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ABSTRACT

The competition of antiferromagnetic and d-wave superconductivity order parameters in cuprates is studied
within a phenomenological model. An unbiased numerical analysis is carried out. The results suggest that
the transition from the antiferromagnetic to the superconducting region is not universal. When disorder is
present, a glassy state forms leading to the possibility of “colossal” effects in some cuprates, analog of those in
other transition metal oxides, in particular manganites. Non-superconducting Cu-oxides could rapidly become
superconducting by the influence of weak perturbations. Consequences of this mechanism for thin-film and angle-
resolved photoemission experiments are discussed. In addition, a recent study of the strong-coupling region in
d-wave superconductors with a numerically exact technique is briefly reviewed.
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1. INTRODUCTION

Clarifying the physics of high-temperature superconductors (HTSs) is still one of the most important challenges
in condensed-matter physics. There is overwhelming experimental evidence for several unconventional regimes
in HTSs, including a pseudogap region at temperatures above the superconducting (SC) phase, and a largely
unexplored glassy state separating the parent antiferromagnet (AF) from the SC phase at low hole-doping x. It
is argued that different inhomogeneous states could be stabilized in different Cu-oxides, depending on coupling
and quenched disorder strengths. In fact, neutron scattering studies have revealed “stripes” of charge in Nd-
LSCO,1, 2 but scanning tunneling microscopy (STM) experiments3, 4 indicate “patches” in Bi2212, consistent
with our analysis. There is no unique way to transition from AF to SC. Two models are used, one with itinerant
fermions (Section 2) and the other without (Section 3), and the conclusions are similar in both.

In addition, recent investigations unveiled another remarkable property of HTSs that defies conventional
wisdom: the existence of giant proximity effects (GPE) in some cuprates,5–7 where a supercurrent in Josephson
junctions was found to run through non-SC Cu-oxide-based thick barriers. This contradicts the expected expo-
nential suppression of supercurrents with barrier thickness beyond the short coherence length of Cu-oxides. We
will review in Section 4 a recent explanation8 based on a description of the glassy state as containing SC puddles.
This nanoscale inhomogeneous state leads to colossal effects in cuprates, in analogy with manganites.9–11

In Section 5 the dependence of TC with the number of Copper oxide layers is reviewed. This is very relevant
in view of the fact that due to the Mermin-Wagner theorem for Hubbard and similar models,12, 13 finite-
temperature phase transitions are not possible when considering short range interactions in the Hamiltonian on
a two-dimensional system. Therefore, the influence of other layers is thought to stabilize the transition. In finite
systems we have found that TC indeed increases rapidly with an increasing number of layers.

The form of the spectral functions in the presence of competing AF and SC states is presented in Section 6
following Ref. 14. One of the main results of this section is that the spectral function of the system without
quenched disorder cannot reproduce the angle-resolved photoemission spectroscopy (ARPES) data but that
quenched disorder is indeed crucial.

Another important and related issue is the study of d-wave superconductors’ strong coupling regime. This
regime is sometimes attributed to be responsible for the properties observed in the pseudogap region mentioned



previously. If this is the case, then conventional mean-field (MF) methods should not work in describing the
cuprates, since they cannot distinguish between the temperatures for the formation of long and short range
orders. Therefore, we review in Section 7 recently proposed15 Monte Carlo techniques to address this problem
within a numerical exact approach and the results obtained with them.

Studies of the t-J model have revealed SC and striped states16, 17 evolving from the undoped limit. Then, it is
reasonable to assume that AF, SC, and striped states are dominant in cuprates, and their competition regulates
the HTS phenomenology. However, further computational progress using basic models is limited by cluster
sizes that cannot handle the nanoscale structure unveiled by STM experiments. Considering these restrictions,
here a phenomenological approach will be pursued to understand how these phases compete, incorporating the
quenched disorder inevitably introduced by chemical doping. This effort unveils novel effects of experimental
relevance, not captured with first-principles studies. Hopefully, the results and methods reviewed here will
jump start a more detailed computational analysis of phenomenological models in the high-Tc arena, since most
basic first-principles approaches, including Hubbard and t− J investigations, have basically reached their limits,
particularly regarding lattice sizes that can be studied.

