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Abstract 
 
With the growing popularity of parallel computation, researchers are looking for various means 
to reduce the problem solving time by performing the computations in parallel. While, interested 
in parallel computation they do not want to deal with the parallel programming complexities. In 
this paper, through RScaLAPACK we demonstrate a means that enables the user to carryout 
parallel computation without dealing with the intricacies of parallel programming.  
 
The name RScaLAPACK is made up of two distinct words, R and ScaLAPACK. The first word 
stands for the software that provides an environment and a language for statistical computing and 
graphics. This Open source software has developed rapidly and has been extended by a large 
collection of packages.  The second word ScaLAPACK stands for a library of high-performance 
linear algebra routines for distributed-memory message passing MIMD computers and networks 
of work stations supporting PVM and/or MPI. As the name suggests, RScaLAPACK is a library 
built for the R statistical environment using the ScaLAPACK library. Through RScaLAPACK the 
user can setup the parallel environment, distribute data and carry out the required parallel computation 
using a single R function call. While the interface maintains the look and feel of the R system, 
RScaLAPACK allows carrying out analyses with a performance that scales well with both the problem 
size and the number of processors. RScaLAPACK is developed using C and FORTRAN languages and is 
distributed as an add-on library to the R statistical package. It is made available as an Open Source 
package and can be found at http://www.aspect-sdm.org/Parallel-R or on R’s CRAN web site 
http://www.r-project.org.  In this paper we discuss the design, working and performance characteristics of 
the RScaLAPACK library. 

1. Introduction 
  
To address the ever increasing computational and memory requirements of scientific data analysis, a 
scalable parallel solution to the problem is highly desirable. Currently, most of the mathematical packages 
are moving toward parallel computation as a solution to meet the ever increasing computational demands 
of their users efficiently [1-2], The R [3] software that provides a language and an environment for 
statistical computing [3-4] is one such package.  Apart from providing a wide variety of statistical and 
graphical techniques, it is highly extensible.  However, at present, R has a limited support for parallel 
computation.  Several R add-on packages like Rmpi [5] and rpvm [6] provide building blocks for writing 
parallel programs using the native programming language. These packages are in turn used to build 
parallel libraries like snow [7] that addresses the embarrassingly parallel statistical computations. Even 
though this approach of development makes parallel computation possible performance wise they could 
be less efficient as they use interpreted code for writing parallel libraries and their usage does not make 
the parallel computations transparent to the user.   
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> 
> dyn.load( “foo.so”) # Load the shared library. 
> .C( “foobar” )          # Execute the C function foobar. 
>     : 
> .Fortran( “foobar2” )   #Execute the FORTRAN function. 
>     : 
> dyn.unload( “foo.so” ) #Unload the shared library foo.so 
>  

Figure 1.b. A simple code that depicts loading, unloading, and 
usage of an external object code in R. 

> 
> library(stats)                 # Load the stats package. 
> results <- prcomp(USArrests, scale=TRUE)   # Perform Principal component 
>      # analysis on a matrix “USArrests” that is provided by dataset package. 
> summary( results )      #  Print the summary of the prcomp result. 
> 

Figure 1.a. Sequence of R commands to perform Principal 
Component Analysis on a given matrix. 

 
Our work is driven by the need to provide a completely transparent parallel computational capability to 
the user. Toward this goal, one approach is to capitalize on the existing libraries that perform parallel 
computations efficiently and make them accessible within R through an easy-to-use interface.  The 
ScaLAPACK [8-9] library that provides function APIs to the parallel high-performance linear algebra 
routines maps well to this task.  Further its serial counterpart the LAPACK [10] that is being used as an 
underlying mathematical library by many statistical analysis routines in R serves as a roadmap for this 
work.  
 
On the other hand the usage of the ScaLAPACK library demands the user to perform a number of tasks 
like, process grid setup; input data decomposition and distribution among different processes; final result 
collection and aggregation; along with many other well-defined minor details that needs to be carried out 
before and after the actual ScaLAPACK function call. With the RScaLAPACK we reduce all the above 
tasks into a single instruction in the R environment. This way we also get rid of the burden of details that 
a general user is expected to know to use any of the ScaLAPACK library routines. In addition, the 
evaluated result   using RScaLAPACK routines are in the form of R-objects and hence, can be used for 
further analysis using the diverse collection of analysis routines provided by R.   
 
