Programming High Perfor mance Reconfigurable Computers

MelisaaC. Smith" Gregory D. Peterson
The University of Tennessee Department of Eledricd and Computer Engineeaing

ABSTRACT

High Performance Computers (HPC) provide dramaticdly improved cepabilities for a number of defense and
commercial applicaions, but often are too expensive to aaquire and to program. The small er market and customized
nature of HPC architectures combine to increase the @st of most such platforms. To addressthe problems with high
hardware msts, one may creae more inexpensive Beowolf clusters of dedicated commodity procesors. Despite the
benefit of reduced hardware @sts, programming the HPC platforms to adhieve high performance often proves
extremely time-consuming and expensive in pradice In recent yeas, programming productivity gains come from
the development of common APIs and libraries of functions to suppart distributed applicaions. Examples include
PVM, MPI, BLAS, and VSIPL. The implementation o each API or library is optimized for a given platform, but
appli cation developers can write cdethat is portable acoss pedfic HPC architedures.

The gplication of reconfigurable computing (RC) into HPC platforms promises significantly enhanced performance
and flexibility at a modest cost. Unfortunately, configuring (programming) the reconfigurable computing nodes
remains a chalenging task and relatively little work to date has focused on potentia high performance
reconfigurable ommputing (HPRC) platforms consisting of reconfigurable nodes paired with procesing rodes. This
paper addresses the challenge of effectively exploiting HPRC resources by first considering the performance
evaluation and optimization problem before turning to improving the programming infrastructure used for porting
applicaions to HPRC platforms.

Keywords: high performance omputing, reconfigurable acomputing, programming, performance evaluation

1. INTRODUCTION

High Performance Computers (HPC) provide dramaticaly improved capabilities for a number of defense
applicaions, but often are too expensive to aauire and to program. The smaller market and customized nature of
HPC architedures combine to incresse the st of most such platforms. To address the problems with high
hardware sts, one may creae more inexpensive “Beowolf” clusters of dedicated commodity processors. Despite
the benefit of reduced hardware sts, programming the HPC platforms to achieve high performance often proves
extremely time-consuming and expensive in pradice In recant yeas, programming productivity gains come from
the development of common APIs and libraries of functions to suppart distributed applications. Examples include
PVM [11], MPI [25], BLAS[1], and VSIPL [3]. The implementation of each API or library isoptimized for agiven
platform, but appli catiion developers can write mde that is portable acoss pedfic HPC architedures.

The aplicdtion of recnfigurable cmmputing (RC) into HPC platforms promises dgnificantly enhanced
performance and flexibility at a modest cost. Unfortunately, configuring (programming) the recnfigurable
computing nodes remains a dallenging task and relatively little work to date has focused on potential HPRC
platforms consisting of reconfigurable nodes paired with procesing nodes. This paper addresses the chall enge of
effectively exploiting HPRC resources by addressng the performance evaluation and optimization problem as well
as improving the programming infrastructure used for porting applications to HPRC platforms. We describe our
approach to this problem domain by first discussing HPRC architedures, including the implicaions of combining
multiple computational nodes with reconfigurable computing elements. Next, we discuss performance modeling
techniques used to assess the most appropriate means of exploiting the available resources. Finaly, we cnsider
programming issues and existing design environments for high performance computing and reconfigurable
computing before discussing future work.

* smithmc@microsys.engr.utk.edu; http://www.ece.utk.edu; The University of Tennessee, Electrical and Computer
Engineering, 414 Ferris Hall, Knoxville, TN, USA 37996-2100

" gdp@utk.edu; phone (865)-974-6352; fax (865)-974-5483; http://www.ece.utk.edu; The University of Tennessee,
Electrical and Computer Engineering, 414 Ferris Hall, Knoxville, TN, USA 37996-2100

2. HPRC ARCHITECTURES

Asshown in Figure 1, a High Performance Reanfigurable Computing (HPRC) platform consists of a number of
computing rodes conneded by an interconnedion retwork (the achitedure can be aswitch, hypercube, systolic
array, etc.), with some or al of the computing nodes having reconfigurable computing (RC) element(s) associated
with them. Additionally, an ogiona configurable network can be @nstructed to conned the RC elements for
synchronization, data exchange, etc. This optional configurable network could vastly improve performance for
appli cations such as those that require data exchange for barrier synchronization events.

