
Header for SPIE use

Programming High Performance Reconfigurable Computers

Melissa C. Smith+ Gregory D. Peterson*
The University of Tennessee, Department of Electrical and Computer Engineering

ABSTRACT

High Performance Computers (HPC) provide dramatically improved capabilit ies for a number of defense and
commercial applications, but often are too expensive to acquire and to program. The smaller market and customized
nature of HPC architectures combine to increase the cost of most such platforms. To address the problems with high
hardware costs, one may create more inexpensive Beowolf clusters of dedicated commodity processors. Despite the
benefit of reduced hardware costs, programming the HPC platforms to achieve high performance often proves
extremely time-consuming and expensive in practice. In recent years, programming productivity gains come from
the development of common APIs and libraries of functions to support distributed applications. Examples include
PVM, MPI, BLAS, and VSIPL. The implementation of each API or library is optimized for a given platform, but
application developers can write code that is portable across specific HPC architectures.
The application of reconfigurable computing (RC) into HPC platforms promises significantly enhanced performance
and flexibility at a modest cost. Unfortunately, configuring (programming) the reconfigurable computing nodes
remains a challenging task and relatively lit tle work to date has focused on potential high performance
reconfigurable computing (HPRC) platforms consisting of reconfigurable nodes paired with processing nodes. This
paper addresses the challenge of effectively exploiting HPRC resources by first considering the performance
evaluation and optimization problem before turning to improving the programming infrastructure used for porting
applications to HPRC platforms.

Keywords: high performance computing, reconfigurable computing, programming, performance evaluation

1. INTRODUCTION
High Performance Computers (HPC) provide dramaticall y improved capabiliti es for a number of defense

applications, but often are too expensive to acquire and to program. The smaller market and customized nature of
HPC architectures combine to increase the cost of most such platforms. To address the problems with high
hardware costs, one may create more inexpensive “Beowolf” clusters of dedicated commodity processors. Despite
the benefit of reduced hardware costs, programming the HPC platforms to achieve high performance often proves
extremely time-consuming and expensive in practice. In recent years, programming productivity gains come from
the development of common APIs and libraries of functions to support distributed applications. Examples include
PVM [11], MPI [25], BLAS [1], and VSIPL [3]. The implementation of each API or library is optimized for a given
platform, but application developers can write code that is portable across specific HPC architectures.

The application of reconfigurable computing (RC) into HPC platforms promises significantly enhanced
performance and flexibil ity at a modest cost. Unfortunately, configuring (programming) the reconfigurable
computing nodes remains a challenging task and relatively littl e work to date has focused on potential HPRC
platforms consisting of reconfigurable nodes paired with processing nodes. This paper addresses the challenge of
effectively exploiting HPRC resources by addressing the performance evaluation and optimization problem as well
as improving the programming infrastructure used for porting applications to HPRC platforms. We describe our
approach to this problem domain by first discussing HPRC architectures, including the implications of combining
multiple computational nodes with reconfigurable computing elements. Next, we discuss performance modeling
techniques used to assess the most appropriate means of exploiting the available resources. Finall y, we consider
programming issues and existing design environments for high performance computing and reconfigurable
computing before discussing future work.

+ smithmc@microsys.engr.utk.edu; http://www.ece.utk.edu; The University of Tennessee, Electrical and Computer
Engineering, 414 Ferris Hall, Knoxville, TN, USA 37996-2100
* gdp@utk.edu; phone (865)-974-6352; fax (865)-974-5483; http://www.ece.utk.edu; The University of Tennessee,
Electrical and Computer Engineering, 414 Ferris Hall, Knoxville, TN, USA 37996-2100

2. HPRC ARCHITECTURES
As shown in Figure 1, a High Performance Reconfigurable Computing (HPRC) platform consists of a number of

computing nodes connected by an interconnection network (the architecture can be a switch, hypercube, systolic
array, etc.), with some or all of the computing nodes having reconfigurable computing (RC) element(s) associated
with them. Additionally, an optional configurable network can be constructed to connect the RC elements for
synchronization, data exchange, etc. This optional configurable network could vastly improve performance for
applications such as those that require data exchange for barrier synchronization events.

