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ABSTRACT

Random-matrix theories (RMTs) provide valuable statistical tools to analyze neutron-resonance
data. The predictive power of the random-matrix theories, which do not contain any adjustable
parameters, is striking,  and the application is rather simple and fast. A new evaluation of 238U
resonance parameters has recently been performed at the Oak Ridge National Laboratory; the
objective of this paper is to illustrate the use of RMT in the field of resonance-parameter evaluation
with the newly evaluated239U energy levels and widths. Several statistics were computed using
the  s-wave resonances up to  20 keV and compared to  the Gaussian Orthogonal Ensemble
predictions. It is shown that a good agreement is observed between RMT and the experimental data
up to 2.5 keV. The F-Dyson statistic was especially investigated because of its claimed ability to
detect locally missed and spurious levels in the sample (p-resonances contamination or unresolved
multiplets). As expected, the entire set of evaluated238U s-wave resonances up to 20 keV disagrees
significantly with the theory. There are two reasons for this: First, it is difficult to distinguish s- and
p-wave resonances in the analysis. Second, especially above 10 keV, it is impossible to determine
reliable resonance energies from the available experimental data. It is concluded that the use of
RMT can help nuclear data evaluators to improve their evaluations in the resonance range.
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1. INTRODUCTION

In the early 1950s, the study of many-particle energy spectra such as those measured by neutron-
induced reactions showed that energy levels could not be considered as a random sequence but
featured striking properties such as level-repulsion effect or spectrum rigidity. With the pioneering
work of Wigner, it was recognized that statistical properties of the energy spectrum of a compound
nucleus could be mathematically investigated with the help of random-matrix theories (RMTs) [1].
The energy levels, seen as eigenvalues of a nuclear Hamiltonian, can be obtained by diagonaliz-
ing large matrices whose properties preserve the usual space-time symmetries. Because individual
elements of the matrix are unknown, Wigner first studied a special ensemble of real symmetric ma-
trices, the Gaussian Orthogonal Ensemble (GOE), whose elements are independent and randomly
distributed.



Subsequently, several random-matrix ensembles were introduced to study the nonconservation 
of space-time invariants. The Gaussian Unitary Ensemble (GUE) of complex matrices 
preserves rotational invariance but violates time-reversal, while the Gaussian Symplectic 
Ensemble (GSE) of quaternion matrices obeys time-reversal invariance but not rotational 
invariance. The three ensembles GOE, GUE, and GSE have been extensively studied by 
analytical methods and Monte Carlo computer simulations. Dyson proposed an alternative to 
Gaussian ensembles and defined three "circular" ensembles COE, CUE, and CSE to simplify 
mathematical treatments while still predicting the same fluctuation properties as Gaussian 
ensembles (see Reference [1] for details).  In the early seventies, the Two-Body Random 
Hamiltonian Ensembles (TBRE) were investigated independently by French and Wong, and 
Bohigas and Flores, as discussed in [2]. This ensemble arose from the development of nuclear 
shell model calculations, where the nuclear spectra are described by an effective two-body 
interaction. Using numerical techniques, an important result was demonstrated by Wong et al. 
[3]: predictions of the usual observables from GOE and TBRE are very similar, making it 
difficult to decide experimentally which ensemble was the most appropriate. 
 
Experimental checks of RMT began in the sixties when the Columbia group first gave 
convincing evidence for RMT using spectroscopic neutron data [4]. On a larger scale, Haq et 
al. [5], using a larger set of selected neutron and proton resonance spectra, showed impressive 
agreement between RMT and experiments. It is worth mentioning that RMTs have provided a 
way to address the breaking of symmetry and invariance by testing experimental data against 
GOE, GUE (time-reversal invariance) and other ensembles (characterizing the breaking of 
isospin or parity conservation). 
 

2. FLUCTUATION PROPERTIES OF SPECTRA 
 
The fluctuation properties of energy-level spectra are well understood with the two-level 
correlation function R2(r) that defines the probability density of observing two levels in the 
intervals [x1,x1+dx1] and [x2,x2+dx2] separated by |x1−x2| = r (assuming all levels are equivalent). 
Here r is the energy interval measured in units of the average spacing D. This function should 
be equal to unity for a random sequence; however within the framework of RMT, the deviation 
from unity is defined by the so-called two-level cluster function R2(r) = 1−Y2(r) that has been 
extensively worked out by Dyson and Mehta [1]. For GOE, Y2 is given by:  
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Similar equations can be found for GUE and GSE. Experimentally, it is not easy to test the two-
level cluster function for large r. Instead, one has to consider different integrated forms of Y2.  
 

