
Keywords: Analytical Performance Models, Perfor-
mance Analysis, Field Programmable Gate Arrays (FPGA),
Reconfigurable Computing, High Performance Computing,
Beowolf Clusters

Abstract
The integration of methodologies and techniques from

parallel processing or High Performance Computing (HPC)
with those of Reconfigurable Computing (RC) systems
offers great potential for increased performance and flexibil-
ity for a wide range of computing problems. High Perfor-
mance Computing architectures and Reconfigurable
Computing systems have independently demonstrated per-
formance advantages for applications such as digital signal
processing, circuit simulation, and pattern recognition. By
exploiting the near “hardware specific” speed of Reconfig-
urable Computing systems in a Beowolf cluster there is
potential for significant performance advantages over other
software-only or uniprocessor solutions. In this paper we
present our initial results for an analytical modeling frame-
work for High Performance Reconfigurable Computing sys-
tems.

INTRODUCTION
High Performance Computing or HPC encompasses

vector supercomputers, massively parallel processors
(MPPs), networks of workstations (NOWs), and other archi-
tectures configured to work collectively on a common prob-
lem. For our purposes, we will narrow our focus of HPC
topologies to the distributed memory, MIMD class. Recon-
figurable Computing or RC is the combination of reconfig-
urable logic with a general-purpose microprocessor. The
architectural intention is to achieve hardware-like perfor-
mance with software-like flexibility. In RC architectures, the
microprocessor performs those operations that cannot be
done efficiently in the reconfigurable logic such as loops,
branches, and memory accesses, while computational cores
are mapped to the reconfigurable hardware for better perfor-
mance [13].

High Performance Reconfigurable Computing or
HPRC is the combination of architecture ideas from HPC
and RC. As shown in Figure 1, HPRC consists of a number
of distributed computing nodes connected by some intercon-

nection network (the network can be a switch, hypercube,
systolic array, etc.), with some or all of the computing nodes
having RC element(s) associated with them. The HPRC plat-
form will potentially allow users to exploit the performance
speedups commonly achieved in parallel systems in addition
to the speedup offered by reconfigurable hardware coproces-
sors. Many applications such as image or signal processing
algorithms and various simulation algorithms stand to bene-
fit from the potential performance of this architecture.

An additional configurable network connecting the RC
elements offers further performance advantages for many
applications such as discrete event simulation. The addi-
tional network would provide a less inhibited route for syn-
chronization, data exchange, and other communications
between processing nodes. Research by Chamberlain [10,
27, 28], Reynolds et al. [32, 33, 34], and Underwood et al.
[36] all confirm the performance benefits of a specialized
configurable network for applications with barrier synchro-
nization events or applications requiring the exchange of
large amounts of data.

As individual platforms for computing, HPC and RC
are challenging enough to program and utilize effectively.
The combination of these powerful domains will require the
development of new analysis and design tools. A perfor-
mance modeling framework with models describing this new
architecture will help not only in understanding and exploit-
ing the design space but will also serve as a building block
for many of these tools. HPRC system performance is
affected by architectural decisions such as number of nodes,
number of FPGAs, FPGA size, heterogeneity, and network
performance. With all the potential permutations, the design

Analytical Modeling for High Performance Reconfigurable Computers

Melissa C. Smith and Gregory D. Peterson
The University of Tennessee, Department of Electrical and Computer Engineering

414 Ferris Hall
Knoxville, TN, USA 37996-2100

{smithmc, gdp}@utk.edu

Figure 1 High Performance Reconfigurable
Computer (HPRC) Architecture

Config-
urable
ICN

ICN
Compute Node

RC Board

Compute Node

RC Board

Compute Node

RC Board

Compute
Node

RC Board

Compute Node

RC Board

Compute
Node

RC Board

space for HPRC is extremely large. Without a modeling
framework to assist with the analysis of these issues, trade-
offs cannot be effectively analyzed potentially resulting in
grossly inefficient use of the resources.

Given these observations, it is evident that a mathemat-
ical modeling framework is a necessary tool for analyzing
the complex interaction of design issues and performance
metrics for HPRC. Although substantial performance analy-
sis research exists in the literature with regard to High Per-
formance Computing (HPC) architectures [7, 8, 11, 17, 20,
24, 27, 28, 29, 30, 31, 35], the analysis of these architectures
working together has received little attention to date.