\ \
[N Configurable P N
Ll «
RC Board < » ICN < L1y RC Board
L }
A A

\ Y |
\ Y v |

Compute Node P < o > ICN < P ; Compute Node

Figure 1 High Performance Reconfigurable Computer (HPRC) Ar chitecture

Reseach in the achitecture, configuration, and use of RC systems is ongoing. Efforts to date have primarily
focused on single computing nodes with one or more RC elements, much of which has been suppated by the
DARPA Adaptive Computing Systems (ACS) program [2]. Even these basic buil ding blocks of the HPRC platform
remain a challenging task to efficiently configure and use. Some of the major chalenges involve FPGA
reconfiguration latency, hardware/software cdesign, and sub ogtimal design toodls. Often, the design time necessary
to map to the RC system, the time consumed during reconfiguration, or both outweigh any performance alvantages
adhieved by exeauting on the RC system.

2.1. Potential Parallelism

The HPRC platform is designed to exploit multiple types and levels of patential parall elism often found in DSP,
simulation, numeric algorithms and ather computationally intensive gplications. Data or functional parallelism can
often be exploited at different levels of abstradion, from concurrent software tasks executing on diff erent processors
to multiple functional units contained within a processor. Paralel and dstributed computing reseach has long
shown the alvantages of exploiting paralelism via higher-level concurrent software for a wide range of
applicaions. Recent reseach in the area of remnfigurable cmputing demonstrates performance advantages for
many of the same gplicdions. The reconfigurable hardware implementations in many cases have shown significant
speadup over software-only solutions[17, 20-22, 24].

As shown in Figure 2, at a high level of abstradion there is coarse grain parall elism between the software tasks
exeauting on the compute nodes. Each node aould include multiple processors in a shared memory configuration to
suppat multiple threads or processes; the interconneded compute nodes can also suppat distributed memory
paralel processng Beneah the high-level software tasks, there ae parallel hardware and software tasks executing
on the associated compute nodes and RC element(s). At the next level in the hierarchy, there are & least two
options: multi ple hardware tasks executing on a plurality of RC elements or bit-wise parallel operations within an
RC element. Hence, we can suppart functional and data parallelism at a variety of levels of granularity in order to
provide the maximum performance for a given application. We will discuss parallel processng techniques for the
“software parall elism” achieved with multiple processors before considering the “hardware parall elism” provided by
reconfigurable combinational logic embedded in RC elements.

High-Level High-Level High-Level High-Level
Software Software Software [N N) Software
Task Task Task Task

Software | | Hardware Software Software | | Hardware Software Software | | Hardware
Task Task Task Task Task Task Task Task
Hardware Hardware
Task Task

Figure 2 Hierarchy of Parallelism Exploited by the HPRC Platform

2.2. Software Parallelism

The primary thrust of the parallel processng field has been to dramatically improve performance by extrading
concurrent tasks that naturally exist in applicaions such as $mulations, signal processng computations, numeric
algorithms, etc. For a given program, functional parallelism is exploited by creaing software tasks to concurrently
perform separate, but related, tasks. Similarly, data parallelism is exploited by replicaing software tasks that
operate on subsets of the problem. Paralel and dstributed processng applications exploit bath of these techniques,
although achieving high performance depends on carefully crafting an algorithm and its implementation to best use
the available processors, memory hierarchy, and interconnedion network. Despite the pradicd difficulties,
approaches to achieving high performance parallel software constitutes a relatively mature field, with a broad range
of applications accéerated by HPC platforms.

2.3. Hardware Parallelism and Virtualization

RC systems can be thought of as a“demand-paged” hardware resource simil ar to software cace. Within the RC
system, there ae many different types of computations, each having a separate mapping to the reconfiguration logic.
Thisideaof virtual hardware is similar to the virtual memory in today’s computers [12]. Taking thisideaof virtual
hardware a step further, different phases of an algorithm could have mappings to just a portion of the FPGA.
Operating like a hardware cache, multi ple mappings are c-resident in the FPGA and can interad individually with
the microprocesor. The set of mappings that are -resident can vary over time depending on the demands of the
computation algorithm. A host of issues pertaining to the most appropriate achitecdure, memory hierarchy,
computational model, and runtime infrastructure must be considered to fully exploit this approach. The RC system
can then be modeled as a variation on the well-known Harvard Architecture as shown in Figure 3.