3. NUMERICAL SIMULATION OF RANDOM MATRICES SPECTRA 
 
The fluctuation properties predicted by random matrix theories have been thoroughly studied 
by analytical methods. In the present work, we are instead using computer-generated sets of 
GOE matrices of high-dimension (≈2000) to compare experimental data with theoretical 
results. After the matrices are diagonalized, the resulting spectrum (which followed the 
unphysical Wigner semi-circle distribution) was unfolded to obtain the constant level density. 
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4. 238U RESONANCE-PARAMETER SET

The spin of the238U nucleus isI = 0 so that s-wave neutrons form the239U compound nucleus
with unambiguous spinJ = 1/2. In contrast, p-wave resonances can formJ = 1/2 or J = 3/2,
making it difficult to obtain a pure sample (with only resonances with specificJπ). We considered
the sample of s-wave resonances recently evaluated at ORNL [6]. This evaluation is based on a
comprehensive experimental database from thermal energy to 20 keV. Several transmission and
capture measurements presented in Table I, mostly performed at the Oak Ridge Electron Linear
Accelerator (ORELA), were fitted with the Reich-Moore approximation of the R-matrix theory
using the SAMMY code [12]. Careful attention was paid to the study of experimental conditions
(normalization, background, resolution function, temperature). Complementary techniques have
permitted the separation between s-waves and p-waves:

• The theory of conditional probability gives the probability of a resonance with a givengΓn to
be l = 0 or l = 1 [13]. This method suggests the orbital angular momentum, by discriminating
resonances according to the magnitude of their neutron reduced widths.

• Corvi et al. [14] have determined the orbital angular momentum of238U resonances by analyz-
ing theγ-ray spectrum following resonant capture. They noticed that theγ transitions involved
in the decay of the compound nucleus are not the same in the case of s-wave or p-wave res-
onances. Theγ multiplicity is enhanced for p-waves, providing a way to identify the orbital
momentum. Below 1.6 keV, the present238U evaluation adopted thel -assignment of Corvi et
al.

• The simultaneous fitting of transmission and capture measurements and the analysis of the
goodness of fit permitted the assignment ofl for resonances with large reduced neutron widths.

Table I. Overview of the experimental database used in the analysis of238U resonances

Energy range Reference Measurement
type

6 eV - 100 keV de Saussure et al. (1973) [7] Capture
0.5 eV - 4 keV Olsen et al. (1977) [8] Transmission

300 eV - 100 keV Olsen et al. (1979) [9] Transmission
250 eV - 130 keV Macklin et al. (1988) [10] Capture
1 keV - 100 keV Harvey et al. (1988) [11] Transmission

Above 10 keV, poor experimental resolution makes resonance analysis difficult so that even res-
onance energies could not be reliably determined. A "pseudo-resonance" approach was used; a
set of resonances is proposed  thatfits the transmission and capture data but does not represent
actual resonances. It is expected that the statistical tests will fail in this energy range.
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5. STATISTICAL TESTS OF SPECTRUM FLUCTUATIONS

5.1. The variance of the number of levelsΣ2(r)

The most obvious test is to study the number of levels in an energy interval of a fixed length
r (which is given in units ofD). The fluctuations of the number of levels are measured by the
so-called number varianceΣ2(r) and somehow probe the two-level cluster functionY2.

Σ2(r) = r−2
∫ r

0
(r ′− r)Y2(r ′)dr′. (2)

This integral has been analytically evaluated by many authors, and the results for GOE can be
safely approximated for larger asΣ2(r) = 2

π2 [ln(2πr)+ γ + 1− π2/8)]. Hereγ ≈ 0.5772 is the
Euler constant. In the case of238U resonances, the calculation of the number variance is not very
accurate forr > 10. As shown in Fig.1, the agreement between the data and GOE is fairly good
even if we consider all the s-wave resonances up to 10 keV.
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Figure 1. Experimental number variances compared with GOE prediction.
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5.2. ∆3 Mehta-Dyson statistics and theρ(Di ,Di+1) test

The statistic∆3 developed by Dyson and Mehta is a popular measure of long-range correlations.
It is defined as the mean square of the deviation of the cumulative number of levels from a fitted
straight line.