The development of a modeling framework for a com-
plex architecture such as HPRC presents several challenges
and questions which will need to be addressed: modeling
communication time (node-to-node, processor-to-RC unit,
and RC unit-to-RC unit), modeling computation time (soft-
ware in processor and firmware in RC unit), modeling setup
costs (application setup, RC unit configuration, and network
configuration), and modeling load imbalance (application
tasks or data imbalance and hardware versus software imbal-
ance).

ARCHITECTURE BACKGROUND AND
PERFORMANCE METRICS

Reconfigurable Computing
Research has shown that many of today’s computation-

ally intensive applications can benefit from the speed offered
by application specific hardware co-processors, but for
applications with multiple specialized needs, it is not feasi-
ble to have a different co-processor for every specialized
function. Such diverse applications stand to benefit the most
from the flexibility of Reconfigurable Computing (RC)
architectures since one RC unit can provide the functionality
of several ASIC co-processors in a single device. Several
research groups have demonstrated successful RC architec-
tures [9, 14, 15, 18, 19, 21, 22, 23, 25, 37, 38].

There are many RC systems available from companies
such as Annapolis Microsystems [1], Nallatech [5], Virtual
Computer Corporation [6], and research organizations such
as University of Southern California’s Information Sciences
Institute (ISI) [21], The Chinese University of Hong Kong
[23], and Carnegie Mellon University [16, 26]. The Wild-
force and Firebird units from Annapolis Microsystems and
the SLAAC units from ISI are all PCI-bus cards with
onboard memory. The Pilchard architecture developed by
The Chinese University of Hong Kong interfaces through the
memory bus for closer coupling with the processor. The Pip-
eRench reconfigurable fabric from Carnegie Mellon is an
interconnected network of configurable logic and storage
elements which uses pipeline reconfiguration to reduce over-
head which is one of the primary sources of inefficiency in
other RC systems.

High Performance Reconfigurable
Computing

The proposed HPRC platform consists of a system of
RC nodes connected by some interconnection network
(switch, hypercube, array, etc.). Our studies will focus on
Beowolf Clusters of workstations populated with RC units.
Each of the RC nodes may have one or more reconfigurable
units associated with them. This architecture as stated before
provides the user with the potential for more computational
performance than traditional parallel computers or reconfig-
urable coprocessor systems alone.

The HPRC architecture offers many architecture
options. Starting with the roots of HPC, there are many net-
work and processor considerations to choose from which
alone make performance analysis complicated and interest-
ing. With the additional options available for RC such as the
coupling of reconfigurable hardware to the processor, num-
ber of reconfigurable units, size of FPGA(s), dedicated inter-
connection network, and others, the analysis problem
becomes enormous. Understanding these issues and how
they affect the overall system performance is vital in exploit-
ing this potentially powerful architecture.

Speedup and Efficiency
HPC performance is commonly measured in terms of

speedup and efficiency. The basic definition for speedup in
HPC is the ratio of the execution time (R) of the best possible
serial algorithm on a single processor to the parallel execu-
tion time of the parallel algorithm on an m-processor parallel
system:

(EQ 1)

Efficiency is defined as the ratio of speedup to the num-
ber of processors, m:

(EQ 2)

PERFORMANCE EVALUATION, ANALYSIS
AND MODELING

Overview
To effectively use the proposed HPRC architecture, we

must be able to analyze design trade-offs and evaluate the
performance of applications as they are mapped onto the
architecture. Performance models are commonly used tools
for analyzing and exploiting available computational
resources in HPC environments. Some commonly used mod-
eling techniques in the analysis of computing systems are
analytic models, simulations, and measurements. The best
suitable modeling approach depends on the required accu-
racy, level of complexity, and analysis goal of the model. We
can employ one or more of these modeling approaches to

S m() R 1()
R m()
-------------=

Eff m() S m()
m

------------- R 1()
m R m()⋅
-----------------------= =

better understand the trade-offs in mapping applications to
HPRC resources as well as the most effective ways of doing
so.

