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ABSTRACT 

 
This tutorial introduces the fundamental principles and algorithms underlying parallel/distributed simulation, along 
with an overview of synchronization methods and their implementation.  The manifestation of these principles and 
methods in the Time Management services of the High Level Architecture (HLA) are described.  Important systems 
issues such as computation and communication overheads are highlighted. This tutorial is designed to help the 
audience gain a detailed understanding of the concepts, terminology and application of parallel/distributed 
simulation methods, especially in the context of the HLA.    
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INTRODUCTION 

Parallel and Distributed Simulation (PADS) systems 
are, at their core, concerned with time-synchronized 
simulations running on multiple inter-connected 
processors.  The US Department of Defense (DoD) 
High Level Architecture (HLA) includes support for 
time-synchronized parallel/distributed simulations, 
built on fundamental PADS concepts. 

There are four main goals of this tutorial: (1) 
understand the fundamental PADS concepts relevant to 
the HLA (2) understand the usage of basic Time 
Management (TM) services in the HLA (3) appreciate 
algorithmic and performance aspects behind some of 
the HLA TM implementation, and (4) gain exposure to 
typical usage of relatively advanced TM services. 

The rest of this document is organized as follows.  A 
brief overview of the HLA is provided for 
completeness.  This is followed by an introduction to 
some of the fundamental concepts in PADS that 
underlie the synchronization service frameworks in 
HLA.  The most commonly used HLA TM services are 
then described, along with templates of their 
intended/typical usage.  This is followed by a brief 
introduction to some implementation approaches inside 
RTI software for runtime support of TM services.  
Exposure to RTI implementations is intended to 
provide an idea of the complexity and performance 
implications of RTI TM services to the simulation 
developers.  Finally, some of the more advanced 
features of TM services are described, such as 
retractions, simultaneity and optimistic simulation. 

HLA OVERVIEW 

The US DoD HLA is based on a “system of systems” 
approach to integrating separate, individual simulation 
systems.  It is based under the premise that no single 
simulation could satisfy all user needs.  Instead, 
interoperability of multiple systems is envisioned as a 
way to integrate as well as reuse different DoD 
simulations. 

Although primarily designed for defense simulations, 
the architecture is general enough for use in other 
domains as well. 

Architecture 
In the HLA, an integrated execution of simulations is 
called a federation.  Individual simulators participating 
in a federation are called federates.  Federates can be of 
different types: pure software simulators such as 
computer generated forces, human-in-the-loop 
simulators such as virtual simulators, or live 
components such as instrumented weapon systems. 

The HLA consists of Rules that federates must adhere 
to for proper interaction during execution.  It also 
defines an Object Model Template (OMT), a format for 
specifying the set of common objects used by the 
federation.  A third component called the IFSpec 
provides interface to a runtime infrastructure (RTI) that 
ties the federates together during execution. 

Interface 
The IFSpec is further divided into multiple categories 
of services, such as federation management, 
declaration management, object management, 
ownership management, time management and data 
distribution management. 

The primary focus of this tutorial is in time 
management (TM) services. 

Typical Usage 
In a typical usage template of the IFSpec services, each 
federate invokes the services roughly in the following 
sequence: 

(1) Initialize federation – create & join federation 
execution (Federation Management) 

(2) Declare objects – publish & subscribe to object 
classes (Declaration Management) 

(3) Exchange information at runtime – update/reflect 
attribute values, send/receive interactions (Object 
Management); synchronization (Time 
Management); affect object ownership (Ownership 
Management); change interest regions (Data 
Distribution Management) 
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(4) Terminate – resign & destroy federation execution 
(Federation Management). 

 
The rest of this tutorial focuses on time management 
services. 

FUNDAMENTAL PADS CONCEPTS 

A significant amount of literature exists in the parallel 
and distributed simulation (PADS) research 
community, which has previously explored issues in 
time synchronized simulations[1-5].  The HLA TM 
has, in large part, been built on insights from PADS 
research.  Thus, the fundamental concepts in HLA TM 
are common with those in PADS. 