I Hardware Cache

CPU Data Cache

L Instruction Cache

Figure 3 Harvard Architecture with Har dware Cache

During the exeaution of an application, diff erent function mappings will be needed in the RC element. When the
required functions exceal the avail able spacein the RC element some or all of the function mappings will need to be
replacel. Hardware cahe replacement issues such as these share similarities to software cates but have some
additional complexities. RC systems are more wmplicated because the integrity of the 1/0 and routing of all
configurations $multaneously in a device must be maintained. When a anfiguration block is mapped into a device,
there ae three fundamental types of mappings: dired mapped, fully associative, and set asciative. If a
configuration is direct mapped, the block can only be mnfigured into one position of the device In fully or set
associative, the configuration block can be pasitioned anywhere in the device or in a limited set of positions
respedively. Addtionaly, in FPGAS, there is a spatial dependency due to the routing and /O required, further
compli cating the mapping process Different positioning of a function may require more or lessrouting resources.
Even if we limit ourselves to dred mapping, we have to ensure that configurations do not overlap o crede

destructive mappings. In either of the associative types of mappings, some rurnttime mapping will likely be
necessary. Some of the work to dateisdiscussed in [9, 10, 12, 13, 19].

By using RC elements as virtual or multi-mode hardware, fewer resources are required for an application since
the RC units can be dynamically reconfigured and reused to implement multiple functions over the gplicaion’'s
lifetime. Additionally, the only limitation on the number of possble mnfigurations or mappingsin virtual hardware
implementation is the storage spacefor the configurations.

3. PERFORMANCE MODELS

Performance models can prove to be tremendowsly useful in assessing the dfediveness in exploiting the
available mmputational resources. In order to suppat programming HPRC resources, we first consider
performance modeling approaches and their acarracy. We can then employ these modeling approadches to better
understand the tradeoffs in mapping applications to HPRC resources as well as the most effedive ways of doing so.
Some examples include determining the best computational granularity, decompasition of tasks and data, number
and types of procesors, and load balancing techniques. We mnsider queueing models, analytic models, and
simulations for evaluating the performance of HPRC resources and appli caions.

3.1. Queueing Models

An exad queueing network approach to modeling applicaions with internal concurrency quickly results in an
explosion in the size of the state space[14]. Intheir paper on Analytic Queueing Network Models [26], Thomasian
and Bay present a recursive dgorithm to compute state probabiliti es for direded acgyclic graphs or DAGs. The
algorithm uses a hierarchicd model based on a Markov chain at the higher level to compute state probabiliti es and
an analytic solution at the lower level to compute transition rates among the states of the Markov chain.

A queueing network (QN) can also be used to model the computing system when analyzing the performance of
an applicaion. Devicesin the system such as CPU’s, disks, communicaion links, etc. belongto D categories. The
processng requirements of a given task are represented by their service demands, which can vary depending on the
particular deviceto which it isasggned. In one model [26], the task system is spedfied as an 8-tuple, {T, [<*], P, Z,
Y, R, A, S} whose definitions are givenin Table 1. An example task graph and corresponding Markov chain is given
in Figure 4 and Figure 5 respedively.

A broad range of applications can be represented with such an acyclic task graph. Aperiodic dgorithms trivially
can be represented with a DAG, while iterative dgorithms can be represented with a DAG for ead iteration
exeauted by the gplication.

Table 1 Task System M odel Definitions

Symbal Definition

T=(Ty...,T}) | Thesetof tasksto be exeauted

[<e] A partial order defined on T spedfying precalence mnstraints

P = [pj] | X J matrix where pj; is the probability that task T; is executed after task T,

Z=[Zd | x D matrix where Z;4 is the processng required by Ti at devicetype d

Y =[Y;il | X J matrix spedfying the amount of data cmmunication between task T; and task T;

R=[R] The pasdve resources required by task T,

A =[A] | x J matrix denoting the dl ocation constraints in a multi processng system where J is
the number of processng nodes; A;; = 1 if task i can berun on nodej and A;; =0
otherwise

S The system scheduler

Figure4 Task Graph for Parallel Application

Figure5 Markov Chain for Task Graph

The primary performance measures of interest are the mean completion time for the overall task system C, the
individual task initiation and completion times, |; and C;, and the task executiontime E; = C; - |; . Other performance
measures such as device utilization, queue lengths, etc. can be derived from the state probabilities of the Markov
chain. The standard method to compute the mean cycle time with respect to areference state R, is[26]:

C= ZVRSM(S)

where, M(S) is the mean residence time in each state and vgs is the mean number of visitsto al other states S. This
method requires the solution of a set of linear equations corresponding to the embedded Markov chain. An
alternative solution method proposed by Thomasian and Bay takes advantage of the fact that since the task graph is
acyclic, the corresponding Markov chain isaso acyclic. Therefore, the Markov chain can be generated in a breadth-
first or level-by-level manner. The computation of state probabilities at each level is possible by solving the local
bal ance equations with respect to the previous level.