To develop a representative modeling framework for
HPRC we will begin by investigating and characterizing the
RC architecture and expanding this model to multiple nodes
representative of an HPRC platform. In the RC environment,
the focus will be on FPGA configuration, processor to FPGA
communication, data distribution between FPGA and pro-
cessor, memory access time, computation time in hardware
and software, and other RC application setup costs. Next, we
apply this knowledge to the multi node environment building
on the earlier load balance work by Peterson [29]. We will
develop an analytic modeling methodology for determining
the execution time of a synchronous iterative algorithm and
the potential speedup. Synchronous iterative algorithms,
present in a large class of parallel applications, are iterative
in nature and each iteration is separated from the previous
and subsequent iterations by a synchronization operation.
Examples of synchronous iterative algorithms include syn-
chronous simulations, Gaussian elimination, and many
image processing and data classification algorithms.

What follows below is the first iteration of the model
using our available hardware and firmware for parameter
measurement and model validation. Table 1 lists the symbols
and definitions that will be used in the following sections.

Reconfigurable Computing Node Analysis
Our performance model analysis will begin with a sin-

gle RC node running a synchronous iterative algorithm.

These restrictions will allow us to investigate the interaction
between the processor and RC unit.

First, we will assume we have a segment of an applica-
tion that has I iterations and all iterations are roughly the
same as shown in Figure 2. The RC unit has at least one
FPGA (there may be other reconfigurable devices which
provide control functions) and tasks can potentially execute
in parallel in hardware (RC unit(s)) and in software on the
processor. We should point out that the hardware and soft-
ware task trees can be arbitrarily complex, however Figure 2
shows a simple hardware/software tree structure. Addition-
ally, hardware can be reused within a given iteration if the
number of tasks or size of the task exceeds that of the avail-
able FPGAs.

For a synchronous iterative algorithm, the time to com-
plete a given iteration is equal to the time for the last task to
complete either in hardware or software as shown in Figure
3. For each iteration of the algorithm, there are some opera-
tions which are not part of the kernel to be accelerated and
are denoted tserial,i. Other overhead processes that must
occur such as configurations and exchange of data are
denoted toverhead,i. The time to complete the kernel tasks

executing in software and hardware are tSW,i and tHW,i.

respectively. For I iterations of the algorithm where n is the
number of hardware tasks, the runtime, RRC, can be repre-
sented as [29]:

(EQ 3)

To simplify the math analysis, we will make a couple of
reasonable assumptions. First, we will assume that each iter-
ation requires roughly the same amount of computation
allowing us to remove the reference to individual iterations
in Eq. 3. Second, we will model each term as a random vari-
able and use their expected values. Thus we define tserial as
the expected value of tserial,i and toverhead as the expected

Table 1 Symbols and Definitions

Symbol Definition

Tcomm(c) Communication time

NC
Total number of messages per processor

t Message latency

Bi
Size of message i

η Network bandwidth

ρ
Load Imbalance factor between host nodes
in a multi-node system

n Number of hardware tasks

r
Number of hardware tasks not requiring
new configuration

d
Number of hardware tasks not requiring
new data set

I Number of iterations

m Number of workstations

σ
Hardware acceleration factor for node k in
multi-node system

β RC node background load factor

Figure 2 Synchronous Iterative Algorithm

Setup

Config
FPGA(s)

Xfer
Data

SW
task

Xfer
Data

Shutdown

HW
task

HW
task

Iterations

or

Configuration may
not be required on

every iteration

Kernel

Serial

Serial

Iterations

RRC tserial i, max tSW i, max
1 j n≤ ≤

tHW i j, ,[],
 
 

toverhead i,

+

+

i 1=

I

∑=

value of toverhead,i. The mean time required for the comple-

tion of the parallel hardware/software tasks is represented by
the expected value of the max(tSW, tHW). Finally, we will

assume that each of the random variables are independent
and identically distributed (iid). We can then write the run
time as:

(EQ 4)

If the iterations are not iid, we must retain the first form
of Eq. 4 and the math analysis is more cumbersome but the
same general approach used in the following analysis can be
utilized.