In this paper we discuss the overall architecture, the function call support, and the performance of the 
RScaLAPACK package. Sections 2 and 3 discuss R and ScaLAPACK, respectively, highlighting the 
flexibility provided by the former and the complexity involved in the usage of the latter that influences 
the development of a system like RScaLAPACK. In Section 4 we discuss the architecture of the 
RScaLAPACK system.  A description of the current functionalities and implementation details follows in 
Section 5.  In section 6, we examine the performance gain and observed speedup of RScaLAPACK. We 
conclude with Section 7.  
  

2. The R Statistical Package 
 
R is an Open Source interactive programming environment for data analysis and graphics. It is one of the 
most widely used statistical data analysis packages. It provides an effective data handling and storage 
facility; a suite of operators for calculations on arrays and matrices; a large, coherent, integrated 

collection of intermediate 
tools for data analysis; 
graphical facilities for data 
analysis results; and a well 
developed simple 
programming language that 
includes conditionals, 
loops, user defined 
recursive functions, as well 
as input and output 
capabilities. R package 
comprises of many 
classical and modern 
statistical techniques. Some 
of these are built into the 
base R environment but 
many are supplied as 
optional add-on packages, 
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like the stats package that provides a rich suite of data analysis routines (Figure 1.a).  It has a dialect of 
the S language created by AT&T Bell Laboratories [18] and is freely distributed under the terms of GNU 
General Public License. 
 
Of all the above mentioned capabilities of R, the interesting one to our concern is its extensibility 
characteristic. Through the concept of Packages R provides the mechanism for loading optional code and 
attached documentation as needed. Further, R provides a function interfaces to the compiled code that has 
been linked into R. The compiled code in the form of shared objects in UNIX (or DLLs in Windows) can 
be easily loaded and unloaded from the R environment using simple R function calls (Figure 1.b). This 
feature allows the developers to build a system in C, C++, or FORTRAN languages and provide the R 
interfaces to the compiled code, through which the system could be controlled, thus making the system 
details transparent to the user.  Such systems can be distributed as R’s add-on packages. Once installed, 
they can be used optionally by loading them into the environment as required. We have taken advantage 
of this feature of R to develop RScaLAPACK package in providing a transparent parallel platform for R 
users as described in later sections.  

3. The ScaLAPACK Library 
 
ScaLAPACK is designed to give high efficiency on MIMD distributed memory concurrent 
supercomputers. In addition, the software is designed so that it can be used with clusters of workstations 
through a networked environment and with a heterogeneous computing environment via PVM or MPI . 
The ScaLAPACK routines are based on block-partitioned algorithms in order to minimize the frequency 
of data movement between different processes, which helps reduce the fixed startup cost incurred each 
time a message is communicated. The fundamental building blocks of ScaLAPACK library are parallel 
versions of the Level1, Level2, and Level3 BLAS, called the Parallel BLAS, or PBLAS, and a set of 
Basic Linear Algebra Communication Subprograms (BLACS) for communication tasks that arise 
frequently in parallel linear algebra computations. ScaLAPACK can solve systems of linear equations, 
linear least square problems, eigenvalue problems, and singular value problems. It provides a set of 
FORTRAN APIs for carrying out the parallel computation.  
 
To carry out the computation, a two dimensional rectangular grid encompassing all the processes 
involved in the parallel computation is first created. The rectangular grid is often referred to as the process 
grid. This is followed by block-cyclic data distribution of the input matrix, which involves the 
decomposition of the matrix into small rectangular blocks starting at its upper left corner and their 
uniform distribution in each dimension of the process grid. Figure 2 shows an example of a two-
dimensional block cyclic distribution of the elements of a 16x16 matrix with a block size of 2x2 
distributed over a process grid of dimension 2x2.. 
 