∆3(r) = minA,B
1
r

∫ r

0
[N(r ′)−Ar′−B]2dr′ (3)

wherer represents the energy interval measured in units ofD. Again,∆3 is directly related to the
two-level cluster function:

∆3(r) =
r

15
− 1

15r4

∫ r

0
(r ′− r)3(2r2−9rr ′−3r ′2)Y2(r ′)dr′. (4)

For larger, Dyson and Mehta, within the framework of COE, calculated the average value of
∆3(r) = 1

π2 [ln(2πr)− γ−5/4−π2/8] and predicted a constant varianceVar ∆3 = (0.11)2. Above
2.5 keV, we note in Fig. 2 that the experimental∆3 becomes higher than the theoretical value,
suggesting the presence of p-resonance contamination or spurious levels (doublets, multiplets).

The short-range correlations are measured by the linear correlation coefficient between nearest-
neighbor level spacings. Mehta, using analytical methods, predicts a negative correlation value of
ρ(Di ,Di+1) =−0.27 for GOE. From the physics point of view, this negative correlation illustrates
the rigidity of GOE spectrum; i.e., if a small spacing is observed, the neighbor spacing will tend
to be higher. The calculations presented in Table II in various energy ranges show strikingly good
agreement with experiment up to 10 keV.

Table II. Experimental linear correlation coefficient ρ and Mehta-Dyson statistic∆3 com-
pared with the theoretical predictions

Energy ρ ∆3 ∆3

range (theory -0.27) exp. theo.

0 - 500 eV -0.28 0.2160.315± 0.11
0 - 1 keV -0.23 0.2230.381± 0.11
0 - 3 keV -0.32 0.5130.494± 0.11
0 - 5 keV -0.29 0.6740.545± 0.11
0 - 10 keV -0.25 1.4940.616± 0.11

5.3. The spacing varianceσk test

Statistical analysis of the resonance parameters  isoften based on the distribution of the nearest-
neighbor spacings and the comparison with the Wigner surmise. Exact GOE calculations lead
to a distribution nearly indistinguishable from the Wigner formula. However, RMTsalso provide
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Figure 2. Experimental ∆3 compared with GOE prediction. Note a significant improvement
when the spin assignment of only one resonance (2919 eV) is changed (see text for details).

theoretical forms of the spacing distribution (and the associated spacing varianceσk) of higher
orderk [i.e, the distribution of spacings between two resonances havingk resonances between
them]. The k-order spacing distribution in the case of238U is displayed in Fig. 3.

Figure 4 compares the variance of the k-order spacing distribution with the GOE simulation. Good
agreement is noticed for s-wave resonances below 4 keV. As expected, the complete set of reso-
nances up to 20 keV clearly disagrees with GOE mainly because of the pseudo-resonance repre-
sentation.
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Figure 3. Distribution of the k-order spacings for 238U s-wave resonances below 10 keV.
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Figure 4. Comparison between experimental and theoretical variances of the k-order spac-
ings.
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5.4. The F-Dyson statistic

As discussed in [4], the F statistic was introduced by Dyson, to provide a method to detect missed
and spurious levels. For each resonancei, one needs to compute:

Fi = ∑
j 6=i

f (yi j ) yi j =
xi −x j

L
(5)

f (y) =

 1
2 ln 1+

√
1−y2

1−
√

1−y2
|y|< 1

0 |y| ≥ 1
(6)

The sum extends to all levelsx j within xi −L < x j < xi + L. Dyson claimed that the expectation
value of F should beL/Dπ− ln(L/Dπ)−0.656 for each level and that the variance of F isσ2(F) =
ln(L/Dπ). If one level is missing, the local values of F should drop,while a spurious level will
cause a rise in F. Various choices ofL/D were tested; Fig. 5 displays the values of F for each
resonance below 5 keV withL/D = 10.
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Figure 5. Values of the F-Dyson function for s-wave238U resonances below 5 keV.

Around 1420 eV, a group of levels with F-values outside the 2σ(F) band is observed, so that one
can suspect the presence of spurious levels. As shown in Fig. 6 and 7, a close examination of
the data between 1390 eV and 1450 eV shows 5 s-wave resonances (1394 eV, 1405 eV, 1420 eV,
1427 eV and 1444 eV) and 5 p-wave resonances (1400 eV, 1410 eV, 1414 eV, 1417 eV and 1427
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eV). After changing the assignment of only one of the resonances froms to p, the F-statistic was
recomputed; all the discrepant F-values in this energy range were eliminated. However, given the
magnitude of the reduced neutron widths, the Bayes formula gives less than 6% probability that
one of these levels is p-wave, so that it was not possible in this case to draw conclusions regarding
the presence or contamination of the s-sequence by p levels within this energy range.