Notions of Time 
In simulation, there are generally three distinct notions 
of time.  The first is the physical time, which is the 
time in the physical system that is being modeled (e.g., 
10-11pm on January 1990).  The second is the 
simulation time, which is a representation of the 
physical time for the purposes of simulation (e.g., 
number of seconds since 10pm of January 1990, 
represented in floating point values in the range 
[0..3600] corresponding to the simulated time period of 
the physical time).  Finally, the wallclock time is the 
elapsed real time during execution of the simulation, as 
measured by a hardware clock (e.g., number of 
milliseconds of computer time during execution).  For 
each, the notions of time axis and time instant can be 
defined – time axis is the totally ordered set of time 
instants along the corresponding timeline.  In 
particular, for simulation time, the time line is called 
the federation time axis (common across all federates), 
and the federate time is a specific federate’s current 
time instant along the federation time axis up to which 
the federate has advanced its simulation. 

Execution Pacing 
In general, there is a one-to-one mapping from physical 
time to simulation time.  In contrast, there may or may 
not exist a specific relationship between simulation 
time and wallclock time.  The mode of simulation 
execution determines this particular relationship.  In an 
as-fast-as-possible execution, the simulation time is 
advanced as fast as computing speed can allow, 
unrelated to wallclock time.  In real-time execution, on 
the other hand, advances in simulation time are 
performed in lockstep with wallclock time – one unit 
of simulation time is advanced exactly in one same unit 
of wallclock time.  A variation of real-time execution is 
scaled real-time execution, in which simulation time 
period is some constant factor times an equivalent 
wallclock time period. 

Events and Event Orderings 
An event is an indication of an update to simulation 
system state at a specific simulation time instant.  Thus 
each event specifies a timestamp.  When events are 
exchanged among federates, their delivery at the 
receiving federates needs to be carefully coordinated at 
runtime.  In general, multiple different types of 
delivery ordering systems can be defined.  Two such 
orderings, employed by the HLA, are (1) receive-order 
(2) timestamp-order.  Other types[6], such as causal 
order[7], could also be useful in certain cases, but they 
are not as commonly used. 

In receive-ordered delivery (RO), events from other 
federates are delivered to the receiving federate as and 
when the events arrive at the receiving federate.  In 
contrast, in timestamp-ordered delivery (TSO), events 
are guaranteed to be delivered in non-decreasing order 
of their timestamps.  Typically, since RO delivers 
events right away, RO events incur lower delivery 
delay/latency from the moment they are sent by a 
federate to the moment the destination federate(s) 
receives them.  TSO events on the other hand undergo 
runtime checks and buffering until their non-
decreasing timestamp order can be ascertained and 
guaranteed, and hence TSO events incur relatively 
higher latency.  However, a significant difference 
arises with respect to modeling accuracy afforded by 
RO and TSO.  RO cannot always preserve “before and 
after” relationships, while TSO does guarantee 
preservation of such relationships.  Similarly, with 
TSO, all federates see the exact same ordering of 
events, whereas with RO, identical ordering among 
events cannot be guaranteed across federates.  
Federation execution can be made repeatable with TSO 
from one execution to the next, while RO cannot 
ensure such repeatability. 

Timestamp-Ordered (TSO) Processing 
The rationale behind timestamp-ordered processing is 
that it permits the models to be accurately simulated, 
such that events are processed in the same order as 
their corresponding actions in they physical system.  
To enable such processing order, a simple local rule is 
that a federate whose simulation time is at T should not 
receive events with timestamps less than T.  Hence, 
advances of federate’s current time have to be 
coordinated and controlled carefully to prevent events 
appearing in federate’s “past” 

The HLA’s TM services thus address two important 
components: (1) overall event processing order by each 
federate (2) synchronized event delivery to each 
federate. 
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Interoperability Challenge 
While enabling event processing order and 
synchronized event delivery, all in a single 
encompassing standard framework, the HLA needs to 
accommodate a large variety of individual types of 
simulators. 