2. MODEL I: ITINERANT FERMIONS

The analysis starts with a phenomenological model of itinerant electrons (simulating carriers) on a square lattice,
locally coupled to classical order parameters:
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where ciσ are fermionic operators, sz
i =(ni↑ − ni↓)/2, niσ is the number operator, D is the lattice dimension, and

∆iα=|∆iα|e
iφα

i are complex numbers for the SC order parameter defined at the links (i,i+α) (α = unit vector
along the x or y directions). At Ji=0, d-wave SC is favored close to half-filling since the pairing term involves
nearest-neighbor sites, as in any standard mean-field approximation to SC. The spin degrees of freedom (d.o.f.)
are assumed to be Ising spins (denoted by Sz

i ). Studies with O(3) d.o.f. were found to lead to qualitatively
similar conclusions, but they are more CPU time consuming. The parameters of relevance are Ji, µi, and Vi

(t is the energy unit), that carry a site dependence to easily include quenched disorder which is inevitable in
chemically doped compounds as the cuprates. For a fixed configuration, {∆iα} and {Sz

i }, the one-particle sector
is Bogoliubov diagonalized using the transformation:

ci↑ =
n=N
∑

n=1

{an(i)γn↑ − b∗n+N(i)γ†
n↓},

ci↓ =

n=N
∑

n=1

{bn(i)γn↓ + a∗
n+N(i)γ†

n↑}. (2)

an(i) and bn(i) in (2) are complex numbers and are chosen so that a Hamiltonian that is diagonal in γnσ

emerges. In the limit T→0, the Bogoliubov-de Gennes equations are recovered minimizing the energy.18–20

Then, a standard Monte Carlo (MC) simulation similar to those for Kondo-lattice models is carried out (details
in Ref. 9). One of the goals is to estimate Tc, as well as T ∗

c , roughly defined as the temperature at which strong
short-distance SC correlations develop.

2.1. Phase Diagram in the Clean Limit

Without quenched disorder, Vi, Ji and µi in Eq. (1) are site independent. The standard MC analysis carried out
in these investigations reveals that in the clean limit the low temperature (T ) phase diagram, Fig.1(a), has a
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Figure 1. (a) MC phase diagram for Eq. (1) without disorder at low temperatures. Instead of presenting a three
dimensional phase diagram we have chosen to present a two dimensional cut along V =1-J/2 for simplicity. Five regions
are observed: AF, d-SC, stripes, coexisting SC+AF, coexisting stripes+SC, and metallic. (b) MC phase diagram including
temperature along “Path 1”. (c) MC phase diagram along “Path 2”. Lattice sizes in all cases are 8×8 and 12×12. (d)
n vs. µ along Paths 1 and 2. Transitions along Path 1 appear continuous, whereas along Path 2 there are indications
of first-order transitions. (e) Spin structure factor S(q) at (π,π) and for incommensurate (IC) momenta. (Adapted from
Ref. 8)

robust AF phase for electronic densities n∼1 and a d-wave SC phase for n<1. The d-wave correlation function,
defined as

Cαβ
sc (m) =

∑

i

〈

|∆i||∆i+m| cos(φα
i − φβ

i+m)
〉

, (3)

was used to estimate Tc as the temperature at which d-wave correlations at the largest distances for the lattices
considered here are 5% of their maximum value at |m|=0. The 5% criterion is arbitrary but other criteria
lead to identical qualitative trends, slightly shifting the phase diagrams. T ∗ is deduced similarly, but using
the shortest non-zero distance correlation function (|m|=1). The Néel temperature, TN, associated with the
classical spins was defined by the drastic reduction (≤ 5% of |m|=0 value) of the long-distance spin order using
CS(m)=

∑

i

〈

Sz
i Sz

i+m

〉

, while T ∗
N relates to short-range spin order. The results presented in Fig. 1(a) are not

surprising since these states are favored explicitly in Eq. (1) by the second and fifth terms, respectively. However,
the phase diagram presents several nontrivial interesting regions: (i) Along “Path 1” in Fig. 1(a), the AF-SC
transition occurs through local coexistence, with tetracritical behavior (Fig. 1(b)).21 (ii) Along “Path 2” the AF-
SC interpolating regime has alternating doped and undoped stripes (stripes in MC data are deduced from spin
and charge structure factors, and low-T MC snapshots), and a complex phase diagram, Fig. 1(c). These stripes
evolve continuously from the V =0 limit that was studied before by Moreo et al., and as a consequence we refer the
readers to Ref. 22 for further details on how stripes were identified. It remains to be investigated if these stripes,
involving SC and AF quasi-1D lines, have the are originated by the same mechanisms as those widely discussed
before in the high-Tc literature.17, 23–27 At V 6=0, the doped regions of the stripes have nonzero SC amplitude
at the mean-field level.28 In view of the dramatically different behavior along Paths 1 and 2, we conclude that
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Figure 2. Schematic representation of Sr doping. A chemical dopant (Sr) will not only disorder the nearest sites (blue
color) in the CuO2-plane, but also neighboring ones, motivating the introduction of “plaquette”-like disorder configura-
tions.
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Figure 3. (a) MC phase diagram for model Eq. (1) including quenched disorder (lattices studies are 8×8 (results shown)
and 12×12). Shown are Tc and TN vs. number of impurities (equal to number of holes). The SC and AF regions with
short-range order (dashed lines), and T ∗ as obtained from the PG (dot-dashed line) are also indicated. (b) DOS at points
a, b, and c of (a), with a PG. (From Ref. 8)

in our model there is no unique AF→SC path. This is in agreement with experiments since La2−xSrxCuO4

(LSCO) and others have stripes,1, 2, 29 while Ca2−xNaxCuO2Cl2 has a more complex inhomogeneous pattern.4

Both, however, become SC with increasing x. This suggests that the underdoped region of Cu-oxides may not be
universal.

