

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Parallel and Distributed Simulation Systems and the High Level Architecture

Kalyan S. Perumalla, Ph.D.
Oak Ridge National Laboratory

Oak Ridge, Tennessee
perumallaks@ornl.gov

ABSTRACT

This tutorial introduces the fundamental principles and algorithms underlying parallel/distributed simulation, along
with an overview of synchronization methods and their implementation. The manifestation of these principles and
methods in the Time Management services of the High Level Architecture (HLA) are described. Important systems
issues such as computation and communication overheads are highlighted. This tutorial is designed to help the
audience gain a detailed understanding of the concepts, terminology and application of parallel/distributed
simulation methods, especially in the context of the HLA.

ABOUT THE AUTHOR

Kalyan S. Perumalla is a senior researcher in the modeling and simulation group at the Oak Ridge National
Laboratory. Prior to his current position, he served as a research faculty member in the College of Computing,
Georgia Tech, and a member of the modeling and simulation center (MSREC) at Georgia Tech. He has over 8
years of research and development experience in the area of parallel and distributed simulation systems, including
high-performance runtime infrastructures and large-scale simulation, and has published widely on these topics. He
co-developed the Federated Simulations Development Kit (FDK), a widely-disseminated high-performance runtime
infrastructure for HLA-like distributed simulator federations. He has also built several additional research prototype
systems and tools (e.g., for distributed debugging, network modeling, interoperable simulations and parallel
optimization), most of which are in use by researchers worldwide. He received his Ph.D. in Computer Science from
Georgia Tech in 1999. Dr. Perumalla has served as co-principal investigator on multiple federally-funded projects
on scalable parallel/distributed discrete event simulation systems. He delivered a similar tutorial at last year's
I/ITSEC (Dec 2004).

2005 Paper No. 2196 Page 1 of 8

mailto:perumallaks@ornl.gov

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Parallel and Distributed Simulation Systems and the High Level Architecture

Kalyan S. Perumalla, Ph.D.
Oak Ridge National Laboratory

Oak Ridge, Tennessee
perumallaks@ornl.gov

INTRODUCTION

Parallel and Distributed Simulation (PADS) systems
are, at their core, concerned with time-synchronized
simulations running on multiple inter-connected
processors. The US Department of Defense (DoD)
High Level Architecture (HLA) includes support for
time-synchronized parallel/distributed simulations,
built on fundamental PADS concepts.

There are four main goals of this tutorial: (1)
understand the fundamental PADS concepts relevant to
the HLA (2) understand the usage of basic Time
Management (TM) services in the HLA (3) appreciate
algorithmic and performance aspects behind some of
the HLA TM implementation, and (4) gain exposure to
typical usage of relatively advanced TM services.

The rest of this document is organized as follows. A
brief overview of the HLA is provided for
completeness. This is followed by an introduction to
some of the fundamental concepts in PADS that
underlie the synchronization service frameworks in
HLA. The most commonly used HLA TM services are
then described, along with templates of their
intended/typical usage. This is followed by a brief
introduction to some implementation approaches inside
RTI software for runtime support of TM services.
Exposure to RTI implementations is intended to
provide an idea of the complexity and performance
implications of RTI TM services to the simulation
developers. Finally, some of the more advanced
features of TM services are described, such as
retractions, simultaneity and optimistic simulation.

HLA OVERVIEW

The US DoD HLA is based on a “system of systems”
approach to integrating separate, individual simulation
systems. It is based under the premise that no single
simulation could satisfy all user needs. Instead,
interoperability of multiple systems is envisioned as a
way to integrate as well as reuse different DoD
simulations.

Although primarily designed for defense simulations,
the architecture is general enough for use in other
domains as well.

Architecture
In the HLA, an integrated execution of simulations is
called a federation. Individual simulators participating
in a federation are called federates. Federates can be of
different types: pure software simulators such as
computer generated forces, human-in-the-loop
simulators such as virtual simulators, or live
components such as instrumented weapon systems.

The HLA consists of Rules that federates must adhere
to for proper interaction during execution. It also
defines an Object Model Template (OMT), a format for
specifying the set of common objects used by the
federation. A third component called the IFSpec
provides interface to a runtime infrastructure (RTI) that
ties the federates together during execution.

Interface
The IFSpec is further divided into multiple categories
of services, such as federation management,
declaration management, object management,
ownership management, time management and data
distribution management.

