
 1

RScaLAPACK: High-Performance Parallel Statistical Computing
with R and ScaLAPACK

Srikanth Yoginath1,2, David Bauer1,2,

Nagiza Samatova1,3, Guruprasad Kora1, George Fann, and Al Geist1

Abstract

With the growing popularity of parallel computation, researchers are looking for various means
to reduce the problem solving time by performing the computations in parallel. While, interested
in parallel computation they do not want to deal with the parallel programming complexities. In
this paper, through RScaLAPACK we demonstrate a means that enables the user to carryout
parallel computation without dealing with the intricacies of parallel programming.

The name RScaLAPACK is made up of two distinct words, R and ScaLAPACK. The first word
stands for the software that provides an environment and a language for statistical computing and
graphics. This Open source software has developed rapidly and has been extended by a large
collection of packages. The second word ScaLAPACK stands for a library of high-performance
linear algebra routines for distributed-memory message passing MIMD computers and networks
of work stations supporting PVM and/or MPI. As the name suggests, RScaLAPACK is a library
built for the R statistical environment using the ScaLAPACK library. Through RScaLAPACK the
user can setup the parallel environment, distribute data and carry out the required parallel computation
using a single R function call. While the interface maintains the look and feel of the R system,
RScaLAPACK allows carrying out analyses with a performance that scales well with both the problem
size and the number of processors. RScaLAPACK is developed using C and FORTRAN languages and is
distributed as an add-on library to the R statistical package. It is made available as an Open Source
package and can be found at http://www.aspect-sdm.org/Parallel-R or on R’s CRAN web site
http://www.r-project.org. In this paper we discuss the design, working and performance characteristics of
the RScaLAPACK library.

1. Introduction

To address the ever increasing computational and memory requirements of scientific data analysis, a
scalable parallel solution to the problem is highly desirable. Currently, most of the mathematical packages
are moving toward parallel computation as a solution to meet the ever increasing computational demands
of their users efficiently [1-2], The R [3] software that provides a language and an environment for
statistical computing [3-4] is one such package. Apart from providing a wide variety of statistical and
graphical techniques, it is highly extensible. However, at present, R has a limited support for parallel
computation. Several R add-on packages like Rmpi [5] and rpvm [6] provide building blocks for writing
parallel programs using the native programming language. These packages are in turn used to build
parallel libraries like snow [7] that addresses the embarrassingly parallel statistical computations. Even
though this approach of development makes parallel computation possible performance wise they could
be less efficient as they use interpreted code for writing parallel libraries and their usage does not make
the parallel computations transparent to the user.

1 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
2 Both authors have contributed equally to this work
3 Corresponding author: samatovan@ornl.gov

 2

>
> dyn.load(“foo.so”) # Load the shared library.
> .C(“foobar”) # Execute the C function foobar.
> :
> .Fortran(“foobar2”) #Execute the FORTRAN function.
> :
> dyn.unload(“foo.so”) #Unload the shared library foo.so
>

Figure 1.b. A simple code that depicts loading, unloading, and
usage of an external object code in R.

>
> library(stats) # Load the stats package.
> results <- prcomp(USArrests, scale=TRUE) # Perform Principal component
> # analysis on a matrix “USArrests” that is provided by dataset package.
> summary(results) # Print the summary of the prcomp result.
>

Figure 1.a. Sequence of R commands to perform Principal
Component Analysis on a given matrix.

Our work is driven by the need to provide a completely transparent parallel computational capability to
the user. Toward this goal, one approach is to capitalize on the existing libraries that perform parallel
computations efficiently and make them accessible within R through an easy-to-use interface. The
ScaLAPACK [8-9] library that provides function APIs to the parallel high-performance linear algebra
routines maps well to this task. Further its serial counterpart the LAPACK [10] that is being used as an
underlying mathematical library by many statistical analysis routines in R serves as a roadmap for this
work.

On the other hand the usage of the ScaLAPACK library demands the user to perform a number of tasks
like, process grid setup; input data decomposition and distribution among different processes; final result
collection and aggregation; along with many other well-defined minor details that needs to be carried out
before and after the actual ScaLAPACK function call. With the RScaLAPACK we reduce all the above
tasks into a single instruction in the R environment. This way we also get rid of the burden of details that
a general user is expected to know to use any of the ScaLAPACK library routines. In addition, the
evaluated result using RScaLAPACK routines are in the form of R-objects and hence, can be used for
further analysis using the diverse collection of analysis routines provided by R.