The execution time for hardware tasks should be deter-
ministic and related to the clock frequency of the hardware.
We will assume that all concurrent or parallel hardware tasks
are the same. Also, we will initially assume that the hard-
ware and software tasks do not overlap (we will relax this
restriction in later versions of the model). Therefore we can
represent the expected hardware execution time with the
mean value, tHW, and simplify the equation. The execution
time of the software tasks will depend not only on the speed
of the processor but also on the background load of the sys-
tem. We will represent this background load as β and repre-
sent the expected completion time of the software on a
dedicated processor as tSW. The expected execution or runt-

ime on the RC system then becomes:
(EQ 5)

If there is no background load on the processor, β = 1,
and the equation reduces to a dedicated system. The back-
ground load is normally greater than or equal to 1. If there
are multiple sequential hardware tasks, g, the expected value
becomes:

(EQ 6)

Noting that the total work measured in time for a soft-
ware-only solution is not equivalent to the total work mea-
sured in time on an RC system solution, we introduce a
hardware acceleration factor σ to account for the difference.
The acceleration factor is less than or equal to 1. Since the
goal of RC systems is to speed up an application, only tasks
that would be faster in hardware are implemented in hard-
ware. For example, an FFT in software may take longer to
execute than an equivalent implementation in the hardware.
Given the total work that will be completed in hardware and
software on an RC system, we can represent the software-
only run time on a single processor as:

(EQ 7)

The overhead for an RC system consists of the FPGA
configuration time and data transfer time. The configuration
time for the FPGA(s) is (n-r) x tconfig, where r is the number

of hardware tasks not requiring a new configuration. The
time to transfer data to and from the RC unit is (n-d) x tdata,
where d is the number of hardware tasks not requiring a new
data set.

The speedup, SRC, is defined as the ratio of the run time

on a single processor to the run time on the RC node:

(EQ 8)

Using Eq. 8 we can investigate the impact of load
imbalance and various overhead issues on the algorithm per-
formance by varying β, tconfig, tdata, tHW, tSW, r, d, and n.

High Performance Computing
Communication Analysis

Communication delay between workstations in a net-
work is affected by the network topology, communication
volume, and communication patterns. Other research on net-
work performance models report that a simple communica-
tion model that accounts for message startup time and
network bandwidth is adequate [12]. For the total number of
messages per processor, NC, the message latency τ, network

bandwidth η , and size of message Bi, the communication

time can be modeled as [12]:

(EQ 9)

Both τ and η can be approximated from measured val-
ues. It should be noted that in practice, η may not be a con-
stant. The model represented in Eq. 9 is non-preemptive

Figure 3 Reconfigurable Computing Task Completion

Setup Config Data SW

HW

HW

HW

Data Shutdown

Time

Setup Config Data SW

HW

HW

HW

Data Shutdown

Time

RRC Etserial i, E toverhead i,[]

E+ max tSW i, max
1 j n≤ ≤

tHW i j, ,[],
 
 

+

i 1=

I

∑

I tserial E max tSW
max

1 j n≤ ≤
tHW j,[],

 
  toverhead+ +

 
 

=

=

RRC I tserial β tSW⋅() tHW() toverhead+ + +()=

RRC I tserial β tSW⋅() tHW j,

j 1=

g

∑ toverhead+ + +
 
 
 
 

=

R1 I tserial tSW
1
σ
--- tHW

n
∑⋅+ +

 
 
 

⋅=

SRC

R1

RRC

tserial tSW
1
σ
--- tHW

n
∑⋅+ +

tserial β tSW⋅() tHW() n d–() tda ta⋅ n r–() tconfig⋅+[]+ + +

=

=

Tcomm c() τ
Bi

η
-----+

 
 

i 1=

Nc

∑=

(messages are serviced one-by-one) and useful for modeling
clusters connected with contention free networks. We have
conducted some measurements on communication time of
messages between several processors and compared those
measurements to the values predicted by Eq. 9. Results for
two of the measurements are given with the model prediction
in Figure 4.

High Performance Reconfigurable
Computing Multi-Node Analysis

Now that we have a model for a single RC node and an
understanding of the basic HPC issues involved in a set of
distributed nodes, we will turn our focus to expanding the
model for multi-node analysis. An example of the HPRC
architecture was shown in Figure 1. For now, we will not
consider the optional configurable interconnection network
between the RC units in our modeling analysis.

We will again start our performance model analysis
using a synchronous iterative algorithm this time running on
a platform consisting of multiple RC nodes. The restriction
of synchronous iterative algorithms will allow us to investi-
gate the communication and synchronization that occurs
among nodes between iterations. We will begin our model by
restricting our network to a dedicated homogeneous system
where there is no background load (i.e. all nodes are identi-
cal, same processor and same RC system configuration). We
will relax this restriction in future editions of the model.