The primary focus of this tutorial is in time
management (TM) services.

Typical Usage
In a typical usage template of the IFSpec services, each
federate invokes the services roughly in the following
sequence:

(1) Initialize federation – create & join federation
execution (Federation Management)

(2) Declare objects – publish & subscribe to object
classes (Declaration Management)

(3) Exchange information at runtime – update/reflect
attribute values, send/receive interactions (Object
Management); synchronization (Time
Management); affect object ownership (Ownership
Management); change interest regions (Data
Distribution Management)

2005 Paper No. 2196 Page 2 of 8

mailto:perumallaks@ornl.gov

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

(4) Terminate – resign & destroy federation execution
(Federation Management).

The rest of this tutorial focuses on time management
services.

FUNDAMENTAL PADS CONCEPTS

A significant amount of literature exists in the parallel
and distributed simulation (PADS) research
community, which has previously explored issues in
time synchronized simulations[1-5]. The HLA TM
has, in large part, been built on insights from PADS
research. Thus, the fundamental concepts in HLA TM
are common with those in PADS.

Notions of Time
In simulation, there are generally three distinct notions
of time. The first is the physical time, which is the
time in the physical system that is being modeled (e.g.,
10-11pm on January 1990). The second is the
simulation time, which is a representation of the
physical time for the purposes of simulation (e.g.,
number of seconds since 10pm of January 1990,
represented in floating point values in the range
[0..3600] corresponding to the simulated time period of
the physical time). Finally, the wallclock time is the
elapsed real time during execution of the simulation, as
measured by a hardware clock (e.g., number of
milliseconds of computer time during execution). For
each, the notions of time axis and time instant can be
defined – time axis is the totally ordered set of time
instants along the corresponding timeline. In
particular, for simulation time, the time line is called
the federation time axis (common across all federates),
and the federate time is a specific federate’s current
time instant along the federation time axis up to which
the federate has advanced its simulation.

Execution Pacing
In general, there is a one-to-one mapping from physical
time to simulation time. In contrast, there may or may
not exist a specific relationship between simulation
time and wallclock time. The mode of simulation
execution determines this particular relationship. In an
as-fast-as-possible execution, the simulation time is
advanced as fast as computing speed can allow,
unrelated to wallclock time. In real-time execution, on
the other hand, advances in simulation time are
performed in lockstep with wallclock time – one unit
of simulation time is advanced exactly in one same unit
of wallclock time. A variation of real-time execution is
scaled real-time execution, in which simulation time
period is some constant factor times an equivalent
wallclock time period.

Events and Event Orderings
An event is an indication of an update to simulation
system state at a specific simulation time instant. Thus
each event specifies a timestamp. When events are
exchanged among federates, their delivery at the
receiving federates needs to be carefully coordinated at
runtime. In general, multiple different types of
delivery ordering systems can be defined. Two such
orderings, employed by the HLA, are (1) receive-order
(2) timestamp-order. Other types[6], such as causal
order[7], could also be useful in certain cases, but they
are not as commonly used.

In receive-ordered delivery (RO), events from other
federates are delivered to the receiving federate as and
when the events arrive at the receiving federate. In
contrast, in timestamp-ordered delivery (TSO), events
are guaranteed to be delivered in non-decreasing order
of their timestamps. Typically, since RO delivers
events right away, RO events incur lower delivery
delay/latency from the moment they are sent by a
federate to the moment the destination federate(s)
receives them. TSO events on the other hand undergo
runtime checks and buffering until their non-
decreasing timestamp order can be ascertained and
guaranteed, and hence TSO events incur relatively
higher latency. However, a significant difference
arises with respect to modeling accuracy afforded by
RO and TSO. RO cannot always preserve “before and
after” relationships, while TSO does guarantee
preservation of such relationships. Similarly, with
TSO, all federates see the exact same ordering of
events, whereas with RO, identical ordering among
events cannot be guaranteed across federates.
Federation execution can be made repeatable with TSO
from one execution to the next, while RO cannot
ensure such repeatability.