In this paper we discuss the overall architecture, the function call support, and the performance of the
RScaLAPACK package. Sections 2 and 3 discuss R and ScaLAPACK, respectively, highlighting the
flexibility provided by the former and the complexity involved in the usage of the latter that influences
the development of a system like RScaLAPACK. In Section 4 we discuss the architecture of the
RScaLAPACK system. A description of the current functionalities and implementation details follows in
Section 5. In section 6, we examine the performance gain and observed speedup of RScaLAPACK. We
conclude with Section 7.

2. The R Statistical Package

R is an Open Source interactive programming environment for data analysis and graphics. It is one of the
most widely used statistical data analysis packages. It provides an effective data handling and storage
facility; a suite of operators for calculations on arrays and matrices; a large, coherent, integrated

collection of intermediate
tools for data analysis;
graphical facilities for data
analysis results; and a well
developed simple
programming language that
includes conditionals,
loops, user defined
recursive functions, as well
as input and output
capabilities. R package
comprises of many
classical and modern
statistical techniques. Some
of these are built into the
base R environment but
many are supplied as
optional add-on packages,

 3

like the stats package that provides a rich suite of data analysis routines (Figure 1.a). It has a dialect of
the S language created by AT&T Bell Laboratories [18] and is freely distributed under the terms of GNU
General Public License.

Of all the above mentioned capabilities of R, the interesting one to our concern is its extensibility
characteristic. Through the concept of Packages R provides the mechanism for loading optional code and
attached documentation as needed. Further, R provides a function interfaces to the compiled code that has
been linked into R. The compiled code in the form of shared objects in UNIX (or DLLs in Windows) can
be easily loaded and unloaded from the R environment using simple R function calls (Figure 1.b). This
feature allows the developers to build a system in C, C++, or FORTRAN languages and provide the R
interfaces to the compiled code, through which the system could be controlled, thus making the system
details transparent to the user. Such systems can be distributed as R’s add-on packages. Once installed,
they can be used optionally by loading them into the environment as required. We have taken advantage
of this feature of R to develop RScaLAPACK package in providing a transparent parallel platform for R
users as described in later sections.

3. The ScaLAPACK Library

ScaLAPACK is designed to give high efficiency on MIMD distributed memory concurrent
supercomputers. In addition, the software is designed so that it can be used with clusters of workstations
through a networked environment and with a heterogeneous computing environment via PVM or MPI .
The ScaLAPACK routines are based on block-partitioned algorithms in order to minimize the frequency
of data movement between different processes, which helps reduce the fixed startup cost incurred each
time a message is communicated. The fundamental building blocks of ScaLAPACK library are parallel
versions of the Level1, Level2, and Level3 BLAS, called the Parallel BLAS, or PBLAS, and a set of
Basic Linear Algebra Communication Subprograms (BLACS) for communication tasks that arise
frequently in parallel linear algebra computations. ScaLAPACK can solve systems of linear equations,
linear least square problems, eigenvalue problems, and singular value problems. It provides a set of
FORTRAN APIs for carrying out the parallel computation.

To carry out the computation, a two dimensional rectangular grid encompassing all the processes
involved in the parallel computation is first created. The rectangular grid is often referred to as the process
grid. This is followed by block-cyclic data distribution of the input matrix, which involves the
decomposition of the matrix into small rectangular blocks starting at its upper left corner and their
uniform distribution in each dimension of the process grid. Figure 2 shows an example of a two-
dimensional block cyclic distribution of the elements of a 16x16 matrix with a block size of 2x2
distributed over a process grid of dimension 2x2..

To start with the matrix of dimension 16x16 is divided into data-blocks each of dimension 2x2. This
results an 8x8 matrix with each element as a data-block of size 2x2 as shown in Figure 2. Now, this
matrix is distributed block by block, among the different processes of the two-dimensional process grid in
a cyclic fashion. The resulting pattern of distribution of the data-blocks of the global matrix can be seen in
the Figure 2, where each data-block of the global matrix holds the rank of the process to which it is
assigned.

 4

All ScaLAPACK routines assume that the data has been
distributed on the process grid prior to the invocation of
the routine. After a ScaLAPACK routine completes the
computation, the results still distributed across the process
grid need to be collected.