Configurable
ICN

ICN

Compute Node

RC Board

Compute Node

RC Board

Compute Node

RC Board

Compute Node

RC Board

Compute Node

RC Board

Compute Node

RC Board

Figure 1 High Performance Reconfigurable Computer (HPRC) Architecture

Research in the architecture, configuration, and use of RC systems is ongoing. Efforts to date have primarily
focused on single computing nodes with one or more RC elements, much of which has been supported by the
DARPA Adaptive Computing Systems (ACS) program [2]. Even these basic building blocks of the HPRC platform
remain a challenging task to efficiently configure and use. Some of the major challenges involve FPGA
reconfiguration latency, hardware/software codesign, and sub optimal design tools. Often, the design time necessary
to map to the RC system, the time consumed during reconfiguration, or both outweigh any performance advantages
achieved by executing on the RC system.

2.1. Potential Parallelism
The HPRC platform is designed to exploit multiple types and levels of potential parallelism often found in DSP,

simulation, numeric algorithms and other computationally intensive applications. Data or functional parallelism can
often be exploited at different levels of abstraction, from concurrent software tasks executing on different processors
to multiple functional units contained within a processor. Parallel and distributed computing research has long
shown the advantages of exploiting parallelism via higher-level concurrent software for a wide range of
applications. Recent research in the area of reconfigurable computing demonstrates performance advantages for
many of the same applications. The reconfigurable hardware implementations in many cases have shown significant
speedup over software-only solutions [17, 20-22, 24].

As shown in Figure 2, at a high level of abstraction there is coarse grain parallelism between the software tasks
executing on the compute nodes. Each node could include multiple processors in a shared memory configuration to
support multiple threads or processes; the interconnected compute nodes can also support distributed memory
parallel processing. Beneath the high-level software tasks, there are parallel hardware and software tasks executing
on the associated compute nodes and RC element(s). At the next level in the hierarchy, there are at least two
options: multiple hardware tasks executing on a plurali ty of RC elements or bit-wise parallel operations within an
RC element. Hence, we can support functional and data parallelism at a variety of levels of granularity in order to
provide the maximum performance for a given application. We will discuss parallel processing techniques for the
“software parallelism” achieved with multiple processors before considering the “hardware parallelism” provided by
reconfigurable combinational logic embedded in RC elements.

High-Level
Software

Task

Software
Task

Software
Task

Software
Task

Hardware
Task

High-Level
Software

Task

High-Level
Software

Task

Hardware
Task

Hardware
Task

Software
Task Hardware

TaskHardware
TaskHardware

Task

B
it-

w
is

e

B
it-

w
is

e

B
it-

w
is

e

B
it-

w
is

e

Hardware
Task

B
it-

w
is

e

B
it-

w
is

e

B
it-

w
is

e

B
it-

w
is

e

Hardware
TaskHardware

TaskHardware
Task

High-Level
Software

Task

Software
Task

Hardware
Task

B
it-

w
is

e

B
it-

w
is

e

B
it-

w
is

e

B
it-

w
is

e

Figure 2 Hierarchy of Parallelism Exploited by the HPRC Platform

2.2. Software Parallelism
The primary thrust of the parallel processing field has been to dramatically improve performance by extracting

concurrent tasks that naturally exist in applications such as simulations, signal processing computations, numeric
algorithms, etc. For a given program, functional parallelism is exploited by creating software tasks to concurrently
perform separate, but related, tasks. Similarly, data parallelism is exploited by replicating software tasks that
operate on subsets of the problem. Parallel and distributed processing applications exploit both of these techniques,
although achieving high performance depends on carefully crafting an algorithm and its implementation to best use
the available processors, memory hierarchy, and interconnection network. Despite the practical difficulties,
approaches to achieving high performance parallel software constitutes a relatively mature field, with a broad range
of applications accelerated by HPC platforms.

2.3. Hardware Parallelism and Virtualization
RC systems can be thought of as a “demand-paged” hardware resource similar to software cache. Within the RC

system, there are many different types of computations, each having a separate mapping to the reconfiguration logic.
This idea of virtual hardware is similar to the virtual memory in today’s computers [12]. Taking this idea of virtual
hardware a step further, different phases of an algorithm could have mappings to just a portion of the FPGA.
Operating like a hardware cache, multiple mappings are co-resident in the FPGA and can interact individuall y with
the microprocessor. The set of mappings that are co-resident can vary over time depending on the demands of the
computation algorithm. A host of issues pertaining to the most appropriate architecture, memory hierarchy,
computational model, and runtime infrastructure must be considered to fully exploit this approach. The RC system
can then be modeled as a variation on the well-known Harvard Architecture as shown in Figure 3.