In general, there is a plethora of different simulator 
types – event-stepped vs. time-stepped, sequential vs. 
parallel, real-time vs. as-fast-as-possible, conservative 
vs. optimistic, etc.  An HLA federation might include 
any combination of any of the simulator types.  
Moreover, the exact combination of the types is not 
known a priori to the HLA RTI, and hence the 
interface as well as the implementation must be 
sufficiently general to accommodate any/all of them.  
The HLA TM interface does an amazing job of 
accommodating any arbitrary combinations of, and any 
number of instances of, different types of simulators, 
all in one core, seamless interface. 

BASIC HLA TIME MANAGEMENT SERVICES 

The HLA’s Time Management services are highly 
parameterized to support the wide variety of 
timestamp-ordered synchronization requirements of 
HLA federates.  The federates first declare their roles, 
along with their key concurrency parameters.   They 
then utilize the RTI’s TM services to control 
simulation time advances and timestamp-ordered event 
delivery. 

Federate Roles 
In order to participate in the time managed portion of 
the federation, a federate must declare such intent, by 
setting its time regulating and time constrained flags.  
A federate whose time regulating flag is turned on acts 
in a role in which it can send TSO messages and hence 
can prevent other federates from advancing their 
simulation time.  A federate whose time constrained 
flag is turned on acts in a role in which it can receive 
TSO messages and hence can be constrained by other 
time regulating federates.  Note that a federate can be 
both time regulating and time constrained at the same 
time (typically used for analytic simulations[8]).  An 
example of a time regulating-only federate is a 
message source.  An example of a time constrained-
only federate is a Stealth Display.  Federates such as 
training simulators are examples of those that are 
neither time regulating nor time constrained (such 
federates effectively turn off time synchronization for 
their events). 

Request-Update-Grant Scheme 
The HLA TM interface provides a particular request-
update-grant scheme to realize timestamp-ordered 
event delivery and federation-synchronized simulation 
time advances.  In this scheme, federates explicitly 
request the RTI for permission to advance to a certain 
simulation time.  There are fundamentally three basic 
types of such requests – Time Advance Request 
(TAR), Next Event Request (NER) and Flush Queue 
Request (FQR).  TAR is typically used by time-stepped 
federates, NER by event-driven federates and FQR by 
optimistic event-driven federates or other advanced 
federates.  At a later time, as and when the RTI deems 
fit, the RTI invokes a Time Advance Grant (TAG) 
callback on the federate to notify the federate 
permission to advance to a given time specified in the 
TAG.  The RTI bases its decision to issue a TAG on 
many factors, including a distributed computation of a 
safe time called Lower Bound on Time Stamp (LBTS), 
as will be explained in a later section. 

In this section, we will focus on TAR and NER 
services only, and will cover FQR in a later section. 

Time Advance Request 
A Time Advance Request (TAR) is typically used by 
time-stepped federates.  A time-stepped federate is one 
that performs its processing in fixed increments of 
simulation time, irrespective of timestamps of events it 
receives.  Upon completing processing until a 
simulation time T, the federate is ready to advance to a 
time T+dt, where dt is determined independent of any 
incoming future events. 

The federate invokes TimeAdvanceRequest(T) to 
request the RTI’s permission to advance its simulation 
time to T.  This informs the RTI to deliver all those 
events destined for this federate whose timestamps are 
less than T.  Once the RTI can guarantee the delivery 
of all such events, it issues a TimeAdvanceGrant(T) to 
advance the federate’s simulation time to T.  In the 
interim period between a TimeAdvanceRequest(T) and 
TimeAdvanceGrant(T), the federate continually 
invokes the tick() method to grant computation cycles 
to the RTI.  Note that the granted time is always equal 
to the requested time. 

Next Event Request 
A Next Event Request (NER) is typically used by 
discrete event federates.  This service is intended to 
facilitate each federate in processing all its events in 
timestamp-order, irrespective of whether the events 
were generated locally or received from other 
federates. 
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Suppose TE is the earliest timestamp of events locally 
present for processing in the federate.  In the most 
common use of NER, the federate invokes 
NextEventRequest(TE) when TE is less than the most 
recently granted time, TTAG, obtained via a 
TimeAdvanceGrant(TTAG) from the RTI.  The RTI then 
works to ensure one of two things: either (1) all events 
eventually generated & destined to this federate by 
other federates necessarily have timestamps greater 
than or equal to TE, or (2) finds and delivers to this 
federate one or more events whose timestamps are less 
than TE.  In the former case, the RTI issues a 
TimeAdvanceGrant(TE). In the latter case, it first 
delivers all appropriate events/interactions via 
ReflectAttributeValues() and then issues a 
TimeAdvanceGrant(TRAV). Where TRAV is the timestamp 
value of delivered events, TRAV < TE. 