A significant drop in F is observed around (2800 to 3100 eV)which suggests missed levels. This
observation confirmed the results obtained with the ∆3 statistics.  Figures 8 and 9 show the
capture and transmission measurements performed in this energy region. Spin assignments for
two resonances were investigated. For instance, the 2919-eV resonance had been considered as
a p-wave in the original resonance set in agreement with the magnitude of its reduced neutron
width that give a probability of 85% to be p. However, if we change the spin assignment of this
resonance, the F-Dyson statistic and especially the∆3 statistic are greatly improved as shown
in Figs. 2 and 10. To further investigate this point, the SAMMY fits were performed for this
resonance using eitherp or s assignment. The χ2 of the fit for the thick sample transmission
measured by Olsen is slightly improved (χ2 = 1.17→ 1.03) when this resonance iss, making
plausible this assumption. Other resonances such as the 2989-eV resonance were investigated, but
no firm conclusion could be drawn from the Bayes formula, the goodness of SAMMY fit, and the
random-matrix statistics.
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Figure 6. SAMMY fit of the capture experimental data.
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Figure 7. SAMMY fit of the transmission data from Olsen et al. (only the thickest samples
are displayed).
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Figure 8. SAMMY fit of the capture experimental data.
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Figure 9. SAMMY fit of the transmission data from Olsen et al. (only the thickest samples
are displayed).
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Figure 10. Values of the F-Dyson function for s-wave238U resonances when the spin assign-
ment of only one resonance (2919 eV) is changed froml = 1 (p-wave) to l = 0 (s-wave).

The F-Dyson statistic seems to be a useful tool to locally test experimental nuclear spectra and
detect missed or spurious levels. Sometimes, however, it might be not clear if the rise or drop
in F can be reliably associated with missed levels or if it is a statistical effect. Investigation
with numerically generated GOE matrices confirmed theσ2(F) value even though the individual
spectra often presented local deviations from the F-Dyson prediction.
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6. CONCLUSIONS

In the resonance analysis process, evaluators sometimes cannot assign the correct angular mo-
mentum or spin of resonances because of the lack of experimental data. RMT should provide
a means of testing the various assumptions that are made. Random Matrix Theory should also
help to determine whether a sample of resonances is pure or not, which is of importance in the
determination of average parameters such as the average spacing or the neutron strength function.
This paper illustrates some of the statistical tests that can be used. In the case of the evaluation of
238U resonance parameters recently completed, remarkable agreement between GOE (analytical
or numerical prediction) and the evaluated energy levels is observed below≈ 2.5 keV. It is also
demonstrated that the change in the spin assignment of one or two resonances of the238U set can
improve the agreement with GOE up to 5 keV. As shown in Table III, the set of p-wave resonance
parameters (J = 1/2 orJ = 3/2) disagree strongly with all of these statistical tests, illustrating the
difficulty of determining the correct spin assignments from available experimental data.

Table III. Synthesis of the statistics for238U s- and p- waves resonances compared with GOE
results

Statistic GOE Exp. data238U Exp. data238U Exp. data238U

theory l = 0 Jπ = 1/2+ l = 1 Jπ = 1/2− l = 0 Jπ = 3/2−

[0 - 2.5 keV] [0 - 2.5 keV] [0 - 2.5 keV]

∆3 0.476± 0.11 0.487 0.388 8.65
ρ -0.27 -0.32 0.09 -0.02

σ(F) 1.86 1.38 3.41 5.66
Σ(1) 0.44 0.45 0.56 0.70
Σ(3) 0.66 0.49 1.79 1.89
Σ(6) 0.80 0.55 4.85 3.71
σ0 0.53 0.50 0.78 0.77
σ6 0.82 0.65 2.34 1.91
σ10 0.89 0.68 2.85 2.38

In the present paper, the various tests are all related to the two-level cluster function; however,
one can probe higher-order cluster functions (three-level or four-level)  thatwould require the
analysis of higher moments of distribution (skewness and excess of the spacing distribution for
instance). An extension of this work concerns the statistical properties of reduced neutron widths
that, within the framework of RMT, are obtained from the eigenvectors of the random matrices.
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