From [26] the completion time of a task is computed by weighting the delays incurred in completing states.
Given that R denotes all states preceding R, the mean path delay from theinitial state to the completion of state Ris

D(R) =M (R)p(R) + > be(S)D(S)
SOR™
where br(S) is the branching probability and p(R) is the probability of reaching state R from theinitial state

P(R)= > P(S)b:(S)

Unnormalized state probabilities can also be computed level-by-level [19]:
P(R)= > T:(SP(S)/T(R)
SOR™
where R is the set of immediate predecessors of R, and Tr(S) is the transition rate from Sand R. Given that A;
denotes all statesin which T; is active:

E = CS;_P(S) =5; P(SM(S)

With these results, we can derive the execution time for each of the tasks comprising the application task graph.
We can determine which tasks are bottlenecks to the computation, consider the addition of extra processing
elements, and assess the impact of idle times.

3.2. Analytic Models

Analytic models have been employed to describe the performance of parallel applications executing on shared,
heterogeneous networks of workstations [23]. In the case of synchronous iterative (or multiphase) algorithms, a
simple, accurate model we can use has the following form for P processors, | iterations, and execution times for the
serial, parallel, and parallel processing overhead given:

nt
RP = | |]Eserial + WT_WWK +tpar_overhead E

The n term is used to represent load imbalance, background load, or the effects of different processor speeds.
This analytic performance model yields accurate runtime predictions for a variety of applications executing on
various heterogeneous networks of workstations. A generalization of this approach to support any directed, acyclic
task graph as above can be easily completed for modeling the iterations of a multiphase or an aperiodic agorithm.
Similarly, communications costs can be included as additional task graph vertices, with modeling techniques like
those employed in [23].

Note that the queueing and analytic modeling results discussed above, athough derived for applications
executing on parallel processors, could be used to represent applications executing with additional reconfigurable
hardware as well.

3.3. Simulation Models

Although queueing and analytic models provide a powerful mechanism for representing application behavior, the
size of the problem or the behaviors of interest may not be easily represented or solved with such models. In such
cases, simulation is often used. Although a much broader class of problems can be considered with simulation, the
results can be thought of as samples from a random process, so a number of simulation runs are needed to develop
confidence in the results. The mathematical form resulting from solving queueing or analytic models enables a
designer to assess the sensitivity to a parameter or project the result of a different parameter value. With simulation,
this is very difficult to do. Consequently, we do not employ simulation as a performance evaluation tool for
programming HPRC resources. The use of simulation is used to functionally verify configurations as well as to
validated the modeling techniques in the absence of empirical results.

4. PROGRAMMING ISSUES

Programming of parallel and distributed systems remains challenging but many tools and libraries are available
to assist the developer such as PVM [11], MPI [25], BLAS [1], and VSIPL [3]. The HPRC platform presents
additional complexities to the programming task in a distributed environment. In addition to partitioning and
balancing tasks across computing nodes, at each node hardware/software partitioning decisions are necessary for the
RC element. If the RC board is populated with more than one FPGA unit, then decisions about the hardware
partitioning across the multiple devices must be made. Similarly, functionality can be temporally partitioned with

multi ple, cooperating configurations on the RC elements. Once the partitioning dedsions are made, overhead and
communicaion costs must be analyzed. Mapping a given applicaion aito an HPRC platform requires parall el
processng, hardware design, and system design capabilities. We discuss parallel and distributed software design
environments, hardware onfiguration design environments, and system level hardware/software @-design
environments to suppat HPRC appli cations devel opment.

4.1. Parallel and Distributed Processing Design Environments

Much reseach has been invested in studying the performance improvements gained by the parallel execution of
software tasks. When applicaions are partitioned into multiple tasks to pdentialy be exeauted on multiple
procesors or machines, vehicles are needed for determining the optimal partitioning, scheduling and mapping the
task sequence, mapping and distributing the data set, and communicating between concurrent tasks. Previous work
on developing padkages, libraries, and programming environments helped with application portability, reuse, and
performance. PVM [11], MPI [25], BLAS[1], and VSIPL [3] are good examples.

