLPACK
 No zero padding b/c of sorting

 Reduced memory bandwidth requirements compared to JAD

 Can leave CSR data in place (CSRP):
 Only need O(N) extra storage for permutation
 Irregular memory access to val array

 Or, can copy groups into ELLPACK format (CSRPELL):
 Better memory access pattern
 But storage requirements doubled

Conceptual comparison between JAD and CSRP

Performance results on the Cray-X1

 Implemented our CSRP kernel as a class in the PETSc framework

 Cray-X1:
 Each node has four Multi-streaming Processors (MSPs)
 Each MSP consists of 4 Single-streaming processors (SSPs)
 Each SSP has 16 KB L1 and 2 MB L2 cache
 Vector clock 800MHz, scalar clock 400 MHz
 Memory-cache bandwidth: 34.1 GB/s, cache-cpu: 76.8 GB/s
 MSP: 8 vector registers, each holding 64 elements of 64bit data

Performance: Sparse mat-vec

Name N Nonzeros Description
Astro 5706 60793 Nuclear astrophysics problem
bcsstk18 11948 80519 Stiffness matrix from Ha rwell -Boeing library
7pt 110592 760320 7-pt stencil in 48 x 48 x 48 grid
7pt_blk 256000 7014400 4x4 blocks 7 -pt stencil in 40 x 40 x 4 0 grid

astro bcsstk18

Performance: Sparse mat-vec

Name N Nonzeros Description
Astro 5706 60793 Nuclear astrophysics problem
bcsstk18 11948 80519 Stiffness matrix from Ha rwell -Boeing library
7pt 110592 760320 7-pt stencil in 48 x 48 x 48 grid
7pt_blk 256000 7014400 4x4 blocks 7 -pt stencil in 40 x 40 x 4 0 grid

 SSP MSP
Problem CSR CSRP CSRPELL CSR CSRP CSRJAE

astro 26 163 311 14 214 655
bcsstk18 28 315 340 15 535 785

7pt 12 259 295 8 528 800
7pt_blk 66 331 345 63 918 1085

Performance of sparse mat-vec in MFlops/s

Performance: PETSc example codes

Run two PETSc examples on 1 MSP:

 ksp_ex2: Solves 2D Laplace problem w/ 5-pt FD stencil, 300x300 grid

 snes_ex14: 3D fuel ignition via Newton-Krylov, 7pt FD, 32x32x32 grid

 total MatMult PCApply
plain, GMRES+ILU(0) 451.3 218.9 227.6
vec, GMRES+ILU(0) 235.8 1.6 229.5
vec, GMRES+Jacobi 36.9 14.6 1.1
plain, GMRES+Jacobi 1423 1400.0 1.1

 total MatMult PCApply
plain, GMRES+ILU(0) 26.1 10.5 11.3
vec, GMRES+ILU(0) 15.5 0.07 11.0
vec, GMRES+Jacobi 5.3 0.7 0.1
plain, GMRES+Jacobi 36.5 32.6 0.1

Performance: PFLOTRAN

 PFLOTRAN: Parallel, fully implicit, multiphase groundwater flow and
transport code; coauthored w/ Peter Lichtner at LANL

 Run 3D flow + heat transport problem from NTS on 512 SSP’s
 95 x 65 x 50 grid, 3 degrees of freedom per node

 total MatMult PCApply
plain, GMRES+ILU(0) 26.9 4.7 6.2
vec, GMRES+ILU(0) 22.2 1.8 6.2
vec*, GMRES+Jacobi 33.7 10.3 0.3
plain, GMRES+Jacobi 54.0 30.5 0.3

* Case encountered “NO FORWARD PROGRESS” error;
 execution time may be unfairly long

Performance: M3D

 M3D: 3D resistive MHD code from PPPL.
 Run on 16 MSPs w/ on a tearing-mode case.

 total MatMult PCApply
plain, GMRES+ILU(0) 42.0 7.8 17.1
vec, GMRES+ILU(0) 37.3 0.9 17.1
vec, GMRES+Jacobi 41.8 6.58 0.6
plain, GMRES+Jacobi 94.3 57.3 0.6

 Can’t improve time w/ Jacobi,
but note that 21-22 minutes spent in GMRES orthogonalization!

 PPPL currently uses GMRES basis size of 1000!
 Might be a win if we use TFQMR, Bi-CGSTAB… or simply a smaller

GMRES basis size!