2.2. Phase Diagram with Quenched Disorder

Our results become even more interesting upon introducing quenched disorder. Disorder may have several forms,
but here we mimic Sr-doping in single-layers. Sr2+ replaces La3+, above the center of a Cu-plaquette in the
Cu-oxide square lattice. Then, as hole carriers are added, a hole-attractive plaquette-centered potential should
also be incorporated as sketched in Fig. 2. Near the center of this potential, n should be sufficiently reduced
from 1 that, phenomenologically, tendencies to SC should be expected. To interpolate between the SC central
plaquette and the AF background, a plaquette ‘halo’ with no dominant tendency was introduced Parameters are
chosen such that the blue (black) region favors superconductivity, (J, V, µ)=(0.1, 1.0,−1.0), with a surrounding
white region where (J, V, µ)=(0.1, 0.1,−0.5) with no order prevailing. The impurity is embedded in a background
that favors the AF state, (J, V, µ)=(1.0, 0.1, 0.0). However, the overall conclusions found here are simple, and
independent of the disorder details.

The phase diagram obtained with the Monte Carlo simulation is shown in Fig. 3(a). The similarity with the
widely accepted phase diagram of the cuprates is clear. The disorder has opened a hole-density “window” where
none of the two competing orders dominates. Inspecting “by eye” the dominant MC configurations (snapshots) at
low-T in this intermediate regime reveals a patchy system with slowly evolving islands of SC or AF, and random
orientations of the local order parameters, leading to an overall disordered “clustered” state. In Fig. 3(a), a new
temperature scale T ∗ at which the fermionic density-of-states (DOS) develops a pseudogap (PG) (Fig. 3(b)) was
also unveiled. The AF and d-SC regions both have a gap (smeared by T and disorder, but nevertheless with



recognizable features). But even the “disorder” regime (case b in Fig. 3(b)) has a PG. MC snapshots explains
this behavior: in the disordered state there are small SC or AF regions, as explained above. Locally each has
a smeared-gap DOS, either AF or SC. Not surprisingly, the mixture presents a PG. The behavior of T ∗ vs.
x is remarkably similar to that found experimentally. The cuprates’ PG may arise from an overall-disordered
clustered state with local AF or SC tendencies, without the need to invoke other exotic states. This PG is
correlated with robust short-range correlations (dashed lines in Fig.3(a), see caption for details.).

3. MODEL II: LANDAU GINZBURG

The results reported thus far, based on Eq. (1), have already revealed interesting information, namely the possible
paths from AF to SC, and a proposed explanation of the glassy state as arising from the inevitable quenched
disorder in the samples. However, the inhomogeneous nature of the clustered region suggests that percolative
phenomena may be at work, and larger clusters are needed. To handle this issue, another model containing only
classical d.o.f. is proposed, with low-powers interactions typical of Landau-Ginzburg (LG) approaches:
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The fields ∆i=|∆i|e
iΨi are complex numbers representing the SC order parameter. The classical spin at site i

is Si=|Si|(sin(θi) cos(φi), sin(θi) sin(φi), cos(θi)). ρ1(i, α)=1 − ρ2(i, α) is used as the analog of V =1-J/2 of the
previous model to reduce the multiparameter character of the investigation, allowing an AF-SC interpolation
changing just one parameter. α denotes the two directions x̂ and ŷ in 2d, and also ẑ for multilayers. ρ2(i, α) was
chosen to be isotropic, i.e., α-independent.

3.1. Basic Properties

Clearly, the lowest-energy state for ρ2=0 is a homogeneous SC state (if ρ1(i, α)=ρ0
1>0). When ρ1=0 the lowest-

energy state is AF (if ρ2(i, α)=ρ0
2>0). In the clean limit, this model was already studied in the SO(5) context,

where the reader is referred for further details. Our approach without disorder has similarities with SO(5) ideas21

where the AF/SC competition as the cause of the high-Tc phase diagram was extensively discussed although
nowhere in our investigations we need to invoke a higher symmetry group. The relevance of tetracriticality
in La2CuO4+δ has also been remarked by E. Demler et al.30 and Y. Sidis.31 In the present work, disorder is
introduced by adding a randomly selected bimodal contribution, i.e. ρ2(i, α)=ρ0

2±W , where W is the disorder
strength (W=0 is the clean limit). It is expected that other forms of disorder will lead to similar results.

