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1. Introduction 
The reliable quantification of uncertainty in complex geo-computational models is an 
outstanding theoretical and practical problem within geographical information 
systems (Chiles and Delfiner, 1999; Lowell and Jaton, 1999; Zhang and Goodchild, 
2002; Couclelis, 2003; Gertner et al., 2004; Kardos et al., 2005).  A commonly used 
approach for uncertainty quantification in relatively simple geospatial models is due 
to Openshaw (1989). This approach relies on estimation techniques of errors caused 
by individual operations and has been used successfully in the context of map algebra 
operations (Heuvelink, 1998). Recent advances in geospatial uncertainty estimation 
include new approaches in spatial statistics (Cressie, 1993; Ripley, 2004), refinement 
Kalman filtering techniques for geospatial data (Wikle and Cressie, 1999), as well as 
methods for spatial data mining (Ester et al., 2000; Shekhar et al., 2001; Miller and 
Han, 2001; Shi and Wang, 2002; Hanning and Shuliang, 2004).  In the context of 
specific domains, geo-scientists have developed special methods for spatial and 
spatio-temporal uncertainty estimation (e.g., Ganguly, 2002; Ganguly and Bras, 
2003). However, these approaches have not been applied to, nor have they been 
designed for, large-scale and complex geo-computational models.  

2. Approach 
This paper addresses an important gap in the geospatial sciences by proposing a new 
and generic framework for uncertainty quantification for complex geo-computational 
models. Within this framework, we propose a “bottom-up strategy” whereby the 
uncertainties from the individual operations and the input-dependent uncertainties 
are combined to yield estimates of the overall uncertainty in a complex geo-
computational model. This strategy would allow us to develop a systematic approach 
towards classification of geospatial operations and uncertainty estimation techniques 
for each geospatial operation or an entire class of such operations. 
 
Geospatial uncertainty can be expressed in various ways, and can be expected to be a 
function of auto- and cross-correlations in space or time; spatial, temporal or spatio-
temporal outliers; spatial and spatio-temporal stationarity; as well as spatial, temporal 
and attribute error structures. Our approach to problem decomposition and input-
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dependent or component-based uncertainty relies on recent developments in time 
series analysis and complex systems. In our framework, complex, hierarchical 
geospatial models are viewed as being comprised of chains of simple operations at or 
between various levels of detail or granularity (Fig. 1). Each such operation 
transforms not only the data themselves but also the uncertainty associated with the 
data. As a result, even under stationary assumptions, uncertainty "propagates" 
through complex geospatial models. In the proposed framework uncertainty can be 
estimated as it “propagates” through a chain of geospatial operations (Fig. 2). 
 

 
 
The proposed approach ultimately requires uncertainty estimation methodologies for 
each and every geospatial operation. However, while the number of such operations 
may be rather large (e.g., GRASS GIS 6.0 includes about three hundred different data 
processing and analytical commands: Neteler and Mitasova, 2004), the majority of 
GIS operations is reduced to a relatively small number of universal operations (e.g., 
Albrecht, 1996, lists twenty such operations). Our goal is to develop accurate and 
robust methods for uncertainty estimation for these universal operations.  
 
The methods for uncertainty quantification utilized in this paper are capable of 
considering the uncertainty in the input data (or input dependent uncertainty in space 
and time) as well as the uncertainty caused by the individual geospatial operations and 
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their concatenations (or geospatial model/operation dependent uncertainty). 
Specifically, the methods in this paper are based on a couple of broad techniques: (i) 
spatially-weighted linear regression formulations (Cressie, 1993), and (ii) extensions 
and further development of the “Ensemble Neural Network” (ENN) formulation 
developed by Ganguly and Bras (2003) and Ganguly (2002), which in turn was 
developed based on the Bayesian Neural Network approaches proposed by MacKay 
(1995) and the NARMA formulation of Connor et al. (1994). The regression-based 
and ENN methodologies are utilized to estimate the uncertainty resulting from 
individual geospatial operations as well as a chain of such operations. The paper also 
utilizes the concepts of input-dependent uncertainty, originally developed for time 
series data (e.g., the ARMA-ARCH and GARCH formulations: see Engle, 1982 and 
Mills, 1990), in the context of geospatial data and the spatially-weighted regression or 
the ENN formulations. 
 

Multivariate Time Series or Space-Time Series Forecasting:
Mean and Confidence Bounds from MLP
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Fig. 3: Schematics of the ensemble neural network approach  
(ANN: Artificial Neural Networks; MLP: Multi-Layer Perceptrons) 

 
The new contribution of this paper is to bring together these techniques (e.g., the ENN 
formulation depicted in Fig. 3) into the “bottom-up strategy” schematically illustrated 
in Figs. 1 and 2. Specifically, this implies a consistent evaluation of both the input-
dependent and the model- (or geospatial operation) dependent uncertainty within a 
common generic framework, in the context of complex geo-computational models. 

4. Results 
We illustrate the applicability of the proposed framework using two geospatial models 
comprised of a chain of relatively simple operations. The models simulate a 
representative set of commonly used geospatial operations and their combinations. 
Specifically, we utilize geospatial datasets available at ORNL in the areas of 
population distribution and meteorology. For population, we develop regression-
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based approaches for distributing population estimates available from low-resolution 
census counts or other estimates to high-resolution grid cells through the use of 
ancillary variables like nighttime lights and land-cover. The overall uncertainty 
estimates derived from the uncertainty in the constituent geospatial operations are 
validated by comparing with available high-resolution population datasets. For 
meteorology, we develop multi-scale relationships between observed variables and 
develop uncertainty formulations based on the constituent operations. Validation is 
performed using “held-out” data. Our results demonstrate the validity of our bottom-
up strategy for uncertainty formulations.  
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