Summary and Future Directions

 Presented the CSRP mat-vec algorithm
 Promotes long vector lengths
 Can work well w/ CSR data left in-place
 Implemented CSRPERM matrix type in PETSc

Preconditioning still presents a big hurdle:
 Could try to speed up triangular solves for ILU

 Multicoloring can work, but degrades preconditioner quality
 Block-recursive formulation yielding series of mat-vecs
 Take first few terms of Neumann expansion of factorization

 Don’t use incomplete factorizations?
 Sparse approximate inverses
 Polynomial preconditioners

Creating a CSRPERM matrix class for PETSc

 PETSc is written in C, but uses an object-oriented design:
 Has its own function tables, dispatch mechanism
 Employs data encapsulation, polymorphism, inheritance

 All PETSc objects are derived from an abstract base type
 Mat is the base matrix type
 MATAIJ is the standard CSR-format instantiation

 We seamlessly integrate support for out CSRP algorithm into PETSc,
creating a CSRPERM matrix type derived from AIJ.

 We inherit most methods from AIJ;
only a few select methods must be overridden.

Matrix creation method

 In PETSc, a Mat object A is built into a particular type by
MatSetType(Mat mat, MatType Type)

 If Type is MATSEQCSRPERM, then PETSc calls our internal routine:

1 PetscErrorCode MatCreate_SeqCSRPERM(Mat A)
2 {
3 PetscObjectChangeTypeName((PetscObject)A,MATSEQCSRPERM);
4 MatSetType(A,MATSEQAIJ);
5 MatConvert_SeqAIJ_SeqCSRPERM(A,MATSEQCSRPERM,MAT_REUSE_MATRIX,&A);
6 return(0);
7 }

 Line 4 builds an empty MATSEQAIJ matrix.
 Line 5 converts that to object to our MATSEQCSRPERM type.

MatConvert Routine

 1 PetscErrorCode MatConvert_SeqAIJ_SeqCSRPERM(Mat A,MatType type,
 2 MatReuse reuse,Mat *newmat)
 3 {
 4 Mat B = *newmat;
 5 Mat_SeqCSRPERM *csrperm;
 6 ...
 7 ierr = PetscNew(Mat_SeqCSRPERM,&csrperm);CHKERRQ(ierr);
 8 B->spptr = (void *) csrperm;
 9 ...
10 /* Set function pointers for methods that we inherit from AIJ but
11 * override. */
12 B->ops->duplicate = MatDuplicate_SeqCSRPERM;
13 B->ops->assemblyend = MatAssemblyEnd_SeqCSRPERM;
14 B->ops->destroy = MatDestroy_SeqCSRPERM;
15 B->ops->mult = MatMult_SeqCSRPERM;
16 B->ops->multadd = MatMultAdd_SeqCSRPERM;
17
18 ierr = PetscObjectChangeTypeName((PetscObject)B,MATSEQCSRPERM);CHKERRQ(ierr);
19 *newmat = B;
20 PetscFunctionReturn(0);
21 }

 Lines 7-8 allocate CSRPERM data structure, stash it in spptr.

 Lines 12-16 set pointers for AIJ methods we override.

Assembly of the CSRP matrix

 In PETSc, assemblyend finalizes construction of matrix data structure
 Creating CSRPERM proceeds from AIJ data structure,

so use AIJ assemblyend and then proceed from there

PetscErrorCode MatAssemblyEnd_SeqCSRPERM(Mat A, MatAssemblyType mode)
{
 PetscErrorCode ierr;
 Mat_SeqCSRPERM *csrperm = (Mat_SeqCSRPERM*) A->spptr;
 Mat_SeqAIJ *a = (Mat_SeqAIJ*)A->data;
...
 a->inode.use = PETSC_FALSE;
 (*csrperm->AssemblyEnd_SeqAIJ)(A, mode);

 /* Now calculate the permutation and grouping information. */
 ierr = SeqCSRPERM_create_perm(A);
 PetscFunctionReturn(0);
}

Parallel (MPI) CSRPERM class

 What I’ve shown so far is for the sequential CSRPERM instantiation.

 Implementing the parallel MATMPICSRPERM class is trivial!
 MPIAIJ is simply a collection of SeqAIJs storing local matrix portions
 Similarly, MPICSRPERM a collection of SeqCSRPERMs:

 MPICSRPERM inherits from MPIAIJ;
changes the type for local mats from SeqAIJ to SeqCSRPERM.

So why bother writing all this glue code?

 Use CSRP kernels without modification to existing codes
 Register CSRPERM class with PETSc
 Use PETSc’s options database to select appropriate routines:

“-mat_type csrperm”
 Use options database to set CSRPERM options

(e.g., copy groups to ELLPACK format or not)

 Get CSRPERM accepted into the official PETSc source
 Now a supported matrix class
 Available in petsc-dev now; should be in next public release