Timestamp-Ordered (TSO) Processing
The rationale behind timestamp-ordered processing is
that it permits the models to be accurately simulated,
such that events are processed in the same order as
their corresponding actions in they physical system.
To enable such processing order, a simple local rule is
that a federate whose simulation time is at T should not
receive events with timestamps less than T. Hence,
advances of federate’s current time have to be
coordinated and controlled carefully to prevent events
appearing in federate’s “past”

The HLA’s TM services thus address two important
components: (1) overall event processing order by each
federate (2) synchronized event delivery to each
federate.

2005 Paper No. 2196 Page 3 of 8

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Interoperability Challenge
While enabling event processing order and
synchronized event delivery, all in a single
encompassing standard framework, the HLA needs to
accommodate a large variety of individual types of
simulators.

In general, there is a plethora of different simulator
types – event-stepped vs. time-stepped, sequential vs.
parallel, real-time vs. as-fast-as-possible, conservative
vs. optimistic, etc. An HLA federation might include
any combination of any of the simulator types.
Moreover, the exact combination of the types is not
known a priori to the HLA RTI, and hence the
interface as well as the implementation must be
sufficiently general to accommodate any/all of them.
The HLA TM interface does an amazing job of
accommodating any arbitrary combinations of, and any
number of instances of, different types of simulators,
all in one core, seamless interface.

BASIC HLA TIME MANAGEMENT SERVICES

The HLA’s Time Management services are highly
parameterized to support the wide variety of
timestamp-ordered synchronization requirements of
HLA federates. The federates first declare their roles,
along with their key concurrency parameters. They
then utilize the RTI’s TM services to control
simulation time advances and timestamp-ordered event
delivery.

Federate Roles
In order to participate in the time managed portion of
the federation, a federate must declare such intent, by
setting its time regulating and time constrained flags.
A federate whose time regulating flag is turned on acts
in a role in which it can send TSO messages and hence
can prevent other federates from advancing their
simulation time. A federate whose time constrained
flag is turned on acts in a role in which it can receive
TSO messages and hence can be constrained by other
time regulating federates. Note that a federate can be
both time regulating and time constrained at the same
time (typically used for analytic simulations[8]). An
example of a time regulating-only federate is a
message source. An example of a time constrained-
only federate is a Stealth Display. Federates such as
training simulators are examples of those that are
neither time regulating nor time constrained (such
federates effectively turn off time synchronization for
their events).

Request-Update-Grant Scheme
The HLA TM interface provides a particular request-
update-grant scheme to realize timestamp-ordered
event delivery and federation-synchronized simulation
time advances. In this scheme, federates explicitly
request the RTI for permission to advance to a certain
simulation time. There are fundamentally three basic
types of such requests – Time Advance Request
(TAR), Next Event Request (NER) and Flush Queue
Request (FQR). TAR is typically used by time-stepped
federates, NER by event-driven federates and FQR by
optimistic event-driven federates or other advanced
federates. At a later time, as and when the RTI deems
fit, the RTI invokes a Time Advance Grant (TAG)
callback on the federate to notify the federate
permission to advance to a given time specified in the
TAG. The RTI bases its decision to issue a TAG on
many factors, including a distributed computation of a
safe time called Lower Bound on Time Stamp (LBTS),
as will be explained in a later section.

In this section, we will focus on TAR and NER
services only, and will cover FQR in a later section.

Time Advance Request
A Time Advance Request (TAR) is typically used by
time-stepped federates. A time-stepped federate is one
that performs its processing in fixed increments of
simulation time, irrespective of timestamps of events it
receives. Upon completing processing until a
simulation time T, the federate is ready to advance to a
time T+dt, where dt is determined independent of any
incoming future events.

The federate invokes TimeAdvanceRequest(T) to
request the RTI’s permission to advance its simulation
time to T. This informs the RTI to deliver all those
events destined for this federate whose timestamps are
less than T. Once the RTI can guarantee the delivery
of all such events, it issues a TimeAdvanceGrant(T) to
advance the federate’s simulation time to T. In the
interim period between a TimeAdvanceRequest(T) and
TimeAdvanceGrant(T), the federate continually
invokes the tick() method to grant computation cycles
to the RTI. Note that the granted time is always equal
to the requested time.

Next Event Request
A Next Event Request (NER) is typically used by
discrete event federates. This service is intended to
facilitate each federate in processing all its events in
timestamp-order, irrespective of whether the events
were generated locally or received from other
federates.