3.2. Phase Diagram

Monte Carlo results for Eq. (4) are in Fig. 4a, for “weak” coupling u12=0.7, which leads to tetracritical behavior.
Both at W=0 and W 6=0, the qualitative similarity with fermionic model results (Figs.1(b) and 3(b)) is clear.
Coexisting SC and AF clusters appear in MC snapshots (not shown). Then, both models share a similar
phenomenology, and Eq. (4) can be studied on larger lattices. The only important difference between the two
models is that Eq. (4) cannot lead to doped-undoped stripes, but the more general case Eq. (1) does. Fig. 4(b)
illustrates how the phase diagram, Fig. 4(a), was obtained. For completeness, note that increasing the coupling
u12 a first-order SC-AF transition can be obtained. However, the addition of disorder leads to a very similar
phase diagram as in the case of u12 = 0.7. This is shown in Fig. 4c and is the equivalent of Fig. 4a in the regime
of “strong” coupling.

Some of the experimental predictions related with our SC-AF clustered state are simple (the most elaborated
ones are in the next section). In most ways a very underdoped cuprate can be tested, there should be two
components in the data. For instance, a typical photoemission spectra in our framework should have two
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distance determine Tc and TN (T ∗) (same criteria as for Eq. (1)). With disorder, the phase diagram (shown) has an inter-
mediate “clustered” state with short-range order. T ∗ is also indicated (dashed line). Note the similarity with Fig. 3(b).
Inset: results at W=0 showing tetracriticality (magenta (dark) indicates SC-AF coexistence). (b) AF and SC correla-
tions at maximum distance for the model Eq. (4) without and with disorder (W=0.0 and 0.7, respectively). ρ1=0.5 and
u12=0.7 were used, using a 24×24 lattice. Typically, for the LG model 25,000 sweeps were used for thermalization and
measurements. (c) MC phase diagram of model Eq. (4) at u12=2. The clean case (W=0, solid lines) is bicritical-like, but
with disorder W=0.5 a clustered region between SC and AF opens as well. (From Ref. 8)

clearly distinct coexisting signals. This result, which will be discussed in more detail in a future publication, is
compatible with photoemission experiments for x=0.03 LSCO, that reveal spectral weight in the node direction
of the d-wave superconductor even in the insulating glassy regime.32 Nodal d-wave SC particles surviving to low
x was observed in Ref. 33.

4. GIANT PROXIMITY EFFECT IN CUPRATES

Another important result of these investigations is that the models studied here can present “colossal” effects,
very similarly in spirit as it occurs in manganites. Consider a typical clustered state (Fig. 5(b)) found by MC
simulations in the disordered region. This state has preformed local SC correlations – nanoscale regions having
robust SC amplitudes within each region, but no SC phase coherence between different regions – rendering the
state globally non-SC (the averaged correlation at the largest distances available, Cmax

SC , is nearly vanishing). Let
us now introduce an artificial SC “external field”, which can be imagined as caused by the proximity of a layer
with robust SC order (e.g., comprised of a higher-Tc material). In practice, this is achieved in the calculations
by introducing a term |∆ext

SC |
∑

i ρ1(i, ẑ)|∆i| cos(Ψi), where ∆ext
SC acts as an external field for SC. The dependence

of Cmax
SC with ∆ext

SC is simply remarkable (Fig. 5(a)). While at points e and f, located far from the SC region
in Fig. 4a, the dependence is the expected one for a featureless state (linear), the behavior closer to SC and
small temperatures is highly nonlinear and unexpected. For example, at point a, Cmax

SC vs. ∆ext
SC has a slope (at

∆ext
SC=0.02) which is ∼250 times larger than at e (∼13 times larger than at W=0, same T , ρ2, and u12.).

The reason for this anomalous behavior is the clustered nature of the states. This is shown in the state
Fig. 5(c), contrasted with (b), where a relatively small field – in the natural units of the model – nevertheless led
to a quick alignment of SC phases, producing a globally SC state, as can be inferred from the uniform color of
the picture. Having preformed SC puddles vastly increases the SC susceptibility. Since Fig. 5(a) was obtained in
a trilayer geometry it is tempting to speculate that the proximity of SC layers to a non-SC but clustered state,
can naturally lead to a GPE over long distances, as observed experimentally in a similar geometry.5–7
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5. DEPENDENCE OF TC WITH THE NUMBER OF LAYERS

