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ABSTRACT 
 

High Performance Computers (HPC) provide dramatically improved capabilit ies for a number of defense and 
commercial applications, but often are too expensive to acquire and to program.  The smaller market and customized 
nature of HPC architectures combine to increase the cost of most such platforms.  To address the problems with high 
hardware costs, one may create more inexpensive Beowolf clusters of dedicated commodity processors.  Despite the 
benefit of reduced hardware costs, programming the HPC platforms to achieve high performance often proves 
extremely time-consuming and expensive in practice.  In recent years, programming productivity gains come from 
the development of common APIs and libraries of functions to support distributed applications.  Examples include 
PVM, MPI, BLAS, and VSIPL.  The implementation of each API or library is optimized for a given platform, but 
application developers can write code that is portable across specific HPC architectures. 
The application of reconfigurable computing (RC) into HPC platforms promises significantly enhanced performance 
and flexibility at a modest cost.  Unfortunately, configuring (programming) the reconfigurable computing nodes 
remains a challenging task and relatively lit tle work to date has focused on potential high performance 
reconfigurable computing (HPRC) platforms consisting of reconfigurable nodes paired with processing nodes.  This 
paper addresses the challenge of effectively exploiting HPRC resources by first considering the performance 
evaluation and optimization problem before turning to improving the programming infrastructure used for porting 
applications to HPRC platforms. 
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1. INTRODUCTION 
High Performance Computers (HPC) provide dramaticall y improved capabiliti es for a number of defense 

applications, but often are too expensive to acquire and to program.  The smaller market and customized nature of 
HPC architectures combine to increase the cost of most such platforms.  To address the problems with high 
hardware costs, one may create more inexpensive “Beowolf” clusters of dedicated commodity processors.  Despite 
the benefit of reduced hardware costs, programming the HPC platforms to achieve high performance often proves 
extremely time-consuming and expensive in practice.  In recent years, programming productivity gains come from 
the development of common APIs and libraries of functions to support distributed applications.  Examples include 
PVM [11], MPI [25], BLAS [1], and VSIPL [3].  The implementation of each API or library is optimized for a given 
platform, but application developers can write code that is portable across specific HPC architectures. 

The application of reconfigurable computing (RC) into HPC platforms promises significantly enhanced 
performance and flexibil ity at a modest cost.  Unfortunately, configuring (programming) the reconfigurable 
computing nodes remains a challenging task and relatively littl e work to date has focused on potential HPRC 
platforms consisting of reconfigurable nodes paired with processing nodes.  This paper addresses the challenge of 
effectively exploiting HPRC resources by addressing the performance evaluation and optimization problem as well 
as improving the programming infrastructure used for porting applications to HPRC platforms.  We describe our 
approach to this problem domain by first discussing HPRC architectures, including the implications of combining 
multiple computational nodes with reconfigurable computing elements.  Next, we discuss performance modeling 
techniques used to assess the most appropriate means of exploiting the available resources.  Finall y, we consider 
programming issues and existing design environments for high performance computing and reconfigurable 
computing before discussing future work. 
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2. HPRC ARCHITECTURES 
As shown in Figure 1, a High Performance Reconfigurable Computing (HPRC) platform consists of a number of 

computing nodes connected by an interconnection network (the architecture can be a switch, hypercube, systolic 
array, etc.), with some or all of the computing nodes having reconfigurable computing (RC) element(s) associated 
with them.  Additionally, an optional configurable network can be constructed to connect the RC elements for 
synchronization, data exchange, etc.  This optional configurable network could vastly improve performance for 
applications such as those that require data exchange for barrier synchronization events. 
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Figure 1 High Performance Reconfigurable Computer (HPRC) Architecture 

Research in the architecture, configuration, and use of RC systems is ongoing.  Efforts to date have primarily 
focused on single computing nodes with one or more RC elements, much of which has been supported by the 
DARPA Adaptive Computing Systems (ACS) program [2].  Even these basic building blocks of the HPRC platform 
remain a challenging task to efficiently configure and use.  Some of the major challenges involve FPGA 
reconfiguration latency, hardware/software codesign, and sub optimal design tools.  Often, the design time necessary 
to map to the RC system, the time consumed during reconfiguration, or both outweigh any performance advantages 
achieved by executing on the RC system. 