CPU

Instruction Cache

Data Cache

Hardware Cache
RU

Figure 3 Harvard Architecture with Hardware Cache

During the execution of an application, different function mappings will be needed in the RC element. When the
required functions exceed the available space in the RC element some or all of the function mappings will need to be
replaced. Hardware cache replacement issues such as these share similarities to software caches but have some
additional complexities. RC systems are more complicated because the integrity of the I/O and routing of all
configurations simultaneously in a device must be maintained. When a configuration block is mapped into a device,
there are three fundamental types of mappings: direct mapped, fully associative, and set associative. If a
configuration is direct mapped, the block can only be configured into one position of the device. In fully or set
associative, the configuration block can be positioned anywhere in the device or in a limited set of positions
respectively. Additionally, in FPGAs, there is a spatial dependency due to the routing and I/O required, further
complicating the mapping process. Different positioning of a function may require more or less routing resources.
Even if we limit ourselves to direct mapping, we have to ensure that configurations do not overlap or create

destructive mappings. In either of the associative types of mappings, some run-time mapping will li kely be
necessary. Some of the work to date is discussed in [9, 10, 12, 13, 19].

By using RC elements as virtual or multi-mode hardware, fewer resources are required for an application since
the RC units can be dynamically reconfigured and reused to implement multiple functions over the application’s
li fetime. Additionally, the only limitation on the number of possible configurations or mappings in virtual hardware
implementation is the storage space for the configurations.

3. PERFORMANCE MODELS
Performance models can prove to be tremendously useful in assessing the effectiveness in exploiting the

available computational resources. In order to support programming HPRC resources, we first consider
performance modeling approaches and their accuracy. We can then employ these modeling approaches to better
understand the tradeoffs in mapping applications to HPRC resources as well as the most effective ways of doing so.
Some examples include determining the best computational granularity, decomposition of tasks and data, number
and types of processors, and load balancing techniques. We consider queueing models, analytic models, and
simulations for evaluating the performance of HPRC resources and applications.

3.1. Queueing Models
An exact queueing network approach to modeling applications with internal concurrency quickly results in an

explosion in the size of the state space [14]. In their paper on Analytic Queueing Network Models [26], Thomasian
and Bay present a recursive algorithm to compute state probabiliti es for directed acyclic graphs or DAGs. The
algorithm uses a hierarchical model based on a Markov chain at the higher level to compute state probabiliti es and
an analytic solution at the lower level to compute transition rates among the states of the Markov chain.

A queueing network (QN) can also be used to model the computing system when analyzing the performance of
an application. Devices in the system such as CPU’s, disks, communication links, etc. belong to D categories. The
processing requirements of a given task are represented by their service demands, which can vary depending on the
particular device to which it is assigned. In one model [26], the task system is specified as an 8-tuple, { T, [<•], P, Z,
Y, R, A, S} whose definitions are given in Table 1. An example task graph and corresponding Markov chain is given
in Figure 4 and Figure 5 respectively.

A broad range of applications can be represented with such an acyclic task graph. Aperiodic algorithms trivially
can be represented with a DAG, while iterative algorithms can be represented with a DAG for each iteration
executed by the application.

Table 1 Task System Model Definitions

Symbol Definition
T = (T1, …, Tl) The set of tasks to be executed
[<•] A partial order defined on T specifying precedence constraints
P = [pij] I x J matrix where pij is the probabilit y that task Tj is executed after task Ti
Z = [Zid] I x D matrix where Zid is the processing required by Ti at device type d
Y = [Y ij] I x J matrix specifying the amount of data communication between task Tj and task Ti
R = [Ri] The passive resources required by task Ti
A = [A ij] I x J matrix denoting the allocation constraints in a multiprocessing system where J is

the number of processing nodes; Aij = 1 if task i can be run on node j and Aij = 0
otherwise

S The system scheduler

1

2 3

6

7

4 5

Figure 4 Task Graph for Parallel Application

Begin

End

2,3

1

4,5,3 2,6

5,3 4,3 4,5,6 2

7

35,6 4,6 4,5

5 6 4

Figure 5 Markov Chain for Task Graph

The primary performance measures of interest are the mean completion time for the overall task system C, the
individual task initiation and completion times, Ii and Ci, and the task execution time Ei = Ci - Ii . Other performance
measures such as device utilization, queue lengths, etc. can be derived from the state probabilities of the Markov
chain. The standard method to compute the mean cycle time with respect to a reference state R, is [26]:

∑=
S

RS SMvC)(

where, M(S) is the mean residence time in each state and vRS is the mean number of visits to all other states S. This
method requires the solution of a set of linear equations corresponding to the embedded Markov chain. An
alternative solution method proposed by Thomasian and Bay takes advantage of the fact that since the task graph is
acyclic, the corresponding Markov chain is also acyclic. Therefore, the Markov chain can be generated in a breadth-
first or level-by-level manner. The computation of state probabilities at each level is possible by solving the local
balance equations with respect to the previous level.

From [26] the completion time of a task is computed by weighting the delays incurred in completing states.
Given that R- denotes all states preceding R, the mean path delay from the initial state to the completion of state R is

∑
−∈

+=
RS

R SDSbRpRMRD)()()()()(

where bR(S) is the branching probability and p(R) is the probability of reaching state R from the initial state

∑
−∈

=
RS

R SbSpRp)()()(

Unnormalized state probabilities can also be computed level-by-level [19]:

∑
−∈

=
RS

R RTSPSTRP)(/)()()(

where R- is the set of immediate predecessors of R, and TR(S) is the transition rate from S and R. Given that Aij
denotes all states in which Ti is active:

∑∑
∈∈

==
ijji ASAS

i SMSpSPCE)()()(

With these results, we can derive the execution time for each of the tasks comprising the application task graph.
We can determine which tasks are bottlenecks to the computation, consider the addition of extra processing
elements, and assess the impact of idle times.

3.2. Analytic Models
Analytic models have been employed to describe the performance of parallel applications executing on shared,

heterogeneous networks of workstations [23]. In the case of synchronous iterative (or multiphase) algorithms, a
simple, accurate model we can use has the following form for P processors, I iterations, and execution times for the
serial, parallel, and parallel processing overhead given:






 ++∗= overheadpar
workpar

serialP t
P

t
tIR _

_η

The η term is used to represent load imbalance, background load, or the effects of different processor speeds.
This analytic performance model yields accurate runtime predictions for a variety of applications executing on
various heterogeneous networks of workstations. A generalization of this approach to support any directed, acyclic
task graph as above can be easily completed for modeling the iterations of a multiphase or an aperiodic algorithm.
Similarly, communications costs can be included as additional task graph vertices, with modeling techniques like
those employed in [23].

Note that the queueing and analytic modeling results discussed above, although derived for applications
executing on parallel processors, could be used to represent applications executing with additional reconfigurable
hardware as well.

3.3. Simulation Models
Although queueing and analytic models provide a powerful mechanism for representing application behavior, the

size of the problem or the behaviors of interest may not be easily represented or solved with such models. In such
cases, simulation is often used. Although a much broader class of problems can be considered with simulation, the
results can be thought of as samples from a random process, so a number of simulation runs are needed to develop
confidence in the results. The mathematical form resulting from solving queueing or analytic models enables a
designer to assess the sensitivity to a parameter or project the result of a different parameter value. With simulation,
this is very difficult to do. Consequently, we do not employ simulation as a performance evaluation tool for
programming HPRC resources. The use of simulation is used to functionally verify configurations as well as to
validated the modeling techniques in the absence of empirical results.

4. PROGRAMMING ISSUES
Programming of parallel and distributed systems remains challenging but many tools and libraries are available

to assist the developer such as PVM [11], MPI [25], BLAS [1], and VSIPL [3]. The HPRC platform presents
additional complexities to the programming task in a distributed environment. In addition to partitioning and
balancing tasks across computing nodes, at each node hardware/software partitioning decisions are necessary for the
RC element. If the RC board is populated with more than one FPGA unit, then decisions about the hardware
partitioning across the multiple devices must be made. Similarly, functionality can be temporally partitioned with

multiple, cooperating configurations on the RC elements. Once the partitioning decisions are made, overhead and
communication costs must be analyzed. Mapping a given application onto an HPRC platform requires parallel
processing, hardware design, and system design capabiliti es. We discuss parallel and distributed software design
environments, hardware configuration design environments, and system level hardware/software co-design
environments to support HPRC applications development.