The nanoscale clusters also leads to a proposal for explaining the rapid increase of Tc with the number of Cu-
oxide layers N`, found experimentally, at least up to 3 layers. In this effort, the MC phase diagrams of single-,
bi-, and tri-layer systems described by Eq. (4), with and without disorder, were calculated using exactly the
same parameters (besides a coupling ρ2(i, ẑ), equal to those along x̂ and ŷ, to connect the layers). It was clearly
observed that the single layer has a substantially lower Tc than the bilayer. This can be understood in part from
the obvious critical fluctuations that are stronger in 2D than 3D. But even more important, cluster percolation
at W 6=0 is more difficult in 2D than 3D (since otherwise 2D disconnected clusters may become linked through an
interpolating cluster in the adjacent layer). Then, in the phenomenological approach presented here it is natural
that Tc increases fast with N`, when changing from 1 to 2 layers as shown in Fig. 6a. This concept is even
quantitative – up to a scale – considering the similar shape of Tc vs. N` found both in the MC simulation and in
experiments (see Figs.6b-c. Note that the subsequent decrease of Tc for 4 or more layers observed experimentally
could be caused by inhomogeneous doping, beyond our model). Our MC results suggest that the large variations
of Tc’s known to occur in single-layer cuprates can be attributed to the sensitivity of 2D systems to disorder.
As N` increases (the system becomes more 3D), the influence of disorder decreases, both in experiments34 and
simulations.

6. SPECTRAL FUNCTIONS IN THE PRESENCE OF COMPETING STATES

In this section, we will present the analysis of the one-particle spectral function, A(k, ω), for several regimes of
the phase diagram of Eq. (1). The discussion here follows closely Ref. 14. For general doping and interaction
values this can only be done with the MC procedure described in Section 2. A(r, t) is defined by the expression:

A(r, t) =<
∑

l

c†lσ(t)cl+r,σ + H.c. > . (5)
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Applying the modified BdG transformation, Eq. (2), Eq. (5) is calculated using:

A(r, ω) =
∑

n

Xn(r)δ(ω − E↑
n) + Yn(r)δ(ω + E↑

n), (6)

where
Xn(r) =

∑

l

a∗
n(l)an(l + r), (7)

and a similar expression is valid for Yn. Eq. (6) can be Fourier-transformed to obtain A(k, ω), but it is faster to
do that after taking the average, and that route has been followed in the present work.

6.1. Clean System

The phase diagram of Eq. (1) for the clean case (i.e. without quenched disorder) was presented in Fig. 1. The
figure shows two “paths”, which describe the transition from the AF to the SC phase. The first one crosses
a region of long-range order with local AF/SC coexistence, whereas the second one involves an intermediate
“stripe” state.22 We do not discuss here the exact nature of the stripe state, which may be horizontal or
diagonal, depending on parameters such as doping and lattice size. For our purposes it is sufficient that an
inhomogeneous state - stripe, PS or CO - exists, and what its effects are with regards to experimental probes.
Four representative points along those two paths (see Fig.1) were chosen and the corresponding spectral functions
calculated.

Figure 7(a) shows A(k, ω) for the purely SC case (J = 0) for µ = −1, leading to a uniform density 〈n〉 ≈ 0.7.
Fig. 7(b) is for the case when the system presents local AF/SC coexistence (namely, both o.p.s simultaneously
nonzero at the same site) and Fig. 7(c) for the pure AF phase. The red color indicates large spectral weight,
whereas the blue one indicates very low intensity. In Fig. 7(c), the AF gap can be clearly identified, together
with the typical dispersion of the AF (upper branch), Ek=±

√

ε2k + J2, which makes Ek gapped everywhere.
This is in stark contrast to Fig. 7(a), where there are electronic states with appreciable intensity near the Fermi
energy (EF) close to (π/2, π/2), allowed by the symmetry of the pairing state. The “intermediate” state with
local AF/SC coexistence is not drastically different from the one with AF correlations only, and its resulting
energy dispersion can be simply described by Ek=±

√

(ek − µ)2 + J2 + ∆2
k once ∆k is known. This conclusion

is not supposed to change using the SO(3)-symmetric spin model.
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Figure 7. A(k, ω), evaluated via MC, on an 8×8 lattice for (a) (J, V, µ) = (0, 1,−1) (SC state), (b) (J, V, µ) =
(0.6, 0.7,−0.4), coexisting AF/SC state, (c) (J, V, µ) = (0.7, 0.65,−0.3) (AF), and (d) (J, V, µ) = (1, 0.5,−1.2), striped
state. (From Ref. 14)

Similarly, along path 2 of Fig. 1 a point in the phase diagram with striped order was chosen, and the
corresponding spectral density is given in Fig. 7(d). This result compares very well with previous calculations,
(Ref. 36, Fig. 7): for instance, the system presents a Fermi surface crossing near (π, 0). Whereas the results
from Fig. 7(a),(c) refer to generally well-understood phases of the cuprate phase diagram, Figs. 7(b),(d) are of
relevance for the discussion related to the intermediate state, since they are both candidates for the intriguing
phase in between.

Figure 8. Experimental ARPES spectra for LSCO with x = 0 and x = 0.03. Note the development of a (flat) second
high-intensity branch near (π,0) and the emergence of a strongly dispersive signal at the Fermi level as the system is
doped away from the half-filled insulator (reproduced from Ref. 32).