2.1. Potential Parallelism 
The HPRC platform is designed to exploit multiple types and levels of potential parallelism often found in DSP, 

simulation, numeric algorithms and other computationally intensive applications.  Data or functional parallelism can 
often be exploited at different levels of abstraction, from concurrent software tasks executing on different processors 
to multiple functional units contained within a processor.  Parallel and distributed computing research has long 
shown the advantages of exploiting parallelism via higher-level concurrent software for a wide range of 
applications.  Recent research in the area of reconfigurable computing demonstrates performance advantages for 
many of the same applications.  The reconfigurable hardware implementations in many cases have shown significant 
speedup over software-only solutions [17, 20-22, 24]. 

As shown in Figure 2, at a high level of abstraction there is coarse grain parallelism between the software tasks 
executing on the compute nodes.  Each node could include multiple processors in a shared memory configuration to 
support multiple threads or processes; the interconnected compute nodes can also support distributed memory 
parallel processing.  Beneath the high-level software tasks, there are parallel hardware and software tasks executing 
on the associated compute nodes and RC element(s).  At the next level in the hierarchy, there are at least two 
options: multiple hardware tasks executing on a plurali ty of RC elements or bit-wise parallel operations within an 
RC element.  Hence, we can support functional and data parallelism at a variety of levels of granularity in order to 
provide the maximum performance for a given application.  We will discuss parallel processing techniques for the 
“software parallelism” achieved with multiple processors before considering the “hardware parallelism” provided by 
reconfigurable combinational logic embedded in RC elements. 
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Figure 2 Hierarchy of Parallelism Exploited by the HPRC Platform 

2.2. Software Parallelism 
The primary thrust of the parallel processing field has been to dramatically improve performance by extracting 

concurrent tasks that naturally exist in applications such as simulations, signal processing computations, numeric 
algorithms, etc.  For a given program, functional parallelism is exploited by creating software tasks to concurrently 
perform separate, but related, tasks.  Similarly, data parallelism is exploited by replicating software tasks that 
operate on subsets of the problem.  Parallel and distributed processing applications exploit both of these techniques, 
although achieving high performance depends on carefully crafting an algorithm and its implementation to best use 
the available processors, memory hierarchy, and interconnection network.  Despite the practical difficulties, 
approaches to achieving high performance parallel software constitutes a relatively mature field, with a broad range 
of applications accelerated by HPC platforms. 

2.3. Hardware Parallelism and Virtualization 
RC systems can be thought of as a “demand-paged” hardware resource similar to software cache.  Within the RC 

system, there are many different types of computations, each having a separate mapping to the reconfiguration logic.  
This idea of virtual hardware is similar to the virtual memory in today’s computers [12].  Taking this idea of virtual 
hardware a step further, different phases of an algorithm could have mappings to just a portion of the FPGA.  
Operating like a hardware cache, multiple mappings are co-resident in the FPGA and can interact individuall y with 
the microprocessor.  The set of mappings that are co-resident can vary over time depending on the demands of the 
computation algorithm.  A host of issues pertaining to the most appropriate architecture, memory hierarchy, 
computational model, and runtime infrastructure must be considered to fully exploit this approach.  The RC system 
can then be modeled as a variation on the well-known Harvard Architecture as shown in Figure 3. 
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Figure 3 Harvard Architecture with Hardware Cache 