2005 Paper No. 2196 Page 4 of 8

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Suppose TE is the earliest timestamp of events locally
present for processing in the federate. In the most
common use of NER, the federate invokes
NextEventRequest(TE) when TE is less than the most
recently granted time, TTAG, obtained via a
TimeAdvanceGrant(TTAG) from the RTI. The RTI then
works to ensure one of two things: either (1) all events
eventually generated & destined to this federate by
other federates necessarily have timestamps greater
than or equal to TE, or (2) finds and delivers to this
federate one or more events whose timestamps are less
than TE. In the former case, the RTI issues a
TimeAdvanceGrant(TE). In the latter case, it first
delivers all appropriate events/interactions via
ReflectAttributeValues() and then issues a
TimeAdvanceGrant(TRAV). Where TRAV is the timestamp
value of delivered events, TRAV < TE.

Lookahead
A fundamental problem with TAR-based and NER-
based federations is concerned with the concept of
lookahead. For simplicity, let us focus on NER. In the
absence of the concept of lookahead, suppose any
federate that is processing an event with timestamp T
can generate another event, whose timestamp is also
equal to T, to another federate. Moreover, this new
event could be destined to any or all federates. In such
a scenario, in order to ensure timestamp-ordered
processing, it is clear that there is little concurrency
among federates. Only the event with the globally
minimum timestamp in the entire system can be
processed at its federate, while all the rest of the
federates necessarily have to stay idle. In other words,
only one federate gets a grant to its requested NER
time, while the rest of the federates are “idling” in
tick(). Essentially, this degenerates to sequential
execution, albeit with multiple federates. Clearly, this
is undesirable in interest of runtime performance. It
becomes desirable to uncover concurrency among
federates to avoid such serialization. The concept of
lookahead is defined to resolve this problem.

Lookahead is defined as the minimum increment in
simulation time between an event and any new events
generated during processing of that event. When this
lookahead is greater than zero at all federates, the
federation can experience concurrency. If the
lookahead is zero for any federate (i.e., a federate can
generate events with zero delay), then the entire
federation suffers from serial execution (discounting
unrelated events with equal timestamps at different
federates).

In simulation models, it is possible to extract
lookahead by examining the minimum time for

interactions to occur among entities. For example,
speed-of-light delays could be used to compute
minimum propagation delays across radio/satellite
entities. In other models, it might be difficult to extract
non-zero lookahead. Lookahead extraction is a topic
of much research, and unfortunately remains a
challenge in its generality[9, 10].

HLA TM provides a SetLookahead() service for the
federates to specify zero or positive lookahead on a
federate-by-federate basis. The minimum lookahead
among all federates is then used by the RTI for
enabling concurrency.

INSIDE RTI – TM IMPLEMENTATION
APPROACHES

It is usually sufficient for federate developers to be
conversant with the HLA TM services as far as usage
of its interface is concerned. However, it is helpful to
also be familiar with some implementation approaches
taken by RTI vendors in implementing the TM
interface primitives. In particular, it is useful to be
aware of distributed computation factors, such as
message and computation performance overheads,
incurred by the federate (and the federation) when
certain primitives are used in a certain way. One
example of this has already been covered in the
previous section, namely, the performance effects of
specifying zero vs. positive lookahead. Here, we will
examine additional computational effects of TM
services.

Centralized vs. Distributed
Like most distributed computation problems, TM
services can generally be implemented in two ways:
centralized approach and fully distributed approach.

In a centralized approach, a single, designated
computer acts as the RTI’s “time management
gateway” for the entire federation. All time-
synchronized operations are routed by the RTI through
this gateway. For example, time advance requests and
grants are coordinated by the gateway. Since the
gateway holds information about the state of all
federates, the gateway can decide on and satisfy most
requests in a straightforward fashion. The centralized
approach affords great simplicity of design as well as
ease of debugging and testing, and hence employed by
some commercial RTI vendors. The drawbacks of this
approach include existence of a single point of failure,
and potentially higher runtime overhead. The latency
of services could also increase due to the need to
contact the gateway for most operations.

2005 Paper No. 2196 Page 5 of 8

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

In a fully distributed approach, every federate’s
computer node directly undertakes a synchronization
role in a peer-to-peer fashion. Fully distributed
algorithms are then employed to realize time-
synchronized event delivery and processing. This
approach is used successfully in some high-
performance RTI implementations[11]. While faster
execution is an advantage (as also a more uniform
synchronization load across all federate nodes), the
drawback is significant increase in implementation
complexity.