For comparison, ARPES data from Ref. 32 for La2−xSrxCuO4 are reproduced in Fig. 8. For very low doping
x = 0.03 (just inside the spin-glass insulating (SGI) phase) a flat band is observed close to -0.2eV in addition to a
lower branch (energy ∼-0.55eV), which is already present in the x = 0 limit and therefore can be safely identified
with the lower Hubbard band. As x is increased even further, the lower branch retains its energy position, but
gradually loses its intensity until it is almost completely invisible after the onset of the SC phase at x=0.06.37

In contrast, the second branch gains in intensity with doping, and also moves continuously closer toward the
Fermi level; at the same time it starts to develop a coherence peak, which is clearly visible for optimal doping.
The main experimental result here, namely the existence of two branches near (π, 0), cannot be reproduced using
spatially homogeneous models as demonstrated above. The cases of AF, SC and coexisting AF+SC states all
show only one branch below EF nearby (π, 0). This was already seen in Fig. 7(a)-(c) for the MC data and is
seen again in the exact dispersion for those ordered phases.8

If stripe configurations are considered, as in Fig. 7(d) (MC data), there will appear two branches near EF,



but the form of the dispersion is clearly different from the experimental data in Fig. 8. The same occurs if
instead of using data from a Monte Carlo simulation, a perfect stripe configuration is studied as in Ref..8 The
investigation of A(k, ω) for a spin-fermion model, related to Eq. (1), with ∆i,α = 0 but retaining the SO(3) spin
symmetry, has been done carefully in Ref. 36. Again, stripe phases were found for certain parameters and while
in some cases the existence of two branches near (π, 0) was reported, certainly there are no indications of “nodal”
quasiparticles at (π/2, π/2). Then, stripes alone are not an answer to interpret the results of Yoshida et al. As
a consequence, we conclude that neither local AF+SC coexistence nor stripes can fully account for the ARPES
results in the low-doping limit and alternative explanations should be considered.

Beyond the results already described, ARPES also provides surprising insights/results for momenta other
than (π,0) (Fig. 8). Along the Brillouin zone diagonal, a dispersive band crossing EF is found already in the
SGI phase. The FS-like feature consists of a small arc centered at ∼ (π/2, π/2); surprisingly, as more holes
are added, this arc does not expand, but simply gains spectral weight. This increase in spectral intensity is
roughly proportional to the amount of hole-doping for x≤0.1, although it grows more strongly thereafter. This
observed increase in spectral weight is in relatively good agreement with the hole concentration nH derived from
Hall measurements and was interpreted as a confirmation of the hole transport picture. Below, however, we will
provide a different explanation for this behavior.

The aforementioned large gap (∆≈0.2eV) at (π, 0), together with the existence of the apparent gapless
excitations around (π/2, π/2) is the essence of the PG problem. The shrinking of this gap and the concomitant
appearance of a coherence peak has, for example, been interpreted as the evolution of a strongly coupled SC (at
low doping) into a conventional BCS-SC at optimal doping. In this scenario, the large gap size directly reflects
a large pairing scale, whereas the smallness of Tc is attributed to the preponderance of phase-fluctuations in
such a regime, which would outrule the existence of a phase-coherent SC condensate at higher temperatures.
Alternatively, this gap may be regarded as the signal of a hidden order, which is not otherwise manifested. In
other words, the relatively large excitation gap ∆PG is explained in terms of (i) a large SC gap ∆PG=∆SC

itself, or (ii) ∆PG=∆SC+∆ho, with a large, x-dependent hidden order gap ∆ho whereas (iii) a mixed-state
scenario, strongly influenced by disorder, leaves open the possibility that it is the (local) chemical potential that
determines the PG physics. The precise role of µ in mixed-state phases needs to be examined further, but will
not be addressed here.

6.2. Quenched Disorder

Since calculations for A(k, ω) in the clean limit do not agree with ARPES measurements, we turn our attention
to a system with quenched disorder. The impact of quenched disorder is realized by tuning the coupling constants
Ji and Vi in Eq.(1), as explained in Section 2.