To start with the matrix of dimension 16x16 is divided into data-blocks each of dimension 2x2. This 
results an 8x8 matrix with each element as a data-block of size 2x2 as shown in Figure 2. Now, this 
matrix is distributed block by block, among the different processes of the two-dimensional process grid in 
a cyclic fashion. The resulting pattern of distribution of the data-blocks of the global matrix can be seen in 
the Figure 2, where each data-block of the global matrix holds the rank of the process to which it is 
assigned.  
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All ScaLAPACK routines assume that the data has been 
distributed on the process grid prior to the invocation of 
the routine. After a ScaLAPACK routine completes the 
computation, the results still distributed across the process 
grid need to be collected.   
 
In summary, the user is expected to do the task of process 
grid creation, data distribution, result collection and the 
process grid release for using the high performance 
ScaLAPACK routines. The RScaLAPACK system takes 
care of all the additional tasks involved in using the 
ScaLAPACK routines and provides easy access to these 
high performance routines through a single R function 

call, thus making the parallelism transparent to the user. 
   

4. The RScaLAPACK Architecture 
 
The requirement of performing computations outside parent R process to support the ability to perform 
computations on large data sets and the need for an entity to manage the execution of these external 
processes led to the current architecture.  The computational entity running outside the parent R process is 
referred to as Spawned Process(es) (Figure 3) and it could be any parallel computational system with a 
well-defined data distribution and result collection strategies . The management entity, which we call as 
Parallel Agent (PA) (Figure 3), orchestrates the data flow between R environment and the parallel 
computational unit. The Parallel Agent was developed under the design consideration that it should 
provide a single window entry-point to the R environment for data handling while it provides a platform 
to plug-in a generic parallel computational system. The current implementation uses the ScaLAPACK as 
it computational unit, thus the name RScaLAPACK. 
 

0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
 
Figure 2. Two-dimensional block-cyclic 
distribution of a 16x16 matrix using 2x2 
process grid and block size of 2x2. 

 
 

Figure 3. RScaLAPACK architecture. All requests for RScaLAPACK functions are forwarded to the 
Parallel Agent (PA). Upon the request from the user, the PA spawns the requested number of processes, 
distributes the input data across the process grid (as per input instructions), collects the result from the process 
grid, and returns it back to the user as an R object. The Spawned Processes are the worker processes that work 
in coordination with each other and the PA. As per the instructions from the PA, the Spawned Processes create 
the process grid, receive the distributed data-blocks from the PA, execute the requested ScaLAPACK function 
in parallel, and return the result to the Parallel Agent. 
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5. The RScaLAPACK System Details 
 
RScaLAPACK is implemented using the R, C, and Fortran77 programming languages, and it makes use 
of function calls from MPI2 [15-17], BLACS [19-21], PBLAS [22], and ScaLAPACK [8-9] libraries. The 
library can be loaded into R environment and accessed through R function calls. In this section we 
address the overall functioning of the RScaLAPACK package by highlighting various phases of execution 
in the sequence of their occurrence.  
 
The following sequence of actions, as diagrammatically depicted in Figure 4 is carried out with the 
invocation of an RScaLAPACK function call sla.solve() to solve a system of linear equations ( A·X=B ) 
 
 

X = sla.solve (A, B, NPROWS, NPCOLS, MB, SFLAG, RFLAG)4 
 

Where, A and B are the input matrices; X is the output matrix; NPROWS and NPCOLS are process grid 
specifications, and MB is the block size as required by ScaLAPACK.  
 
The RScaLAPACK function call (e.g. sla.solve()) from the R command prompt is forwarded to the 
Parallel Agent (PA) (Step1 in Figure 4). The PA spawns the requested number of processes (Step 2.a), 
and the Spawned Processes block themselves on a broadcast call from the PA (Step 2.b). The PA then 
broadcasts the process grid specifications, like the number of process rows (NPROWS) and columns 
(NPCOLS) in the process grid, the unit data-block size of the distributed data (MB) and the dimensions of 
the involved input matrices (A and B) (Step 3.a). The Spawned Processes receive the broadcasted 
information that makes them aware of their role in the distributed problem solving, such as the data-
blocks of the global input data they need to work on and the peer processes with whom they need to co-
ordinate to carry out the parallel computation (Step 3.b).  The Spawned Processes then block themselves 
to receive the data-blocks of the global matrix from the PA (Step 4.b). They perform the parallel 
computation on the received data by making a required ScaLAPACK function call (e.g. pdgesv() in this 
case) to obtain the result (Step 5.b) and the distributed result is sent back to the PA by each of the 
processes (Step 6a). The PA collects and combines various blocks from the Spawned Processes into a 
single R-object (Step 6b) that is returned back to the R environment (Step 7). 
 