In summary, the user is expected to do the task of process
grid creation, data distribution, result collection and the
process grid release for using the high performance
ScaLAPACK routines. The RScaLAPACK system takes
care of all the additional tasks involved in using the
ScaLAPACK routines and provides easy access to these
high performance routines through a single R function

call, thus making the parallelism transparent to the user.

4. The RScaLAPACK Architecture

The requirement of performing computations outside parent R process to support the ability to perform
computations on large data sets and the need for an entity to manage the execution of these external
processes led to the current architecture. The computational entity running outside the parent R process is
referred to as Spawned Process(es) (Figure 3) and it could be any parallel computational system with a
well-defined data distribution and result collection strategies . The management entity, which we call as
Parallel Agent (PA) (Figure 3), orchestrates the data flow between R environment and the parallel
computational unit. The Parallel Agent was developed under the design consideration that it should
provide a single window entry-point to the R environment for data handling while it provides a platform
to plug-in a generic parallel computational system. The current implementation uses the ScaLAPACK as
it computational unit, thus the name RScaLAPACK.

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3

Figure 2. Two-dimensional block-cyclic
distribution of a 16x16 matrix using 2x2
process grid and block size of 2x2.

Figure 3. RScaLAPACK architecture. All requests for RScaLAPACK functions are forwarded to the
Parallel Agent (PA). Upon the request from the user, the PA spawns the requested number of processes,
distributes the input data across the process grid (as per input instructions), collects the result from the process
grid, and returns it back to the user as an R object. The Spawned Processes are the worker processes that work
in coordination with each other and the PA. As per the instructions from the PA, the Spawned Processes create
the process grid, receive the distributed data-blocks from the PA, execute the requested ScaLAPACK function
in parallel, and return the result to the Parallel Agent.

 5

5. The RScaLAPACK System Details

RScaLAPACK is implemented using the R, C, and Fortran77 programming languages, and it makes use
of function calls from MPI2 [15-17], BLACS [19-21], PBLAS [22], and ScaLAPACK [8-9] libraries. The
library can be loaded into R environment and accessed through R function calls. In this section we
address the overall functioning of the RScaLAPACK package by highlighting various phases of execution
in the sequence of their occurrence.

The following sequence of actions, as diagrammatically depicted in Figure 4 is carried out with the
invocation of an RScaLAPACK function call sla.solve() to solve a system of linear equations (A·X=B)

X = sla.solve (A, B, NPROWS, NPCOLS, MB, SFLAG, RFLAG)4

Where, A and B are the input matrices; X is the output matrix; NPROWS and NPCOLS are process grid
specifications, and MB is the block size as required by ScaLAPACK.

The RScaLAPACK function call (e.g. sla.solve()) from the R command prompt is forwarded to the
Parallel Agent (PA) (Step1 in Figure 4). The PA spawns the requested number of processes (Step 2.a),
and the Spawned Processes block themselves on a broadcast call from the PA (Step 2.b). The PA then
broadcasts the process grid specifications, like the number of process rows (NPROWS) and columns
(NPCOLS) in the process grid, the unit data-block size of the distributed data (MB) and the dimensions of
the involved input matrices (A and B) (Step 3.a). The Spawned Processes receive the broadcasted
information that makes them aware of their role in the distributed problem solving, such as the data-
blocks of the global input data they need to work on and the peer processes with whom they need to co-
ordinate to carry out the parallel computation (Step 3.b). The Spawned Processes then block themselves
to receive the data-blocks of the global matrix from the PA (Step 4.b). They perform the parallel
computation on the received data by making a required ScaLAPACK function call (e.g. pdgesv() in this
case) to obtain the result (Step 5.b) and the distributed result is sent back to the PA by each of the
processes (Step 6a). The PA collects and combines various blocks from the Spawned Processes into a
single R-object (Step 6b) that is returned back to the R environment (Step 7).

By default the Spawned Processes are released after the parallel computation. However, by specifying
additional options (SFLAG and RFLAG) in the RScaLAPACK function they can be maintained for future
parallel computation, without having to spawn them again. There is also an option in RScaLAPACK,
where the process grid is created with sla.init() and maintained until the user explicitly asks for its release
using sla.exit().

4 SFLAG is the spawn flag and RFLAG is the release flag; these are used to set the options whether or not to
maintain the existing process grid for future RScaLAPACK function requests. Default option (SFLAG = 1 and
RFLAG =0) is that the processes are spawned and released for every RScaLAPACK function request.