Lookahead 
A fundamental problem with TAR-based and NER-
based federations is concerned with the concept of 
lookahead.  For simplicity, let us focus on NER.  In the 
absence of the concept of lookahead, suppose any 
federate that is processing an event with timestamp T 
can generate another event, whose timestamp is also 
equal to T, to another federate.  Moreover, this new 
event could be destined to any or all federates.  In such 
a scenario, in order to ensure timestamp-ordered 
processing, it is clear that there is little concurrency 
among federates.  Only the event with the globally 
minimum timestamp in the entire system can be 
processed at its federate, while all the rest of the 
federates necessarily have to stay idle.  In other words, 
only one federate gets a grant to its requested NER 
time, while the rest of the federates are “idling” in 
tick().  Essentially, this degenerates to sequential 
execution, albeit with multiple federates.  Clearly, this 
is undesirable in interest of runtime performance.  It 
becomes desirable to uncover concurrency among 
federates to avoid such serialization.  The concept of 
lookahead is defined to resolve this problem. 

Lookahead is defined as the minimum increment in 
simulation time between an event and any new events 
generated during processing of that event.  When this 
lookahead is greater than zero at all federates, the 
federation can experience concurrency.  If the 
lookahead is zero for any federate (i.e., a federate can 
generate events with zero delay), then the entire 
federation suffers from serial execution (discounting 
unrelated events with equal timestamps at different 
federates). 

In simulation models, it is possible to extract 
lookahead by examining the minimum time for 

interactions to occur among entities.  For example, 
speed-of-light delays could be used to compute 
minimum propagation delays across radio/satellite 
entities.  In other models, it might be difficult to extract 
non-zero lookahead.  Lookahead extraction is a topic 
of much research, and unfortunately remains a 
challenge in its generality[9, 10]. 

HLA TM provides a SetLookahead() service for the 
federates to specify zero or positive lookahead on a 
federate-by-federate basis.  The minimum lookahead 
among all federates is then used by the RTI for 
enabling concurrency. 

INSIDE RTI – TM IMPLEMENTATION 
APPROACHES 

It is usually sufficient for federate developers to be 
conversant with the HLA TM services as far as usage 
of its interface is concerned.  However, it is helpful to 
also be familiar with some implementation approaches 
taken by RTI vendors in implementing the TM 
interface primitives.  In particular, it is useful to be 
aware of distributed computation factors, such as 
message and computation performance overheads, 
incurred by the federate (and the federation) when 
certain primitives are used in a certain way.  One 
example of this has already been covered in the 
previous section, namely, the performance effects of 
specifying zero vs. positive lookahead.  Here, we will 
examine additional computational effects of TM 
services. 

Centralized vs. Distributed 
Like most distributed computation problems, TM 
services can generally be implemented in two ways: 
centralized approach and fully distributed approach. 

In a centralized approach, a single, designated 
computer acts as the RTI’s “time management 
gateway” for the entire federation.  All time-
synchronized operations are routed by the RTI through 
this gateway.  For example, time advance requests and 
grants are coordinated by the gateway.  Since the 
gateway holds information about the state of all 
federates, the gateway can decide on and satisfy most 
requests in a straightforward fashion.  The centralized 
approach affords great simplicity of design as well as 
ease of debugging and testing, and hence employed by 
some commercial RTI vendors.  The drawbacks of this 
approach include existence of a single point of failure, 
and potentially higher runtime overhead.  The latency 
of services could also increase due to the need to 
contact the gateway for most operations. 
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In a fully distributed approach, every federate’s 
computer node directly undertakes a synchronization 
role in a peer-to-peer fashion.  Fully distributed 
algorithms are then employed to realize time-
synchronized event delivery and processing.  This 
approach is used successfully in some high-
performance RTI implementations[11].  While faster 
execution is an advantage (as also a more uniform 
synchronization load across all federate nodes), the 
drawback is significant increase in implementation 
complexity. 