Computing LBTS
A fundamental role of a TM implementation is in
computing a quantity known as Lower Bound on
incoming Time Stamps (LBTS). At each federate, the
LBTS value specifies a guarantee on the least
timestamp on any future incoming event. In other
words, no event will ever arrive at that federate with a
timestamp smaller than LBTS. Once this global value
is known, it is rather straightforward to locally serve
TM requests, such as TAR, NER and FQR. In order to
compute the LBTS value at each federate, a distributed
algorithm is required that exchanges messages to
coordinate the LBTS computation without deadlocks,
live-locks or undue performance degradation. Several
such algorithms have been proposed in PADS
literature[12]. A close cousin to the LBTS
computation is GVT computation in optimistic
simulation[13]. Another closely related work in
general distributed processing is that of distributed
“flush barrier” algorithms[14]. Analogous to these
algorithms, several variants exist for LBTS
computation.

One such algorithm is based on global asynchronous
distributed reductions. In this algorithm, the minimum
local (conditional) guarantee on timestamps of events
that could be generated is taken at each federate, and a
global reduction algorithm is used to find the minimum
of all the local minima. This can be performed fairly
quickly and scalably, in log(Np) steps, where Np is the
number of federates, using a butterfly pattern of
communication[15]. Assuming there are no events in
transit across federates, the minimum of the minima
gives a tight lower bound on LBTS.

Transient Messages
What if there are some events that are in transit in the
network while the global minimum of local minima is
being computed? This is called the transient event
problem, in which some events could become
potentially unaccounted for if they are not considered
into the global algorithm. There exist several schemes
by which transient events can be accounted for, albeit

at the cost of either additional messages being
sent/received and/or additional time spent blocking
while waiting for all transient events to reach their
destinations. A popular one is called the Mattern’s
algorithm[16] in which distributed consistent cuts are
used to mark and recognize events belonging to
distributed different snapshots.

It is clear that the larger the lookahead, the fewer the
number of LBTS computations that need to be
performed.

Serving Requests
The RTI internally maintains a priority queue of TSO
events, ordered by their timestamps. When a federate
invokes TAR(T), the RTI first examines if LBTS is
greater than T. If so, the request is trivially satisfied –
the RTI delivers all events from its TSO queue whose
timestamps are less than or equal to T, and then issues
a TAG(T). If T is greater than LBTS, then the RTI
initiates a new distributed LBTS computation (if one is
not already in progress). The lesser of T and minimum
timestamp in TSO queue is used as this federate’s
contribution in the LBTS computation. The operation
is similar for NER(T) invocations as well, except that
the TAG time could be smaller than T if events with
timestamps earlier than T are delivered.

ADVANCED HLA TIME MANAGEMENT
SERVICES

In addition to supporting basic integration of
conservative federates, the HLA TM services include
some additional primitives to integrate federates that
use advanced simulation methods, such as Time Warp-
style optimistic simulation[17].

In general, time synchronization approaches are
categorized as conservative or optimistic. In a
conservative execution, synchronization errors are
always avoided by avoiding the possibility of events
arriving at a federate after the federate’s local
simulation time has been advanced to beyond the new
events’ timestamps. Conservative algorithms tradeoff
idle time for achieving such safety by blocking event
processing. Optimistic algorithms on the other hand,
do not block, but instead process events without regard
to potential order violations. If and when timestamp
order violation is detected, a rollback mechanism is
used to recover from erroneous computation.
Conservative federates are easier to implement, but
rely on existence of (large) positive lookahead values.
Optimistic federates, on the other hand, are more
complex to implement, but are resilient to zero

2005 Paper No. 2196 Page 6 of 8

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

lookahead (i.e., work well even under low statically-
determinable concurrency).

Retractions
In simulations, models are sometimes written to un-
schedule previously generated events. For example,
although a move event is scheduled on an entity at T, it
might have to be retracted later if the entity gets
destroyed after the event is scheduled but prior to T.
Such event retractions are called user-level retractions.
Typically, user-level retractions are enabled as follows.
When an event is scheduled, the system returns a
handle to that event. Later, if and when that event
needs to be retracted, a retract primitive is invoked to
which the event handle is given. The system then un-
schedules that event. The HLA RTI provides such a
framework using event handles and retraction
primitive. Interestingly, the same service is also used
for “system-level” retraction in optimistic simulations,
as described next.