4.1. Parallel and Distributed Processing Design Environments
Much research has been invested in studying the performance improvements gained by the parallel execution of

software tasks. When applications are partitioned into multiple tasks to potentially be executed on multiple
processors or machines, vehicles are needed for determining the optimal partitioning, scheduling and mapping the
task sequence, mapping and distributing the data set, and communicating between concurrent tasks. Previous work
on developing packages, libraries, and programming environments helped with application portabili ty, reuse, and
performance. PVM [11], MPI [25], BLAS [1], and VSIPL [3] are good examples.

The University of Tennessee received a grant from the National Science Foundation to develop the Scalable
Intracampus Research Grid (SinRG) [5] to develop the software, networking, and programming infrastructure
necessary to support clusters of machines to execute parallel applications with minimal user involvement or
intervention, in contrast to most parallel processing environments that force the user to have detailed knowledge of
the processing environment. The NetSolve [6] middleware project targets the development of a simple software
interface to the parallel processor. Similar work on HARNESS [8] focuses on distributed virtual machines and
dynamic reconfiguration issues. By leveraging these efforts to develop common software development
environments for parallel applications, we can reduce the difficulties associated with effectively employing parallel
processing applications, thus helping in the use of HPRC resources.

4.2. Hardware Configurations Design Environments
Reconfigurable computers bring together aspects of both hardware and software systems. Not surprisingly,

debate rages about the best design languages, methodologies, and tools for reconfigurable computing systems.
Many of the same issues and arguments concerning systems design and hardware/software codesign are applicable.

Most development efforts to map applications onto reconfigurable computers uses VHDL or Verilog for
capturing the design, typically at the register transfer level. In doing so, hardware designers can use the same design
capture, simulation, and synthesis languages and tools already used for ASIC development. In practice, the
productivity from directly using HDLs lags behind industry needs. Designers write much of the HDL code at RTL,
and too often do not employ language constructs such as VHDL generics, configurations, and generate statements to
create portable, flexible designs. In addition, the synthesis tools provide roughly equivalent capabili ty for FPGAs as
with ASICs, enabling the reuse of much of ASIC design flows and tools.

The same domain specific attributes that make hardware description languages effective for designing electronic
systems prove to be a significant limitation to the widespread adoption of VHDL or Verilog for capturing designs
intended for reconfigurable computers. Software and systems engineers are not famili ar with these hardware
description languages and resist using them.

At the system design level, a number of proposed extensions to C or C++ have been forwarded by various
companies to address behavioral design. Because C/C++ is widely used by systems engineers to develop system
prototypes or executable specifications, it is hoped providing a facili ty to develop hardware designs in some C/C++
dialect will improve productivity and bring systems and hardware engineers closer together. Adoption of a C/C++
dialect potentially will potentially enable a much larger pool of designers to describe hardware because C/C++ users
dwarf the HDL user population. The amount of infrastructure required with these C/C++ extensions may approach
or even exceed that of using HDLs.

In an attempt to leverage the surging popularity of the Java programming language, as well as its support for
code portabilit y and for reuse via object-oriented facilities, researchers at BYU developed JHDL [16]. The JHDL
approach exploits the explosion in software development tools for Java and the much larger population of Java
programmers to ease in the general adoption of reconfigurable computing. JHDL lowers many of the barriers to
entry for potential developers, and significantly simplifies the mapping of functionality between hardware and
software. Nonetheless, performance limitations for Java hinder its adoption for high-performance applications.

Researchers at The University of Tennessee developed a Khoros-based design environment that maps “glyphs”
representing functional blocks to synthesizable VHDL that results in configuration data targeting different FPGA
architectures or multiple FPGA-based reconfigurable computers [4]. Using this system for image processing

applications, a 100X design productivity improvement was demonstrated. Similar research at Northwestern
University addresses design in MATLAB for reconfigurable computers [7].

4.3. System Design Environments
For HPRC systems, the task of hardware/software partitioning is complicated because the hardware and software

are interdependent, making it diff icult to make a decision about one without affecting the other. Hardware-software
partitioning algorithms attempt to meet the design constraints (performance, cost, etc.) by deciding which operations
will be implemented in software (CPU) and which in special-purpose hardware, in our case, reconfigurable
hardware. There are two general styles for co-design partitioning: hardware-oriented and software-oriented [18,
28]. Hardware-oriented algorithms start with everything in hardware and move some of the operations to software
until the performance goals are met. Software-oriented algorithms start with all operations in software and move
selected ones to hardware.