Computing LBTS 
A fundamental role of a TM implementation is in 
computing a quantity known as Lower Bound on 
incoming Time Stamps (LBTS).  At each federate, the 
LBTS value specifies a guarantee on the least 
timestamp on any future incoming event.  In other 
words, no event will ever arrive at that federate with a 
timestamp smaller than LBTS.  Once this global value 
is known, it is rather straightforward to locally serve 
TM requests, such as TAR, NER and FQR.  In order to 
compute the LBTS value at each federate, a distributed 
algorithm is required that exchanges messages to 
coordinate the LBTS computation without deadlocks, 
live-locks or undue performance degradation.  Several 
such algorithms have been proposed in PADS 
literature[12].  A close cousin to the LBTS 
computation is GVT computation in optimistic 
simulation[13].  Another closely related work in 
general distributed processing is that of distributed 
“flush barrier” algorithms[14].  Analogous to these 
algorithms, several variants exist for LBTS 
computation. 

One such algorithm is based on global asynchronous 
distributed reductions.  In this algorithm, the minimum 
local (conditional) guarantee on timestamps of events 
that could be generated is taken at each federate, and a 
global reduction algorithm is used to find the minimum 
of all the local minima.  This can be performed fairly 
quickly and scalably, in log(Np) steps, where Np is the 
number of federates, using a butterfly pattern of 
communication[15].  Assuming there are no events in 
transit across federates, the minimum of the minima 
gives a tight lower bound on LBTS. 

Transient Messages 
What if there are some events that are in transit in the 
network while the global minimum of local minima is 
being computed?  This is called the transient event 
problem, in which some events could become 
potentially unaccounted for if they are not considered 
into the global algorithm.  There exist several schemes 
by which transient events can be accounted for, albeit 

at the cost of either additional messages being 
sent/received and/or additional time spent blocking 
while waiting for all transient events to reach their 
destinations.  A popular one is called the Mattern’s 
algorithm[16] in which distributed consistent cuts are 
used to mark and recognize events belonging to 
distributed different snapshots. 

It is clear that the larger the lookahead, the fewer the 
number of LBTS computations that need to be 
performed. 

Serving Requests 
The RTI internally maintains a priority queue of TSO 
events, ordered by their timestamps.  When a federate 
invokes TAR(T), the RTI first examines if LBTS is 
greater than T.  If so, the request is trivially satisfied – 
the RTI delivers all events from its TSO queue whose 
timestamps are less than or equal to T, and then issues 
a TAG(T).  If T is greater than LBTS, then the RTI 
initiates a new distributed LBTS computation (if one is 
not already in progress).  The lesser of T and minimum 
timestamp in TSO queue is used as this federate’s 
contribution in the LBTS computation.  The operation 
is similar for NER(T) invocations as well, except that 
the TAG time could be smaller than T if events with 
timestamps earlier than T are delivered. 

ADVANCED HLA TIME MANAGEMENT 
SERVICES 

In addition to supporting basic integration of 
conservative federates, the HLA TM services include 
some additional primitives to integrate federates that 
use advanced simulation methods, such as Time Warp-
style optimistic simulation[17]. 

In general, time synchronization approaches are 
categorized as conservative or optimistic.  In a 
conservative execution, synchronization errors are 
always avoided by avoiding the possibility of events 
arriving at a federate after the federate’s local 
simulation time has been advanced to beyond the new 
events’ timestamps.  Conservative algorithms tradeoff 
idle time for achieving such safety by blocking event 
processing.  Optimistic algorithms on the other hand, 
do not block, but instead process events without regard 
to potential order violations.  If and when timestamp 
order violation is detected, a rollback mechanism is 
used to recover from erroneous computation.  
Conservative federates are easier to implement, but 
rely on existence of (large) positive lookahead values.  
Optimistic federates, on the other hand, are more 
complex to implement, but are resilient to zero 
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lookahead (i.e., work well even under low statically-
determinable concurrency). 