During the execution of an application, different function mappings will be needed in the RC element.  When the 
required functions exceed the available space in the RC element some or all of the function mappings will need to be 
replaced.  Hardware cache replacement issues such as these share similarities to software caches but have some 
additional complexities.  RC systems are more complicated because the integrity of the I/O and routing of all 
configurations simultaneously in a device must be maintained.  When a configuration block is mapped into a device, 
there are three fundamental types of mappings: direct mapped, fully associative, and set associative.  If a 
configuration is direct mapped, the block can only be configured into one position of the device.  In fully or set 
associative, the configuration block can be positioned anywhere in the device or in a limited set of positions 
respectively.  Additionally, in FPGAs, there is a spatial dependency due to the routing and I/O required, further 
complicating the mapping process.  Different positioning of a function may require more or less routing resources.  
Even if we limit ourselves to direct mapping, we have to ensure that configurations do not overlap or create 



destructive mappings.  In either of the associative types of mappings, some run-time mapping will li kely be 
necessary.  Some of the work to date is discussed in [9, 10, 12, 13, 19]. 

By using RC elements as virtual or multi-mode hardware, fewer resources are required for an application since 
the RC units can be dynamically reconfigured and reused to implement multiple functions over the application’s 
li fetime.  Additionally, the only limitation on the number of possible configurations or mappings in virtual hardware 
implementation is the storage space for the configurations.   

3. PERFORMANCE MODELS 
Performance models can prove to be tremendously useful in assessing the effectiveness in exploiting the 

available computational resources.  In order to support programming HPRC resources, we first consider 
performance modeling approaches and their accuracy.  We can then employ these modeling approaches to better 
understand the tradeoffs in mapping applications to HPRC resources as well as the most effective ways of doing so.  
Some examples include determining the best computational granularity, decomposition of tasks and data, number 
and types of processors, and load balancing techniques.  We consider queueing models, analytic models, and 
simulations for evaluating the performance of HPRC resources and applications. 

3.1. Queueing Models 
An exact queueing network approach to modeling applications with internal concurrency quickly results in an 

explosion in the size of the state space [14].  In their paper on Analytic Queueing Network Models [26], Thomasian 
and Bay present a recursive algorithm to compute state probabiliti es for directed acyclic graphs or DAGs.  The 
algorithm uses a hierarchical model based on a Markov chain at the higher level to compute state probabiliti es and 
an analytic solution at the lower level to compute transition rates among the states of the Markov chain. 

A queueing network (QN) can also be used to model the computing system when analyzing the performance of 
an application.  Devices in the system such as CPU’s, disks, communication links, etc. belong to D categories.  The 
processing requirements of a given task are represented by their service demands, which can vary depending on the 
particular device to which it is assigned.  In one model [26], the task system is specified as an 8-tuple, { T, [<•], P, Z, 
Y, R, A, S} whose definitions are given in Table 1.  An example task graph and corresponding Markov chain is given 
in Figure 4 and Figure 5 respectively. 

A broad range of applications can be represented with such an acyclic task graph.  Aperiodic algorithms trivially 
can be represented with a DAG, while iterative algorithms can be represented with a DAG for each iteration 
executed by the application. 

 

Table 1 Task System Model Definitions 

Symbol Definition 
T = (T1, …, Tl) The set of tasks to be executed 
[<•] A partial order defined on T specifying precedence constraints 
P = [pij] I x J matrix where pij is the probabilit y that task Tj is executed after task Ti 
Z = [Zid] I x D matrix where Zid is the processing required by Ti at device type d 
Y = [Y ij] I x J matrix specifying the amount of data communication between task Tj and task Ti 
R = [Ri] The passive resources required by task Ti 
A = [A ij] I x J matrix denoting the allocation constraints in a multiprocessing system where J is 

the number of processing nodes; Aij = 1 if task i can be run on node j and Aij = 0 
otherwise 

S The system scheduler 



1

2 3

6

7

4 5

 

Figure 4 Task Graph for Parallel Application 
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Figure 5 Markov Chain for Task Graph 

The primary performance measures of interest are the mean completion time for the overall task system C, the 
individual task initiation and completion times, Ii and Ci, and the task execution time Ei = Ci - Ii .  Other performance 
measures such as device utilization, queue lengths, etc. can be derived from the state probabilities of the Markov 
chain.  The standard method to compute the mean cycle time with respect to a reference state R, is [26]: 