The “cost of the system” (design cost, procurement cost, efficiency, performance, etc.), is affected by all phases
of the co-design process. The partitioning of processes between hardware and software affects the implementation
and performance cost of the entire system. Less than optimal partitioning, either at the high-level software
application tasks or the hardware/software division at each node, may cause excessive interprocess communication.
Inefficiencies can delay computation at one or more nodes while other processors sit idle. High performance
interconnection networks and customizable interconnects among RC elements can lessen the impact but optimal
partitioning resulting in a balanced system will have the greatest impact on overall efficiency.

The use of object-oriented programming languages such as C++ to describe a system’s functionali ty in terms of
communicating objects naturally supports coarse and fine-grained parallelism. Wolf [29] conducted research on the
co-synthesis of embedded systems to partition, schedule, and map the application software and synthesize the
appropriate hardware. The algorithm Wolf presents does not partition tasks into smaller sections of code, but it does
split the variable set of an object across several processing elements. The algorithm is designed to over-allocate
hardware to meet rate requirements, then iteratively reduce the system cost function by moving tasks and data to
new processing elements [29]. These techniques in conjunction with the tools and libraries already developed for
distributed systems can be leveraged in the development of a programming paradigm for the HPRC platform.

Another research effort at the Institute of Information Science in Taiwan has produced a method for
programming general-purpose parallel systems. CMAPS, a system-level co-synthesis methodology for general-
purpose parallel systems, targets a general parallel system [15]. By interleaving the modeling and synthesis phases,
the CMAPS tool is able to explore the interaction between hardware and software. The CMAPS tool is used to
define specifications with a Problem Graph using elementary problems from a Problem Database. The CMAPS
tool then maps the graph into an initial solution, which then can be transformed into hardware and software models.
These models are analyzed and inferior mappings are eliminated to decrease the complexity of synthesis and
produce the best solution. After the scheduling algorithm is chosen, a co-simulation of hardware and software is
performed to confirm results.

5. CONCLUSIONS
High Performance Reconfigurable Computing promises to cost-effectively leverage the benefits of both high

performance computing and reconfigurable computing. The potential impact of high performance reconfigurable
computing cannot be overstated; embedded and computer systems will never be the same. In the future,
reconfigurable computing will see the widespread adoption of the co-processing model in general computer
platforms. The tremendous growth in gate capacity will make reconfigurable processing units attractive additions to
support platform-based design and product customization.

Future generations of processors will include reconfigurable logic units as functional units in processors as well .
Transmeta’s Crusoe processor support for the emulation of other instruction set architectures introduced the notion
of morphable computing to many; this trend will continue by enabling dynamic instruction set architecture
computers [27].

The performance evaluation techniques presented here will help designers to effectively exploit the potential
benefits of HPRC platforms. Ongoing research wil l validate these approaches for reconfigurable computing
applications, thus enabling performance predictabili ty for applications on HPRC platforms. The design
environments for the software, hardware configurations, and overall system remain as a critical enabling technology
to help make HPRC applications economically feasible.

ACKNOWLEDGEMENTS
This work was partially supported by the Air Force Research Lab (AFRL/IFTC) via contract F30602-99-D-0221

with CACI International, Inc. The authors thank Steve Drager for his inputs and support of this research.