When disorder is added, (the reader should study again Fig. 3) a region between the SC and AF phases opens,
where none of the competing order dominates and both regimes coexist in a spatially separated, mixed-phase
state. This “glassy” state was discussed in detail in Section 2, where it was suggested that it leads to “colossal
effects”. The pronounced susceptibility of such mixed-phase states towards applied “small” perturbations is well-
known and is, e.g., often regarded as the driving force behind “colossal magneto-resistance” in manganites.10

To simplify the study and be able to access larger systems, we will consider a single SC cluster embedded
in an AF background and also consider a fixed or “frozen” configuration of the classical fields (both AF and
SC). Later, we will lift this restriction and perform a MC study. When a 12×12 SC region is placed on an
AF background (total lattice size is 22×22), the resulting distribution of A(k, ω) is as shown in Fig. 9(a). The
contribution from the AF background is clearly distinguishable from that of the SC island, since it is present
even when the SC region is removed. The SC cluster induces a second “flat band” - quite typical for gapped
systems - near EF, along the (0, 0) → (π, 0) direction. That this flat band is indeed produced by the SC island
is verified by decreasing the size of the island to 8×8 (Fig. 9b), 7×7 (Fig. 9c) and finally for 5×5 (Fig. 9d), upon
which this signal gradually decreases (the cases 9×9 and 11×11 give very similar results to 12×12 and are not
shown.). The spectral intensity related to the surrounding AF “bath” concurrently decreases, in agreement with
experimental observations.37

Therefore, even the simplest possible mixed-phase state can qualitatively account for the observed ARPES
data. It is also interesting to note that SC signals comparably in strength with the ones stemming from the AF



Figure 9. Distribution of A(k, ω) for a single configuration of classical fields, corresponding to a SC region of size (a)
12×12, (b) 8×8, (c) 7×7 or (d) 5×5 on a 22×22 lattice (i.e., 30%, 15%, 10% or 5% SC respectively). Shown is E vs. k

along (0, 0) → (π, 0) → (π, π) → (0, 0). (From Ref. 14)

Figure 10. (a) Short and long range phase correlation functions, S(0, 0) and S(6, 0) respectively, vs. T for two different
values of V , covering the weak- and strong- coupling regime, for 〈n〉 = 1. Once V <= 2, no difference between short- and
long-range correlations is observed, and S(6, 0) (V = 1.2) is not shown for reasons of clarity. Symbol sizes roughly match
the errors. (b) The phase diagram for Hamiltonian Eq. (1) with J = 0 derived from (a); TC and T ∗ as explained in the
text. (c) shows the phase diagram for the model with a strict d-wave ground state. Note the differences between (b) and
(c). The d-wave pseudo-gap regime is indicated in both (b) and (c). (Reproduced from Ref. 15)

band, are only found for rather large SC blocks, encompassing at least 20% space of the whole system. From
this point of view, even in the strongly underdoped limit at x=0.03, the relative amount of the SC phase has to
be quite substantial already.

7. STRONG COUPLING REGIME OF D-WAVE SUPERCONDUCTORS

The appearance of a T ∗ > Tc (Fig. 3) was observed in a system with disorder and was connected with the
existence of a pseudo-gap and the density-of-states as well as the formation of short range order. In this section,
we revisit the study of the temperature scale T ∗ without quenched disorder focusing on the regime of large
coupling, Vi = V ∀i. We will also consider Eq. (1) in the case Ji = 0, i.e., without magnetization terms, to
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Figure 11. Schematic representation of the phase diagrams that our models show in the clean (a,b,c) and dirty (d) limits.
The theory discussed in this paper shows the possible appearance of regions with local coexistence of AF and SC (panel
a), or a first-order transition separating AF from SC (panel b) with the first-order character of the transition possibly
continuing in the AF-disordered and SC-disordered transitions, or an intermediate striped regime (panel c). Possibilities
(a) and (b) have already been discussed in Ref. 21, although here we do not invoke a higher symmetry group such as
SO(5). The main result contain in this figure is the proposed phase diagram in the presence of quenched disorder (panel
d). Shown are the glassy region, proposed to be a mixture of SC and AF clusters, and the T ∗ where local order starts
upon cooling. This phase diagram has similarities with those proposed before for manganites,9, 10 and certainly it is in
excellent agreement with the experimental phase diagram of LSCO. (b) Schematic representation of the “glassy” state
that separates the SC and AF regions. The arrow indicates the phase of the SC order parameter.

compare this results with the usual BCS regime. It is important to remark again that the approach is built15 on
the insight that this Hamiltonian is quadratic in fermionic operators and thus can be efficiently studied with the
help of Monte Carlo techniques explained before. This is possible here because the original interacting model
has been stripped down of quantum fluctuations in the pairing approximation. But after that approximation is
made the treatment is exact within numerical errors.