By default the Spawned Processes are released after the parallel computation. However, by specifying 
additional options (SFLAG and RFLAG) in the RScaLAPACK function they can be maintained for future 
parallel computation, without having to spawn them again.  There is also an option in RScaLAPACK, 
where the process grid is created with sla.init() and maintained until the user explicitly asks for its release 
using sla.exit(). 
 
                                                 
4 SFLAG is the spawn flag and RFLAG is the release flag; these are used to set the options whether or not to 
maintain the existing process grid for future RScaLAPACK function requests. Default option (SFLAG = 1 and 
RFLAG =0) is that the processes are spawned and released for every RScaLAPACK function request. 
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 6. Performance Results 
 
The test runs are performed on machines with the distinct hardware architectures, both shared and 
distributed memory. The first one is a Linux Beowulf cluster comprising 4 RedHat Linux kernel v2.4.7 
boxes with dual Intel® 450 MHz processors, and 512 MB memory per processor. The second one is a 
shared memory system with 4 Intel(R) Xeon(TM) CPU 1.50GHz processors, 7.3 GB memory, running 
Red Hat Linux, kernel version 2.4.20. Adjunct to the performance gain observed by the runs on either of 
these machines, they served as a test of RScaLAPACK’s working on both shared and distributed memory 
systems. 
 
However, in this paper we haven’t put forth the results of the performance runs from the above-mentioned 
systems. Instead, the performance measurements obtained by the runs on a high-end SGI Altix machine, 
called “Ram”, at the Center for Computational Sciences of Oak Ridge National Laboratory will be 
discussed. Ram encompasses 256 Intel Itanium2 processors running at 1.5 GHz, each with 6 MB of L3 
cache, 256KB of L2 cache, and 32KB of L1 cache. It has 8 GB of memory per processor totaling to 2 
Terabytes of total system memory.  It runs a single system image of 64-bit Linux operating system. The 
theoretical total peak performance of the system is observed to be 1.5 TeraFLOPs/s. 
 
In this section we evaluate the performance of one of the RScaLAPACK functions called sla.solve().  The 
first part of the section is the comparison of the execution time between the existing solve() function that 
uses serial LAPACK dgesv() function to solve a given linear equation and its counterpart, sla.solve() in 
RScaLAPACK that uses function pdgesv() of the ScaLAPACK library. The second part of this section 
discusses the overhead due to the R environment while computing the results in parallel using 
ScaLAPACK routines. In either case, we have considered square input matrices with dimensions varying 
from 1024 to 8192 for both solve() and sla.solve() functions. The number of processors used by 
sla.solve() is varied from 4 to 128, while its block size is set to 128 x 128. 
 
 

 
 

Figure 4. RScaLAPACK function execution. 
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6.1. The Speedup 
 
The speedup factor, S(p) calculated is a measure of relative performance between a multiprocessor system 
and a single processor system and calculated as follows: 
 
 S(p) = Tserial  / Tparallel(p)  
 
where Tserial is the execution time using one processor and Tparallel is the execution time using p processors. 
 
Figure 5 shows the speedups taken for different input data sizes using varying number of processors. Two 
important observations can be made from the figure. First, the RScaLAPACK library is scalable in terms 
of both the problem size and the number of processors. Specifically, a consistent increase in the speedup 
with the increase in the number of processors used in RScaLAPACK function execution can be observed; 
further the speedup increases with the increase in the input data size.  
 