∑=
S

RS SMvC )(  

where, M(S) is the mean residence time in each state and vRS is the mean number of visits to all other states S.  This 
method requires the solution of a set of linear equations corresponding to the embedded Markov chain.  An 
alternative solution method proposed by Thomasian and Bay takes advantage of the fact that since the task graph is 
acyclic, the corresponding Markov chain is also acyclic.  Therefore, the Markov chain can be generated in a breadth-
first or level-by-level manner.  The computation of state probabilities at each level is possible by solving the local 
balance equations with respect to the previous level.   

From [26] the completion time of a task is computed by weighting the delays incurred in completing states.  
Given that R- denotes all states preceding R, the mean path delay from the initial state to the completion of state R is 
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where bR(S) is the branching probability and p(R) is the probability of reaching state R from the initial state 

∑
−∈

=
RS

R SbSpRp )()()(  

Unnormalized state probabilities can also be computed level-by-level [19]: 
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where R- is the set of immediate predecessors of R, and TR(S) is the transition rate from S and R.  Given that Aij 
denotes all states in which Ti is active: 
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With these results, we can derive the execution time for each of the tasks comprising the application task graph.  
We can determine which tasks are bottlenecks to the computation, consider the addition of extra processing 
elements, and assess the impact of idle times. 

3.2. Analytic Models 
Analytic models have been employed to describe the performance of parallel applications executing on shared, 

heterogeneous networks of workstations [23].  In the case of synchronous iterative (or multiphase) algorithms, a 
simple, accurate model we can use has the following form for P processors, I iterations, and execution times for the 
serial, parallel, and parallel processing overhead given: 
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The η term is used to represent load imbalance, background load, or the effects of different processor speeds.  
This analytic performance model yields accurate runtime predictions for a variety of applications executing on 
various heterogeneous networks of workstations.  A generalization of this approach to support any directed, acyclic 
task graph as above can be easily completed for modeling the iterations of a multiphase or an aperiodic algorithm.  
Similarly, communications costs can be included as additional task graph vertices, with modeling techniques like 
those employed in [23]. 

Note that the queueing and analytic modeling results discussed above, although derived for applications 
executing on parallel processors, could be used to represent applications executing with additional reconfigurable 
hardware as well.   

3.3. Simulation Models 
Although queueing and analytic models provide a powerful mechanism for representing application behavior, the 

size of the problem or the behaviors of interest may not be easily represented or solved with such models.  In such 
cases, simulation is often used.  Although a much broader class of problems can be considered with simulation, the 
results can be thought of as samples from a random process, so a number of simulation runs are needed to develop 
confidence in the results.  The mathematical form resulting from solving queueing or analytic models enables a 
designer to assess the sensitivity to a parameter or project the result of a different parameter value.  With simulation, 
this is very difficult to do.  Consequently, we do not employ simulation as a performance evaluation tool for 
programming HPRC resources.  The use of simulation is used to functionally verify configurations as well as to 
validated the modeling techniques in the absence of empirical results. 

4. PROGRAMMING ISSUES 
Programming of parallel and distributed systems remains challenging but many tools and libraries are available 

to assist the developer such as PVM [11], MPI [25], BLAS [1], and VSIPL [3].  The HPRC platform presents 
additional complexities to the programming task in a distributed environment.  In addition to partitioning and 
balancing tasks across computing nodes, at each node hardware/software partitioning decisions are necessary for the 
RC element.  If the RC board is populated with more than one FPGA unit, then decisions about the hardware 
partitioning across the multiple devices must be made.  Similarly, functionality can be temporally partitioned with 



multiple, cooperating configurations on the RC elements.  Once the partitioning decisions are made, overhead and 
communication costs must be analyzed.  Mapping a given application onto an HPRC platform requires parallel 
processing, hardware design, and system design capabiliti es.  We discuss parallel and distributed software design 
environments, hardware configuration design environments, and system level hardware/software co-design 
environments to support HPRC applications development. 