The University of Tennessee receved a grant from the National Science Foundation to develop the Scdable
Intracampus Reseach Grid (SiNRG) [5] to develop the software, networking, and programming infrastructure
necessary to suppat clusters of machines to execute parallel applicaions with minimal user involvement or
intervention, in contrast to most parallel processng environments that force the user to have detailed knowledge of
the procesing environment. The NetSolve [6] middeware projed targets the development of a simple software
interface to the paralel processor. Similar work on HARNESS [8] focuses on distributed virtual machines and
dynamic remnfiguration issues. By leveraging these efforts to develop common software development
environments for parallel applicaions, we aan reduce the difficulties asciated with effectively employing parall el
procesgng applicaions, thus helpingin the use of HPRC resources.

4.2. Hardware Configurations Design Environments

Renfigurable computers bring together aspeds of both hardware and software systems. Not surprisingly,
debate rages about the best design languages, methoddogies, and toals for reconfigurable cmputing systems.
Many of the same issues and arguments concerning systems design and hardware/software adesign are goplicable.

Most development efforts to map applicaions onto recmnfigurable computers uses VHDL or Verilog for
cgpturing the design, typicdly at the register transfer level. In doing so, hardware designers can use the same design
cgpture, simulation, and synthesis languages and tools already used for ASIC development. In pradice the
productivity from diredly using HDLs lags behind industry needs. Designers write much of the HDL code & RTL,
and too dten do not employ language cnstructs sich as VHDL generics, configurations, and generate statements to
crede portable, flexible designs. In addition, the synthesis tools provide roughly equivalent cgpability for FPGASs as
with ASICs, enabling the reuse of much of ASIC design flows and todls.

The same domain spedfic atributes that make hardware description languages effedive for designing eledronic
systems prove to be asignificant limitation to the widespread adoption of VHDL or Verilog for capturing designs
intended for reconfigurable wmputers. Software and systems engineas are not familiar with these hardware
description languages and resist using them.

At the system design level, a number of proposed extensions to C or C++ have been forwarded by various
companies to address behavioral design. Becaise C/C++ is widely used by systems engineeas to develop system
prototypes or exeautable spedficaions, it is hoped providing a fadlity to develop hardware designs in some C/C++
dialed will improve productivity and hring systems and hardware enginee's closer together. Adoption of a C/C++
dialed potentially will potentialy enable amuch larger pod of designers to describe hardware becaise C/C++ users
dwarf the HDL user population. The amount of infrastructure required with these C/C++ extensions may approach
or even excedl that of usingHDLSs.

In an attempt to leverage the surging popularity of the Java programming language, as well as its suppart for
code portability and for reuse via objed-oriented fadlities, reseachers at BYU developed JHDL [16]. The JHDL
approach exploits the explosion in software development todls for Java axd the much larger population of Java
programmers to ease in the general adogtion of reconfigurable computing. JHDL lowers many of the barriers to
entry for potential developers, and significantly simplifies the mapping of functionality between hardware and
software. Nonetheless, performance limitations for Java hinder its adoption for high-performance aplications.

Reseachers at The University of Tennessee developed a Khoros-based design environment that maps “glyphs’
representing functional blocks to synthesizable VHDL that results in configuration data targeting different FPGA
architedures or multiple FPGA-based reconfigurable cmmputers [4]. Using this g/stem for image processng

applicaions, a 100X design productivity improvement was demonstrated. Similar reseach at Northwestern
University addressesdesignin MATLAB for reconfigurable computers[7].

4.3. System Design Environments

For HPRC systems, the task of hardware/software partitioning is compli cated becaise the hardware and software
are interdependent, making it difficult to make adedsion about one without aff eding the other. Hardware-software
partiti oning al gorithms attempt to mee the design constraints (performance, cost, etc.) by dedding which operations
will be implemented in software (CPU) and which in spedal-purpose hardware, in our case, reconfigurable
hardware. There ae two general styles for co-design partitioning: hardware-oriented and software-oriented [18,
28]. Hardware-oriented algorithms gart with everything in hardware and move some of the operations to software
until the performance goals are met. Software-oriented algorithms gart with all operations in software axd move
seleded onesto hardware.