The second observation from Figure 5 is that a degree of loss in the speed gain can be observed while 
using more number of processors for performing sla.solve() function on a smaller input data size. Though 
this is subtly evident in Figure 5, it can be distinctly observed in Figure 6 below. 
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Figure 5. Speedup for parallel RScaLAPACK’s sla.solve() over serial R’s solve() function for 
different sizes of input data. 
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From Figure 6 we can also observe that the speedup while evaluating a matrix of input size 1024x1024 
using 4 processors is more than that achieved using 128 processors. For the input matrix of size 
2048x2048 the best gain is attained using 8 processors and, similarly, for the input matrix of size 
4096x4096 the best gain is achieved using 32 processors. In each of the above cases, beyond a certain 
point a consistent reduction in the speedup factor is observed for small size matrices, even if the number 
of processors used for the parallel computation is increased. This is the point where communication cost 
becomes significant when compared to the computational cost. Till this point even though there is a 
communication overhead its significance is meager when compared to the computational requirement. 
Figure 6 serves as a good benchmark for sla.solve() function, where given the size of input data, the user 
can use an optimum number of processors to take the maximum benefit from the underlying parallel 
algorithm provided by ScaLAPACK.  
 

6.2. The Percentage Overhead 
 
We define the overhead O(p) that is induced by the Parallel Agent and the p, Spawned Processes in the R 
environment as follows: 
 
 O(p) = [RScaLAPACK(p) – ScaLAPACK(p) / RScaLAPACK(p)] x 100 
 
where RScaLAPACK(p) is the total function execution time using RScaLAPACK function in R and 
ScaLAPACK(p) is the ScaLAPACK function execution time. 
 
The overhead induced by the R environment and the Parallel Agent corresponds to the functionality of 
spawning p processes, distribution of the input data among these processes, and collection and 
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Figure 6. Speedup factor for parallel RScaLAPACK’s sla.solve() over serial R’s solve() function for 
different number of processors. 
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aggregation of the results from the spawned processes. The ScaLAPACK function execution part 
corresponds to the combined functionality of receiving input data chunk by each process, performing the 
computation using the ScaLAPACK function, and sending the result pieces to the Parallel Agent. Figure 
7 shows the percentage overhead induced by the Parallel Agent for varying number of processes and 
input data sizes. 
 
Some distinct observations can be made from Figure 7, like the overhead is high when the input data size 
is small. As the input data size increases the percentage overhead drops significantly from almost 25% to 
5%. This behavior is expected since the cost of performing ScaLAPACK computation on input data 
increases with the increase in the input data size, while the input distribution and the result collection cost 
reduces comparatively. Hence, we can conclude that the RScaLAPACK function usage is more efficient 
for the large input data size. 
 
Further, during our performance runs it was observed that for large input data matrices of dimensions 
16384 x 16384 double precision data types, R failed to execute the solve() function, where RScaLAPACK 
sla.solve() succeeded to return expected result. This behavior of the system can be attributed to the design 
of RScaLAPACK, where the actual computations are performed outside the R environment.  

 

7. Conclusion and Future Work 
 
In this paper we presented the RScaLAPACK library to enable an R user to perform time efficient 
analysis on a large data set, using the high-performance ScaLAPACK library routines, while maintaining 
the same ease in the function usage. We have discussed the system design, usage and the performance 
characteristics of one of the RScaLAPACK functions (sla.solve). Through the graphs from the 
performance runs a high speedup in computation was observed while using RScaLAPACK functions.   
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Figure 7: Percentage overhead induced by R environment and the Parallel Agent. 
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Currently, no package or add-on library to R comparable to RScaLAPACK is found. The current function 
support provided by RScaLAPACK deals with the double precision data-type alone. Additional support 
for various data-types and more capabilities shall be added to the package in the near future. Continuing 
our effort on providing easy-to-use parallel solutions for data analysis packages like R, we are currently 
working on another R package called task-pR [23].  It achieves parallelism by performing out-of-order 
execution of R tasks. With its intelligent scheduling, the package is able to achieve significant 
improvement in data analysis times for certain types of R tasks.  Work is also underway on another R 
package called PMatrix. It extends RScaLAPACK’s functionalities to include other matrix operations like 
matrix multiplication, matrix norm, etc., supports different matrix types, like symmetric, triangular, etc. of 
various data types like real, complex, and integer.  
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