Optimistic Time Management
As mentioned previously, the HLA supports
conservative federates as well as optimistic federates,
as well as their arbitrary combinations. Optimistic
federates differ from their conservative counterparts in
that they do not discard events after processing them.
Instead they keep the events around, and also maintain
copies of simulation states before modifying them as
part of event processing. Since optimistic federates do
not rely on lookahead, they execute their events
without blocking for safety. In particular, they use the
FlushQueueRequest(T) service of the RTI to force the
RTI to deliver events from its TSO queue even if
LBTS has not progressed past T. The difference
between FQR and NER is that FQR does not guarantee
that it has delivered all events with timestamp less than
T. Thus, the federate will have to rollback[18] its
computation if/when it later receives events whose
timestamp is less than T. There are two main parts to
such rollback: (1) undo local computation by restoring
the state prior to erroneous event processing (2) undo
all events erroneously sent to other federates. The first
part is typically federate-specific, and hence the HLA
does not provide a standard service for it. The second
part is realized by using the event retraction service
described previously. When an optimistic federate
receives a retraction request, it performs an event
annihilation procedure canceling the original event.

Note that the HLA RTI shields conservative federates
from optimistic events by holding on to optimistic
events in RTI TSO queues until such a time that LBTS
sweeps past their timestamps. If the optimistically
scheduled events happen to get retracted by their

sending federates, those events will get annihilated
within the RTI’s TSO queues without ever getting
delivered to the (conservative) destination federate.

Simultaneity
The notion of simultaneity arises when the timestamps
of two or more events are exactly equal[19]. There are
many ways in which simultaneous events could be
generated. One simple way is when an event generates
another event with zero delay in a zero-lookahead
federation[20]. Another way is when two federates
generate two otherwise unrelated events whose
timestamps happen to be exactly the same (e.g., due to
pure coincidence with random number generators)[21].
The former way is rather more difficult to resolve than
the latter: zero-lookahead federations present problems
with interface definition with TAR and NER. The
latter can be resolved using tie-breaker fields so two
timestamps cannot be coincidentally equal[21].

Given a TAR(T) or NER(T), how can the RTI guarantee
that all events with timestamps less than or equal to T
have all been delivered before a TAG(T) is issued?
Clearly, with zero lookahead, any event with time T
can generate another event with same time T. This
presents a semantic problem with the definition of
TAR and NER.

In order to resolve this impasse due to simultaneity of
events, new variants of TAR and NER are provided –
Time Advance Request Available (TARA) and Next
Event Request Available (NERA). A TARA(T)
invocation allows the RTI to issue TAG(T) with the
proviso that more events with timestamp equal to T
might be delivered later. Similarly, an NER(T)
invocation by a federate allows the RTI to safely issue
a TAG(T) to the federate with the proviso that not all
events with timestamp strictly equal to T have been
accounted for.

QUESTIONS

1. What are the two common types of event ordering
most commonly used in HLA federations? Which
among the two incurs lesser runtime overhead?
Which ensures better modeling accuracy?

2. Describe what is meant by lookahead of a
federate? Explain why it is generally desirable to
have the value of lookahead to be as large as
possible.

3. List the three principal RTI primitives that a
federate can invoke to request synchronization of
events and simulation time with the rest of the
federation.