Retractions 
In simulations, models are sometimes written to un-
schedule previously generated events.  For example, 
although a move event is scheduled on an entity at T, it 
might have to be retracted later if the entity gets 
destroyed after the event is scheduled but prior to T.  
Such event retractions are called user-level retractions.  
Typically, user-level retractions are enabled as follows.  
When an event is scheduled, the system returns a 
handle to that event.  Later, if and when that event 
needs to be retracted, a retract primitive is invoked to 
which the event handle is given.  The system then un-
schedules that event.  The HLA RTI provides such a 
framework using event handles and retraction 
primitive.  Interestingly, the same service is also used 
for “system-level” retraction in optimistic simulations, 
as described next. 

Optimistic Time Management 
As mentioned previously, the HLA supports 
conservative federates as well as optimistic federates, 
as well as their arbitrary combinations.  Optimistic 
federates differ from their conservative counterparts in 
that they do not discard events after processing them.  
Instead they keep the events around, and also maintain 
copies of simulation states before modifying them as 
part of event processing.  Since optimistic federates do 
not rely on lookahead, they execute their events 
without blocking for safety.  In particular, they use the 
FlushQueueRequest(T) service of the RTI to force the 
RTI to deliver events from its TSO queue even if 
LBTS has not progressed past T.  The difference 
between FQR and NER is that FQR does not guarantee 
that it has delivered all events with timestamp less than 
T.  Thus, the federate will have to rollback[18] its 
computation if/when it later receives events whose 
timestamp is less than T.  There are two main parts to 
such rollback: (1) undo local computation by restoring 
the state prior to erroneous event processing (2) undo 
all events erroneously sent to other federates.  The first 
part is typically federate-specific, and hence the HLA 
does not provide a standard service for it.  The second 
part is realized by using the event retraction service 
described previously.  When an optimistic federate 
receives a retraction request, it performs an event 
annihilation procedure canceling the original event. 

Note that the HLA RTI shields conservative federates 
from optimistic events by holding on to optimistic 
events in RTI TSO queues until such a time that LBTS 
sweeps past their timestamps.  If the optimistically 
scheduled events happen to get retracted by their 

sending federates, those events will get annihilated 
within the RTI’s TSO queues without ever getting 
delivered to the (conservative) destination federate. 

Simultaneity 
The notion of simultaneity arises when the timestamps 
of two or more events are exactly equal[19].  There are 
many ways in which simultaneous events could be 
generated.  One simple way is when an event generates 
another event with zero delay in a zero-lookahead 
federation[20].  Another way is when two federates 
generate two otherwise unrelated events whose 
timestamps happen to be exactly the same (e.g., due to 
pure coincidence with random number generators)[21].  
The former way is rather more difficult to resolve than 
the latter: zero-lookahead federations present problems 
with interface definition with TAR and NER.  The 
latter can be resolved using tie-breaker fields so two 
timestamps cannot be coincidentally equal[21]. 

Given a TAR(T) or NER(T), how can the RTI guarantee 
that all events with timestamps less than or equal to T 
have all been delivered before a TAG(T) is issued?  
Clearly, with zero lookahead, any event with time T 
can generate another event with same time T.  This 
presents a semantic problem with the definition of 
TAR and NER. 

In order to resolve this impasse due to simultaneity of 
events, new variants of TAR and NER are provided – 
Time Advance Request Available (TARA) and Next 
Event Request Available (NERA).  A TARA(T) 
invocation allows the RTI to issue TAG(T) with the 
proviso that more events with timestamp equal to T 
might be delivered later.  Similarly, an NER(T) 
invocation by a federate allows the RTI to safely issue 
a TAG(T) to the federate with the proviso that not all 
events with timestamp strictly equal to T have been 
accounted for. 

QUESTIONS 

1. What are the two common types of event ordering 
most commonly used in HLA federations?  Which 
among the two incurs lesser runtime overhead?  
Which ensures better modeling accuracy? 

2. Describe what is meant by lookahead of a 
federate? Explain why it is generally desirable to 
have the value of lookahead to be as large as 
possible. 

3. List the three principal RTI primitives that a 
federate can invoke to request synchronization of 
events and simulation time with the rest of the 
federation. 
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