The investigation of the temperature dependence of C(m), Eq. (3) for Hamiltonian Eq. (1), allows for the
introduction in a BCS-like Hamiltonian two characteristic temperatures T ∗ and TC in the case of strong coupling,
in contrast to the BCS regime, where the distinction does not exist. We associate T ∗ with the temperature where
short-range phase correlations develop (defined here as C(|m| = 1) ≥ 0.1, but other cutoffs leads to quite similar
qualitative conclusions). On the other hand, TC is commonly identified with the onset of long-range (LR) phase
coherence (here we use the criterion C(|m| = max) ≥ 0.1. T ∗ and TC are essentially identical for V not too
large, Fig. 10a, and they are only clearly different for V & 3, with T ∗ larger than TC by a factor of 3-4 for
V > 5. This works in the low-〈n〉 limit, too. Based on MC results, a phase diagram, presenting T ∗ and TC as
a function of the pairing attraction, is displayed in Fig. 10b-c. Remarkably, the values of TC reach a maximum
T max

C ' 0.2 for Vmax ≈ 3, whereas T ∗ increases steadily with increasing V . We have also considered a model
where ∆i,x = −∆i, y, i.e., enforcing a d-wave ground state. For this restricted model, Fig. 10c, T max

C ' 0.3, with
a more prominent regime of short range correlations.

Although the existence of T max
C has long been known, it has been directly established for the first time very

recently in Ref. 15, since traditional self-consistent methods are tracking T ∗ rather than TC . Yet, as demonstrated
in Fig. 10, those mean field methods work very well for V not very strong.

For V & Vmax the system presumably enters the realm of pronounced Kosterlitz-Thouless physics,38 whence
TC is dictated by vortex binding rather than Cooper pairing. The critical temperature TKT = TC in such models
is proportional to 1/V , following a perturbative analysis, similar to what is found in Fig. 10b-c. In this context,
it is unclear whether or not KT behavior is found for Eq. (1) (with Ji = 0) which unlike in the standard XY
model, couples fermions to classical fields. However, there is indication from the numerical analysis15 that KT
physics is indeed relevant in the region between TC and T ∗.



8. CONCLUSIONS

Summarizing, here simple phenomenological models for phase competition showed that – depending on details
– different cuprates could have stripes, local coexistence, first-order transitions, or a glassy clustered state
interpolating between AF and SC phases. Figure 11a illustrates our proposed possibilities. In Cu-oxides where
the glass state is realized, namely where we believe SC puddles could be present, this study revealed the possibility
of colossal effects. A schematic representation of the proposed glassy state with colossal effects is in Fig. 11b.
This proposal could provide rationalization of recent results in trilayer thin-film geometries.5–7

Other interesting experimental and theoretical efforts that complement the discussion presented here are: (i)
In Ref. 39, further evidence of an anomalous proximity effect in the cuprates is presented. These results add to
those of Ref. 5–7, showing that the anomalous effects are real. (ii) In Ref. 40, 41, the phase diagram of YBCO
was recently investigated in the presence of Ca doping. Among many results, it was shown that a glassy state
is generated between the AF and SC states in Ca-doped YBCO, with a phase diagram very similar to that
in LSCO and our Fig. 11(d). This result suggests that Ca-undoped YBCO may have either a region of local
coexistence of SC and AF or a first-order transition separating them (as in Fig. 11(a,b)), and only with the help
of extra quenched disorder is that a glassy state is generated. Then, the generic phase diagram of the cuprates
– which usually is considered to be that of LSCO – may not be as universal as previously believed, as discussed
in this publication. Our study showing that bilayered systems are more stable than single layers with respect
to disorder is also compatible with the experimental results of Ref. 40, 41, namely the 1-layer material is more
likely to have a glassy state between AF and SC than 2- or higher layer materials. (iii) Electronic inhomogeneity
and competing phases in electron-doped superconducting have been reported42 for Pr0.88LaCe0.12CuO4. (iv)
Our effort has already induced interesting theoretical work43 in the context of J-U models. (v) Theoretical
work44 closely related to our proposed glassy state in Fig. 11 has addressed inhomogeneous Josephson phases
near the superconductor-insulator transition. (vi) Recent neutron and Raman scattering investigations applied
to La2CuO4.05 has shown the coexistence of SC and AF phases in this compound.45 (vii) Finally, our results
have similarities with those recently discussed in the context of Bose metals as well.46

The study also provided implications of these numerical calculations for photoemission experiments and a
simple explanation for the Tc increase with N` (another explanation can be found in Ref. 47).

A Monte Carlo technique15 was reviewed for an unbiased investigation of the SC state as described in the
pairing Hamiltonian. It reproduces the BCS limit as well as the strong-coupling regime at all temperature and
densities. The establishment of a pseudo-gap regime in the case of a strong pairing between two characteristic
temperatures T ∗ and TC and an associated nontrivial phase diagram has been numerically demonstrated. These
results seem to indicate that the observed pseudo-gap features of HTSs cannot be reconciled with a classical
phase-fluctuation-dominated d-wave superconductivity.

Clustered states are crucial in manganites and other compounds,48 and this analysis predicts its potential
relevance in HTS materials as well. The theoretical and experimental investigations of transition metal oxides in
recent years are unveiling self-organized phenomena that usually manifest in the form of inhomogeneous states,
revealing the intrinsic complexity of cuprates and manganites, and likely several other transition metal oxides.
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