The “cost of the system” (design cost, procurement cost, efficiency, performance, etc.), is affeded by al phases
of the @-design process The partitioning of processes between hardware and software &fects the implementation
and performance st of the entire system. Less than optimal partitioning, either at the high-level software
application tasks or the hardware/software division at each node, may cause excessve interprocesscommunicaion.
Inefficiencies can delay computation at one or more nodes while other procesors st idle. High performance
interconnedion networks and customizable interconnects among RC elements can lessen the impad but optimal
partiti oning resulting in a balanced system will have the greatest impaad on overall efficiency.

The use of objed-oriented programming languages such as C++ to describe asystem’s functionality in terms of
communicding objeds naturally supparts coarse and fine-grained perall elism. Wolf [29] conducted research on the
co-synthesis of embedded systems to partition, schedule, and map the gplicaion software and synthesize the
appropriate hardware. The dgorithm Wolf presents does not partition tasks into small er sedions of code, but it does
split the variable set of an objed aadoss gvera processng elements. The dgorithm is designed to over-allocae
hardware to med rate requirements, then iteratively reduce the system cost function by moving tasks and data to
new processng elements [29]. These techniques in conjunction with the todls and libraries already developed for
distributed systems can be leveraged in the development of a programming paradigm for the HPRC platform.

Another reseach effort at the Ingtitute of Information Science in Taiwan has produced a method for
programming general-purpose parallel systems. CMAPS, a system-level co-synthesis methoddogy for general-
purpose parallel systems, targets a general parallel system [15]. By interleaving the modeling and synthesis phases,
the CMAPS tod is able to explore the interadion between hardware and software. The CMAPS tod is used to
define spedfications with a Problem Graph using elementary problems from a Problem Database. The CMAPS
tool then maps the graph into an initial solution, which then can be transformed into hardware and software models.
These models are analyzed and inferior mappings are diminated to deaease the complexity of synthesis and
produce the best solution. After the scheduling algorithm is chosen, a co-simulation of hardware and software is
performed to confirm results.

5. CONCLUSIONS

High Performance Reoonfigurable Computing promises to cost-effectively leverage the benefits of both high
performance @mputing and remnfigurable mmputing. The potential impad of high performance reconfigurable
computing cannot be overstated; embedded and computer systems will never be the same. In the future,
reconfigurable computing will see the widespread adoption of the @-procesing model in general computer
platforms. The tremendous growth in gate caadty will make reconfigurable processng urits attradive alditions to
suppart platform-based design and product customization.

Future generations of processors will include reconfigurable logic units as functional unitsin processors as well.
Transmeta' s Crusoe procesor suppart for the emulation of other instruction set architedures introduced the notion
of morphable @wmputing to many; this trend will continue by enabling dynamic instruction set architecure
computers [27].

The performance evaluation techniques presented here will help designers to effectively exploit the potential
benefits of HPRC platforms. Ongoing reseach will validate these gproades for reconfigurable mmputing
applicaions, thus enabling performance predictability for applicaions on HPRC platforms. The design
environments for the software, hardware configurations, and overall system remain as a «iticd enabling technology
to help make HPRC appli cations economicdly feasible.

ACKNOWLEDGEMENTS

This work was partially supparted by the Air Force Research Lab (AFRL/IFTC) via mntract F3060299-D-0221
with CACI International, Inc. The authors thank Steve Drager for hisinputs and suppart of this reseach.

REFERENCES

[1] BLAS: Basic Library of Algebraic Subroutines. http://www.netli b.org/blas/index.html . 2001.

[2] DARPA Adaptive Computing Systems. http://www.darpa.mil/it o/reseach/acs/projeds.html . 2001

[3] Vedor Signa Image Processng Library (VSIPL). http://www.vsipl.org . 2001.

[4] Seehttp://microsys6.engr.utk.edu/~bouldin/darpal

[5] Seehttp://www.cs.utk.edw/sinrg/

[6] Arndd, Dorian C. and Dongarra, Jadk. “ The NetSolve Environment: Progresing Towards the SeamlessGrid,” 2000
International Conferenceon Parallel Processng (ICPR2000), Toronto Canada, August 21-24, 2000

[7] Banerjee, Prith. et al. “A MATLAB Compil er for Distributed Heterogeneous Reoonfigurable Computing Systems,” Int.
Symp. on FPGA Custom Computing Machines (FCCM-2000) Napa Valley, CA, Apr. 2000.