4.1. Parallel and Distributed Processing Design Environments 
Much research has been invested in studying the performance improvements gained by the parallel execution of 

software tasks.  When applications are partitioned into multiple tasks to potentially be executed on multiple 
processors or machines, vehicles are needed for determining the optimal partitioning, scheduling and mapping the 
task sequence, mapping and distributing the data set, and communicating between concurrent tasks.  Previous work 
on developing packages, libraries, and programming environments helped with application portabili ty, reuse, and 
performance.  PVM [11], MPI [25], BLAS [1], and VSIPL [3] are good examples. 

The University of Tennessee received a grant from the National Science Foundation to develop the Scalable 
Intracampus Research Grid (SinRG) [5] to develop the software, networking, and programming infrastructure 
necessary to support clusters of machines to execute parallel applications with minimal user involvement or 
intervention, in contrast to most parallel processing environments that force the user to have detailed knowledge of 
the processing environment.  The NetSolve [6] middleware project targets the development of a simple software 
interface to the parallel processor.  Similar work on HARNESS [8] focuses on distributed virtual machines and 
dynamic reconfiguration issues.  By leveraging these efforts to develop common software development 
environments for parallel applications, we can reduce the difficulties associated with effectively employing parallel 
processing applications, thus helping in the use of HPRC resources. 

4.2. Hardware Configurations Design Environments 
Reconfigurable computers bring together aspects of both hardware and software systems.  Not surprisingly, 

debate rages about the best design languages, methodologies, and tools for reconfigurable computing systems.  
Many of the same issues and arguments concerning systems design and hardware/software codesign are applicable. 

Most development efforts to map applications onto reconfigurable computers uses VHDL or Verilog for 
capturing the design, typically at the register transfer level.  In doing so, hardware designers can use the same design 
capture, simulation, and synthesis languages and tools already used for ASIC development.  In practice, the 
productivity from directly using HDLs lags behind industry needs.  Designers write much of the HDL code at RTL, 
and too often do not employ language constructs such as VHDL generics, configurations, and generate statements to 
create portable, flexible designs.  In addition, the synthesis tools provide roughly equivalent capabili ty for FPGAs as 
with ASICs, enabling the reuse of much of ASIC design flows and tools. 

The same domain specific attributes that make hardware description languages effective for designing electronic 
systems prove to be a significant limitation to the widespread adoption of VHDL or Verilog for capturing designs 
intended for reconfigurable computers.  Software and systems engineers are not famili ar with these hardware 
description languages and resist using them. 

At the system design level, a number of proposed extensions to C or C++ have been forwarded by various 
companies to address behavioral design.  Because C/C++ is widely used by systems engineers to develop system 
prototypes or executable specifications, it is hoped providing a facili ty to develop hardware designs in some C/C++ 
dialect will improve productivity and bring systems and hardware engineers closer together.  Adoption of a C/C++ 
dialect potentially will potentially enable a much larger pool of designers to describe hardware because C/C++ users 
dwarf the HDL user population.  The amount of infrastructure required with these C/C++ extensions may approach 
or even exceed that of using HDLs. 

In an attempt to leverage the surging popularity of the Java programming language, as well as its support for 
code portabilit y and for reuse via object-oriented facilities, researchers at BYU developed JHDL [16].  The JHDL 
approach exploits the explosion in software development tools for Java and the much larger population of Java 
programmers to ease in the general adoption of reconfigurable computing.  JHDL lowers many of the barriers to 
entry for potential developers, and significantly simplifies the mapping of functionality between hardware and 
software.  Nonetheless, performance limitations for Java hinder its adoption for high-performance applications. 

Researchers at The University of Tennessee developed a Khoros-based design environment that maps “glyphs” 
representing functional blocks to synthesizable VHDL that results in configuration data targeting different FPGA 
architectures or multiple FPGA-based reconfigurable computers [4].  Using this system for image processing 



applications, a 100X design productivity improvement was demonstrated.  Similar research at Northwestern 
University addresses design in MATLAB for reconfigurable computers [7]. 