2005 Paper No. 2196 Page 7 of 8

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

REFERENCES

[1] R. Bagrodia, K. M. Chandy, and W. T. Liao, "A
Unifying Framework for Distributed Simulation," ACM
Transactions on Modeling and Computer Simulation, vol. 1,
pp. 348-385, 1991.
[2] K. M. Chandy and R. Sherman, "Space, Time, and
Simulation," in Proceedings of the SCS Multiconference on
Distributed Simulation, vol. 21: SCS Simulation Series,
1989, pp. 53-57.
[3] R. M. Fujimoto, "Parallel Discrete Event
Simulation," Communications of the ACM, vol. 33, pp. 30-
53, 1990.
[4] J. Misra, "Distributed Discrete Event Simulation,"
ACM Computing Surveys, vol. 18, pp. 39-65, 1986.
[5] P. F. Reynolds, Jr., "A Spectrum of Options for
Parallel Simulation," in Proceedings of the 1988 Winter
Simulation Conference, 1988, pp. 325-332.
[6] L. Lamport, "Time, Clocks, and the Ordering of
Events in a Distributed System," Communications of the
ACM, vol. 21, pp. 558-565, 1978.
[7] B.-S. Lee, W. Cai, and J. Zhou, "A Causality Based
Time Management Mechanism for Federated Simulations,"
in Proceedings of the 15th Workshop on Parallel and
Distributed Simulation, 2001, pp. 83-90.
[8] A. L. Wilson and R. M. Weatherly, "The
Aggregate Level Simulation Protocol: An Evolving System,"
in Proceedings of the 1994 Winter Simulation Conference,
1994, pp. 781-787.
[9] B. A. Cota and R. G. Sargent, "A Framework for
Automatic Lookahead Computation in conservative
Distributed Simulations," in Proceedins of the SCS
Multiconference on Distributed Simulation, vol. 22: SCS
Simulation Series, 1990, pp. 56-59.
[10] E. Deelman, R. Bagrodia, R. Sakellariou, and V.
Adve, "Improving Lookahead in Parallel Discrete Event
Simulations of Large-Scale Applications using Compiler
Analysis," in Proceedings of the 15th Workshop on Parallel
and Distributed Simulation, 2001, pp. 5-13.
[11] R. M. Fujimoto, T. McLean, K. Perumalla, and I.
Tacic, "Design of High Performance RTI Software,"

presented at Workshop on Distributed Interactive
Simulations and Real-Time Applications, 2000.
[12] K. Perumalla and R. Fujimoto, "Virtual Time
Synchronization over Unreliable Network Transport,"
presented at Workshop on Parallel and Distributed
Simulation, 2001.
[13] S. Bellenot, "Global Virtual Time Algorithms," in
Proceedings of the SCS Multiconference on Distributed
Simulation: Society for Computer Simulation, 1990, pp. 122-
127.
[14] M. Ahuja, "Flush Primitives for Asynchronous
Distributed Systems," Information Processing Letters, pp. 5-
12, 1990.
[15] D. E. Brooks, "The Butterfly Barrier," The
International Journal of Parallel Programming, vol. 14, pp.
295-307, 1986.
[16] F. Mattern, "Efficient Algorithms for Distributed
Snapshots and Global Virtual Time Approximation," Journal
of Parallel and Distributed Computing, vol. 18, pp. 423-434,
1993.
[17] D. Jefferson, "Virtual Time," ACM Transactions on
Programming Languages and Systems, vol. 7, pp. 404-425,
1985.
[18] A. Gafni, "Rollback Mechanisms for Optimistic
Distributed Simulation Systems," in Proceedings of the SCS
Multiconference on Distributed Simulation, vol. 19, SCS
Simulation Series, 1988, pp. 61-67.
[19] V. Jha and R. Bagrodia, "Simultaneous Events and
Lookahead in Simulation Protocols," University of
California, Los Angeles 1996.
[20] R. M. Fujimoto, "Zero Lookahead and
Repeatability in the High Level Architecture," in
Proceedings of the Spring Simulation Interoperability
Workshop: Paper 046, 1997.
[21] H. Mehl, "A Deterministic Tie-Breaking Scheme
for Sequential and Distributed Simulation," in Proceedings of
the Workshop on Parallel and Distributed Simulation, vol.
24, M. Abrams and P. Reynolds, Jr., Eds.: Society for
Computer Simulation, 1992, pp. 199-200.

2005 Paper No. 2196 Page 8 of 8

	ABSTRACT
	ABOUT THE AUTHOR
	INTRODUCTION
	HLA OVERVIEW
	Architecture
	Interface
	Typical Usage

	FUNDAMENTAL PADS CONCEPTS
	Notions of Time
	Execution Pacing
	Events and Event Orderings
	Timestamp-Ordered (TSO) Processing
	Interoperability Challenge

	BASIC HLA TIME MANAGEMENT SERVICES
	Federate Roles
	Request-Update-Grant Scheme
	Time Advance Request
	Next Event Request
	Lookahead

	INSIDE RTI – TM IMPLEMENTATION APPROACHES
	Centralized vs. Distributed
	Computing LBTS
	Transient Messages
	Serving Requests

	ADVANCED HLA TIME MANAGEMENT SERVICES
	Retractions
	Optimistic Time Management
	Simultaneity

	QUESTIONS
	REFERENCES