 6

 6. Performance Results

The test runs are performed on machines with the distinct hardware architectures, both shared and
distributed memory. The first one is a Linux Beowulf cluster comprising 4 RedHat Linux kernel v2.4.7
boxes with dual Intel® 450 MHz processors, and 512 MB memory per processor. The second one is a
shared memory system with 4 Intel(R) Xeon(TM) CPU 1.50GHz processors, 7.3 GB memory, running
Red Hat Linux, kernel version 2.4.20. Adjunct to the performance gain observed by the runs on either of
these machines, they served as a test of RScaLAPACK’s working on both shared and distributed memory
systems.

However, in this paper we haven’t put forth the results of the performance runs from the above-mentioned
systems. Instead, the performance measurements obtained by the runs on a high-end SGI Altix machine,
called “Ram”, at the Center for Computational Sciences of Oak Ridge National Laboratory will be
discussed. Ram encompasses 256 Intel Itanium2 processors running at 1.5 GHz, each with 6 MB of L3
cache, 256KB of L2 cache, and 32KB of L1 cache. It has 8 GB of memory per processor totaling to 2
Terabytes of total system memory. It runs a single system image of 64-bit Linux operating system. The
theoretical total peak performance of the system is observed to be 1.5 TeraFLOPs/s.

In this section we evaluate the performance of one of the RScaLAPACK functions called sla.solve(). The
first part of the section is the comparison of the execution time between the existing solve() function that
uses serial LAPACK dgesv() function to solve a given linear equation and its counterpart, sla.solve() in
RScaLAPACK that uses function pdgesv() of the ScaLAPACK library. The second part of this section
discusses the overhead due to the R environment while computing the results in parallel using
ScaLAPACK routines. In either case, we have considered square input matrices with dimensions varying
from 1024 to 8192 for both solve() and sla.solve() functions. The number of processors used by
sla.solve() is varied from 4 to 128, while its block size is set to 128 x 128.

Figure 4. RScaLAPACK function execution.

 7

6.1. The Speedup

The speedup factor, S(p) calculated is a measure of relative performance between a multiprocessor system
and a single processor system and calculated as follows:

 S(p) = Tserial / Tparallel(p)

where Tserial is the execution time using one processor and Tparallel is the execution time using p processors.

Figure 5 shows the speedups taken for different input data sizes using varying number of processors. Two
important observations can be made from the figure. First, the RScaLAPACK library is scalable in terms
of both the problem size and the number of processors. Specifically, a consistent increase in the speedup
with the increase in the number of processors used in RScaLAPACK function execution can be observed;
further the speedup increases with the increase in the input data size.

The second observation from Figure 5 is that a degree of loss in the speed gain can be observed while
using more number of processors for performing sla.solve() function on a smaller input data size. Though
this is subtly evident in Figure 5, it can be distinctly observed in Figure 6 below.

Speedup against Input Data Size

4 Procs

8 Procs

16 Procs

32 Procs

64 Procs

128 Procs

0

20

40

60

80

100

120

140

1024x1024 2048 x 2048 4096 x 4096 8192 x 8192

Input Data Dimension (MxN)

S
pe

ed
up

,
S

(p
)

4 Procs 8 Procs 16 Procs 32 Procs 64 Procs 128 Procs

Figure 5. Speedup for parallel RScaLAPACK’s sla.solve() over serial R’s solve() function for
different sizes of input data.

 8

From Figure 6 we can also observe that the speedup while evaluating a matrix of input size 1024x1024
using 4 processors is more than that achieved using 128 processors. For the input matrix of size
2048x2048 the best gain is attained using 8 processors and, similarly, for the input matrix of size
4096x4096 the best gain is achieved using 32 processors. In each of the above cases, beyond a certain
point a consistent reduction in the speedup factor is observed for small size matrices, even if the number
of processors used for the parallel computation is increased. This is the point where communication cost
becomes significant when compared to the computational cost. Till this point even though there is a
communication overhead its significance is meager when compared to the computational requirement.
Figure 6 serves as a good benchmark for sla.solve() function, where given the size of input data, the user
can use an optimum number of processors to take the maximum benefit from the underlying parallel
algorithm provided by ScaLAPACK.