[8] Bedk, Micah et d. HARNESS: A Next Generation Distributed Virtua Madhine, International Journal on Future Generation
Computer Systems, Elsevier Publ., Volume 15, Number 5/6, 1999.

[9] Compton, K., Cooley, J., Knal, S., and Hauck, S. Configuration Relocation and Defragmentation for FPGAs. IEEE
Sympasium on Field-Programmable Custom Computing Madhines . 2000.

[10] Compton, K. and Hauck, S. Configurable Computing: A Survey of Systems and Software. Northwestern University, Dept.
of ECE Tedhnicd Report. 1999. Northwestern University.

[11] Geidt, A., Begudlin, A., Dongarra, J., Jiang, W., Manchek, R., and Sundarem, V., PVM: A User's Guide and Tutorial for
Networked Parallel Computing MIT Press 1994.

[12] Hauck, S., "The Roles of FPGAs in Reprogrammable Systems," Procealings of the IEEE, vol. 86, no. 4, pp. 615638,
Apr.1998.

[13] Hauck, S. The Future of Recorfigurable Systems. Keynote Address 5th Canadian Conferenceon Field Programmable
Devices. 1998. Montred.

[14] Heidelberger, P. and Trivedi, K. S., "Analytic Queueing Models for Programs with Internal Concurrency," |IEEE
Transactions on Computers, vol. C-32, no. 1, pp. 73-82, Jan.1983.

[15] Hsiung, P.-A., "CMAPS: A Cosynthesis Methodology for Application-Oriented Parall el Systems," ACM Transactions on
Design Automation of Eledronic Systems, vol. 5, no. 1, pp. 51-81, Jan.2000.

[16] JHDL. JavaHardware Description Language. http://www.jhdl.org

[17] Levine, Ben, "A Systematic Implementation d Image Processng Algorithms on Configurable Computing Hardware."
Master of Science Eledricd Engineaing, The University of Tennessee 1999.

[18] Li, Y., Cdlahan, T., Darndl, E., Harr, R., Kurkure, U., and Stockwood J. Hardware-Software Co-Design of Embedded
Reawnfigurable Architedures. Design Automation Conference DAC 2000, 507-512. 2000. Los Angeles, California.

[19] Li, Z., Compton, K., and Hauck, S. Configuration Caching Techniques for FPGA. IEEE Symposium on Field-
Programmable Custom Computing Madhines . 2000.

[20] Natargian, Senthil, "Development and Verificaion d Library Cellsfor Reconfigurable Logic." Master of Science Eledricd
Engineaing, The University of Tennessee 1999.

[21] Natargian, S, Levine, B., Tan, C., Newport, D., and Bouldin, D. Automatic Mapping of Khoros-Based Applicaionsto
Adaptive Computing Systems. MAPLD-99 . 1999. Laurel, MD.

[22] Ong, S.-W., Kerkiz, N., Srijanto, B., Tan, C., Langston, M., Newport, D., and Bouldin, D. Design Flow for Automatic
mapping of Graphicd Programming Appli caions to Adaptive Computing Systems. unknown . 2000.

[23] Gregory D. Peterson and Roger D. Chamberlain, “Paralel Applicaion Performance in a Shared Resource Environment.”
IEE Distributed Systems Engineaing Journal, 3(1):9-19, March 1996.

[24] Shetters, Carl Wayne, " Scheduling Task Chains on an Array of Reanfigurable FPGAS." Master of Science University of
Tennesee 1999

[25] Snir, M., Otto, S., HussLederman, S., Walker, D., and Dongarra, J., MPI: The Complete Reference, 2nd ed. MIT Press
1998.

[26] Thomasian, A. and Bay, P. F., "Analytic Queueing Network Models for Parall el Processng of Task Systems," IEEE
Transactions on Compuiters, vol. C-35, no. 12, pp. 1045-1054, Dec.1986.

[27] M.J. Wirthlin and B.L. Hutchings, “A Dynamic Instruction Set Computer.” In Procealings of the IEEE Symposium on
FPGAs for Custom Computing Machines, IEEE Computer Society Press April, 1995.

[28] Wolf, W., "Hardware-Software Codesign of Embedded Systems," Procealing of |EEE, vol. 82, no. 7, pp. 967-989,
July1994

[29] Walf, W., "Objed-Oriented Cosynthesis of Distributed Embedded Systems," ACM Transactions on Design Automation o
Eledronic Systems, vol. 1, no. 3, pp. 301-314, July1996.