REFERENCES
[1] BLAS: Basic Library of Algebraic Subroutines. http://www.netlib.org/blas/index.html . 2001.
[2] DARPA Adaptive Computing Systems. http://www.darpa.mil/it o/research/acs/projects.html . 2001.
[3] Vector Signal Image Processing Library (VSIPL). http://www.vsipl.org . 2001.
[4] See http://microsys6.engr.utk.edu/~bouldin/darpa/
[5] See http://www.cs.utk.edu/sinrg/
[6] Arnold, Dorian C. and Dongarra, Jack. “The NetSolve Environment: Progressing Towards the Seamless Grid,” 2000
International Conference on Parallel Processing (ICPP-2000), Toronto Canada, August 21-24, 2000
[7] Banerjee , Prith. et al. “A MATLAB Compiler for Distributed Heterogeneous Reconfigurable Computing Systems,” Int.
Symp. on FPGA Custom Computing Machines (FCCM-2000) Napa Valley, CA, Apr. 2000.
[8] Beck, Micah et al. HARNESS: A Next Generation Distributed Virtual Machine, International Journal on Future Generation
Computer Systems, Elsevier Publ., Volume 15, Number 5/6, 1999.
[9] Compton, K., Cooley, J., Knol, S., and Hauck, S. Configuration Relocation and Defragmentation for FPGAs. IEEE
Symposium on Field-Programmable Custom Computing Machines . 2000.
[10] Compton, K. and Hauck, S. Configurable Computing: A Survey of Systems and Software. Northwestern University, Dept.
of ECE Technical Report. 1999. Northwestern University.
[11] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sundarem, V., PVM: A User's Guide and Tutorial for
Networked Parallel Computing MIT Press, 1994.
[12] Hauck, S., "The Roles of FPGAs in Reprogrammable Systems," Proceedings of the IEEE, vol. 86, no. 4, pp. 615-638,
Apr.1998.
[13] Hauck, S. The Future of Reconfigurable Systems. Keynote Address, 5th Canadian Conference on Field Programmable
Devices . 1998. Montreal.
[14] Heidelberger, P. and Trivedi, K. S., "Analytic Queueing Models for Programs with Internal Concurrency," IEEE
Transactions on Computers, vol. C-32, no. 1, pp. 73-82, Jan.1983.
[15] Hsiung, P.-A., "CMAPS: A Cosynthesis Methodology for Application-Oriented Parallel Systems," ACM Transactions on
Design Automation of Electronic Systems, vol. 5, no. 1, pp. 51-81, Jan.2000.
[16] JHDL. Java Hardware Description Language. http://www.jhdl.org
[17] Levine, Ben, "A Systematic Implementation of Image Processing Algorithms on Configurable Computing Hardware."
Master of Science Electrical Engineering, The University of Tennessee, 1999.
[18] Li, Y., Callahan, T., Darnell, E., Harr, R., Kurkure, U., and Stockwood, J. Hardware-Software Co-Design of Embedded
Reconfigurable Architectures. Design Automation Conference DAC 2000 , 507-512. 2000. Los Angeles, Cali fornia.
[19] Li, Z., Compton, K., and Hauck, S. Configuration Caching Techniques for FPGA. IEEE Symposium on Field-
Programmable Custom Computing Machines . 2000.
[20] Natarajan, Senthil , "Development and Verification of Library Cells for Reconfigurable Logic." Master of Science Electrical
Engineering, The University of Tennessee, 1999.
[21] Natarajan, S., Levine, B., Tan, C., Newport, D., and Bouldin, D. Automatic Mapping of Khoros-Based Applications to
Adaptive Computing Systems. MAPLD-99 . 1999. Laurel, MD.
[22] Ong, S.-W., Kerkiz, N., Srijanto, B., Tan, C., Langston, M., Newport, D., and Bouldin, D. Design Flow for Automatic
mapping of Graphical Programming Applications to Adaptive Computing Systems. unknown . 2000.
[23] Gregory D. Peterson and Roger D. Chamberlain, “Parallel Application Performance in a Shared Resource Environment.”
IEE Distributed Systems Engineering Journal, 3(1):9-19, March 1996.
[24] Shetters, Carl Wayne, " Scheduling Task Chains on an Array of Reconfigurable FPGAs." Master of Science University of
Tennessee, 1999.
[25] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., MPI: The Complete Reference, 2nd ed. MIT Press,
1998.
[26] Thomasian, A. and Bay, P. F., "Analytic Queueing Network Models for Parallel Processing of Task Systems," IEEE
Transactions on Computers, vol. C-35, no. 12, pp. 1045-1054, Dec.1986.
[27] M.J. Wirthlin and B.L. Hutchings, “A Dynamic Instruction Set Computer.” In Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines, IEEE Computer Society Press, April , 1995.
[28] Wolf, W., "Hardware-Software Codesign of Embedded Systems," Proceeding of IEEE, vol. 82, no. 7, pp. 967-989,
July1994.
[29] Wolf, W., "Object-Oriented Cosynthesis of Distributed Embedded Systems," ACM Transactions on Design Automation of
Electronic Systems, vol. 1, no. 3, pp. 301-314, July1996.