6.2. The Percentage Overhead

We define the overhead O(p) that is induced by the Parallel Agent and the p, Spawned Processes in the R
environment as follows:

 O(p) = [RScaLAPACK(p) – ScaLAPACK(p) / RScaLAPACK(p)] x 100

where RScaLAPACK(p) is the total function execution time using RScaLAPACK function in R and
ScaLAPACK(p) is the ScaLAPACK function execution time.

The overhead induced by the R environment and the Parallel Agent corresponds to the functionality of
spawning p processes, distribution of the input data among these processes, and collection and

Speedup against Number of Processors

12.17

27.28

59.00

6.51 5.57 4.35 4.1211.31

17.0016.79
20.5920.88

24.89

41.18

46.82 47.16
51.38

48.53 48.39

83.33

116.07
110.96

106.26
98.73

0

16

32

48

64

80

96

112

128

0 16 32 48 64 80 96 112 128

Number of Processes, p

S
pe

ed
up

 fa
ct

or
, S

(p
)

1024 x 1024 2048 x 2048 4096 x 4096 8192 x 8192

Figure 6. Speedup factor for parallel RScaLAPACK’s sla.solve() over serial R’s solve() function for
different number of processors.

 9

aggregation of the results from the spawned processes. The ScaLAPACK function execution part
corresponds to the combined functionality of receiving input data chunk by each process, performing the
computation using the ScaLAPACK function, and sending the result pieces to the Parallel Agent. Figure
7 shows the percentage overhead induced by the Parallel Agent for varying number of processes and
input data sizes.

Some distinct observations can be made from Figure 7, like the overhead is high when the input data size
is small. As the input data size increases the percentage overhead drops significantly from almost 25% to
5%. This behavior is expected since the cost of performing ScaLAPACK computation on input data
increases with the increase in the input data size, while the input distribution and the result collection cost
reduces comparatively. Hence, we can conclude that the RScaLAPACK function usage is more efficient
for the large input data size.

Further, during our performance runs it was observed that for large input data matrices of dimensions
16384 x 16384 double precision data types, R failed to execute the solve() function, where RScaLAPACK
sla.solve() succeeded to return expected result. This behavior of the system can be attributed to the design
of RScaLAPACK, where the actual computations are performed outside the R environment.

7. Conclusion and Future Work

In this paper we presented the RScaLAPACK library to enable an R user to perform time efficient
analysis on a large data set, using the high-performance ScaLAPACK library routines, while maintaining
the same ease in the function usage. We have discussed the system design, usage and the performance
characteristics of one of the RScaLAPACK functions (sla.solve). Through the graphs from the
performance runs a high speedup in computation was observed while using RScaLAPACK functions.

Percentage Overhead induced by R environment and Parallel Agent

17.24

23.88
25.19

24.76

15.51
14.46

10.4210.38

7.96 10.039.61

4.74

0

5

10

15

20

25

30

4 64 128

Number of Processors, p

%
 O

ve
rh

ea
d,

 O
(p

)

1024X1024 2048X2048 4096X4096 8192X8192

Figure 7: Percentage overhead induced by R environment and the Parallel Agent.

 10

Currently, no package or add-on library to R comparable to RScaLAPACK is found. The current function
support provided by RScaLAPACK deals with the double precision data-type alone. Additional support
for various data-types and more capabilities shall be added to the package in the near future. Continuing
our effort on providing easy-to-use parallel solutions for data analysis packages like R, we are currently
working on another R package called task-pR [23]. It achieves parallelism by performing out-of-order
execution of R tasks. With its intelligent scheduling, the package is able to achieve significant
improvement in data analysis times for certain types of R tasks. Work is also underway on another R
package called PMatrix. It extends RScaLAPACK’s functionalities to include other matrix operations like
matrix multiplication, matrix norm, etc., supports different matrix types, like symmetric, triangular, etc. of
various data types like real, complex, and integer.

Acknowledgments

This work is performed as part of the Scientific Data Management Center
(http://sdmcenter.lbl.gov) under the Department of Energy's Scientific Discovery through
Advanced Computing (DOE SciDAC) program (http://www.scidac.org). The work is supported by
the Office of Computational and Technology Research, Division of Mathematical, Information,
and Computational Sciences, of the U.S. Department of Energy. We gratefully acknowledge the
Center for Computational Science of Oak Ridge National Laboratory for giving access to
Opteron and SGI Altix clusters for performing benchmarks. We are thankful to the development
teams of the following Open Source software: R, ScaLAPACK, LAM-MPI, PVM, and MPI2.