4.3. System Design Environments 
For HPRC systems, the task of hardware/software partitioning is complicated because the hardware and software 

are interdependent, making it diff icult to make a decision about one without affecting the other.  Hardware-software 
partitioning algorithms attempt to meet the design constraints (performance, cost, etc.) by deciding which operations 
will be implemented in software (CPU) and which in special-purpose hardware, in our case, reconfigurable 
hardware.  There are two general styles for co-design partitioning: hardware-oriented and software-oriented [18, 
28].  Hardware-oriented algorithms start with everything in hardware and move some of the operations to software 
until the performance goals are met.  Software-oriented algorithms start with all operations in software and move 
selected ones to hardware. 

The “cost of the system” (design cost, procurement cost, efficiency, performance, etc.), is affected by all phases 
of the co-design process.  The partitioning of processes between hardware and software affects the implementation 
and performance cost of the entire system.  Less than optimal partitioning, either at the high-level software 
application tasks or the hardware/software division at each node, may cause excessive interprocess communication.  
Inefficiencies can delay computation at one or more nodes while other processors sit idle.  High performance 
interconnection networks and customizable interconnects among RC elements can lessen the impact but optimal 
partitioning resulting in a balanced system will have the greatest impact on overall efficiency. 

The use of object-oriented programming languages such as C++ to describe a system’s functionali ty in terms of 
communicating objects naturally supports coarse and fine-grained parallelism.  Wolf [29] conducted research on the 
co-synthesis of embedded systems to partition, schedule, and map the application software and synthesize the 
appropriate hardware.  The algorithm Wolf presents does not partition tasks into smaller sections of code, but it does 
split the variable set of an object across several processing elements.  The algorithm is designed to over-allocate 
hardware to meet rate requirements, then iteratively reduce the system cost function by moving tasks and data to 
new processing elements [29].  These techniques in conjunction with the tools and libraries already developed for 
distributed systems can be leveraged in the development of a programming paradigm for the HPRC platform. 

Another research effort at the Institute of Information Science in Taiwan has produced a method for 
programming general-purpose parallel systems.  CMAPS, a system-level co-synthesis methodology for general-
purpose parallel systems, targets a general parallel system [15]. By interleaving the modeling and synthesis phases, 
the CMAPS tool is able to explore the interaction between hardware and software. The CMAPS tool is used to 
define specifications with a Problem Graph using elementary problems from a Problem Database.  The CMAPS 
tool then maps the graph into an initial solution, which then can be transformed into hardware and software models.  
These models are analyzed and inferior mappings are eliminated to decrease the complexity of synthesis and 
produce the best solution.  After the scheduling algorithm is chosen, a co-simulation of hardware and software is 
performed to confirm results. 

5. CONCLUSIONS 
High Performance Reconfigurable Computing promises to cost-effectively leverage the benefits of both high 

performance computing and reconfigurable computing.  The potential impact of high performance reconfigurable 
computing cannot be overstated; embedded and computer systems will never be the same.  In the future, 
reconfigurable computing will see the widespread adoption of the co-processing model in general computer 
platforms.  The tremendous growth in gate capacity will make reconfigurable processing units attractive additions to 
support platform-based design and product customization.   

Future generations of processors will include reconfigurable logic units as functional units in processors as well .  
Transmeta’s Crusoe processor support for the emulation of other instruction set architectures introduced the notion 
of morphable computing to many; this trend will continue by enabling dynamic instruction set architecture 
computers [27]. 

The performance evaluation techniques presented here will help designers to effectively exploit the potential 
benefits of HPRC platforms.  Ongoing research wil l validate these approaches for reconfigurable computing 
applications, thus enabling performance predictabili ty for applications on HPRC platforms.  The design 
environments for the software, hardware configurations, and overall system remain as a critical enabling technology 
to help make HPRC applications economically feasible. 
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