References

[1] R. Choy and A. Edelman. “Parallel Matlab: Doing it right”, Nov 2003, http://www-

math.mit.edu/~edelman/homepage/papers/pmatlab.pdf

[2] A. Trefethen, V. Menon, "MultiMATLAB: integrating MATLAB with high-performance parallel

computing", Proceedings of the 1997 ACM/IEEE conference on Supercomputing, Pages: 1 - 18,
ISBN:0-89791-985-8, San Jose, CA, 1997

[3] R Development Core Team. “An Introduction to R.” June 2004, http://www.r-project.org

[4] R Development Core Team. “Writing R Extensions.” June 2004, http://cran.r-project.org/manuals.html

[5] H. Yu. “The rmpi package”, 2004, http://cran.r-project.org/doc/packages/Rmpi.pdf

[6] N. Li and A. Rossini, “The rpvm package”, 2004, http://cran.r-project.org/doc/packages/rpvm.pdf

[7] N. Li, H. Sevicikova, L. Tierney, A. Rossini. “The snow package”, 2004, http://cran.r-

project.org/doc/packages/snow.pdf

[8] L. Blackford, J. Choi, A. Cleary, E. D'Azevodo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. “ScaLAPACK User's Guide.”
Society for Industrial and Applied Mathematics, 1997, http://www.netlib.org/scalapack/slug/

[9] J. Choi, J. Dongarra, L. Ostrouchov, A. Petitet, D. Walker and R. Whaley, “Design and

Implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines.”, Scientific
Programming, 5(3):173-184, Fall 1996, http://citeseer.ist.psu.edu/article/choi96design.html

 11

[10] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. “LAPACK Users' Guide”, Second
Edition. SIAM, Philadelphia, PA, 1995.

[11] I. Jolliffe, “Principal Component Analysis”. New York: Springer-Verlag, 1986.

[12] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam “PVM: Parallel Virtual

Machine A User’s Guide and Tutorial for Networked Parallel Computing”. The MIT Press, 1994.

[13] W. Gropp. E. Lusk, and A. Skjellum. “Using MPI: Portable Programming with Message Passing

Interface - 2nd edition”. The MIT Press, 1999, http://www-unix.mcs.anl.gov/mpi/usingmpi

[14] P. Pacheo. “Parallel Programming with MPI”, Morgan Kaufmann Publishers Inc., 1997.

[15] W. Gropp, E. Lusk, and R. Thakur. “Using MPI-2: Advanced Features of the Message Passing

Interface”. The MIT Press, 1999.

[16] G. Burns, R. Daoud and J. Vaigl, “LAM: An Open Cluster Environment for MPI”. In Proceedings of

Supercomputing Symposium, pages 379-386, 1994, http://www.lam-mpi.org/download/files/lam-
papers.tar.gz

[17] J. Squyres and A. Lumsdaine. “A Component Architecture for LAM/MPI”. In Proceedings, 10th

European PVM/MPI Users' Group Meeting, number 2840 in Lecture Notes in Computer Science,
pages 379-387, Venice, Italy, September / October 2003. Springer-Verlag.

[18] Statistical Sciences Inc. "S-PLUS Reference Manual", 1991.

[19] J. Dongarra and R. Whaley. “A user's guide to BLACS v1.0”. Technical Report CD-95-281,

Department of Computer Science, University of Tennessee, 1995.

[20] C. Whaley. “Using BLACS and MPI in ScaLAPACK”, Nov 1995,

http://citeseer.ist.psu.edu/67272.html

[21] R. Whaley. “Outstanding issues in the MPIBLACS”, Nov 1997,

http://citeseer.ist.psu.edu/whaley95outstanding.html

[22] J. Choi, J. Dongarra, and D. Walker, “PB-BLAS: A Set of Parallel Block Basic Linear Algebra

Subroutines”, Proceedings of Scalable High Performance Computing Conference (Knoxville, TN),
pp. 534-541, IEEE Computer Society Press, May 23-25, 1994.

[23] D. Bauer, S. Yoginath, N. Samatova, G. Kora, A. Geist. “Task-pR: High-Performance Statistical

Computing via Task-enabled Parallelism in R”