Again, we will assume we have a segment of an appli-
cation having I iterations that will execute on parallel nodes
with hardware acceleration. Additionally, we will assume
that all iterations are roughly the same as is shown in Figure
5. Software tasks can be distributed across computing nodes
in parallel and hardware tasks are distributed to the RC
unit(s) at each individual node.

For a synchronous iterative algorithm, the time to com-
plete an iteration is equal to the time for the last task to com-
plete on the slowest node whether it be hardware or
software. For each iteration of the algorithm, there are some
calculations which cannot be executed in parallel or acceler-

ated in hardware and are denoted tmserial,i. There are other
serial operations required by the RC hardware and they are
denoted tnserial,i. Other overhead processes that must occur

such as synchronization and exchange of data are denoted t

movhd,i and tnovhd,i for the host and RC systems respectively.
The time to complete the tasks executing in parallel on the
processor and RC unit are tSW,i,k and tHW,i,j,k. respectively.

For I iterations of the algorithm where n is the number of
hardware tasks at node k and m is the number of processing
nodes, the runtime, RP, can be represented as [29]:

(EQ 10)

Again, to make the math analysis more resonable, we
will make a couple of reasonable assumptions. First, we will
assume that each iteration requires roughly the same amount
of computation thus we can remove the reference to individ-
ual iterations in Eq. 10. Second, we will also assume that
each node has the same hardware tasks and configuration
making the configuration overhead for each node the same.
Third, we will model each term as a random variable and use
their expected values. Thus we define tmserial and tnserial as

the expected value of tmserial,i and tnserial,i. Similarly, we
define tmovhd and tnovhd as the expected value of tmovhd,i and

tnovhd,i. The mean time required for the completion of the RC

hardware/software tasks is represented by the expected value
of the maximum tnode,k (1<k<m). Finally, assuming that the
random variables are each independent and identically dis-
tributed (iid), the run time can then be expressed as:

(EQ 11)

We can rewrite the total work at node k in terms of the
average task completion time rather than the maximum and
later multiply by an imbalance factor to account for applica-
tion and background load imbalances. Again assuming the
random variables are iid, we can express the total work
across all m nodes in the HPRC platform as:

Figure 4 Communication Model and Measurements

0

100000

200000

300000

400000

500000

600000

0 8 80 800 8000 80000 800000

Data Size

T
im

e
(u

s) vlsi1-4

Model

vlsi4-6

RP tmserial i, tnserial i, max
1 k m≤ ≤

tSW i k, , max
1 j n≤ ≤

tHW i k j, , ,[],
 
  tmovhd i, tnovhd i,

+ +

+ +

i 1=

I

∑

tmserial i, tnserial i, max
1 k m≤ ≤

tnode i k, ,()

tmovhd i, tnovhd i,

+ +

+ +

i 1=

I

∑

=

=

Rp E tmserial i,[] E tmovhd i,[]

E max
1 k m≤ ≤

tRC i k, , tnserial i, tnovhd i,+ +{ }

+

+

i 1=

I

∑

I tmseria l tmovhd E
max

1 k m≤ ≤
tnode k,()+ +

 
 ⋅

=

=

(EQ 12)

When tasks are divided across the nodes, a load imbal-
ance due to application workload distribution, background or
network heterogeneity exists. We will represent this load
imbalance as ρ. We will assume that the RC system load
imbalance at any node is independent of the others. The
completion time can then be expressed as the average task
completion time within an iteration multiplied by the load
imbalance factor:

(EQ 13)

Combining Eq. 12 and Eq. 13 we can rewrite the maxi-
mum task completion time as,

(EQ 14)

Note that if the load is perfectly balanced or if the algo-
rithm runs entirely in software (n=0), ρ is the ideal value of
1. As the load imbalance becomes worse, ρ increases. If the
algorithm runs entirely on a single node, m=1, ρ is the ideal
value of 1 and the model reduces to a single processor.

Noting that the total work measured in time for a soft-
ware-only solution is not equivalent to the total work mea-
sured in time on an HPRC platform solution, we introduce a
hardware acceleration factor σk to account for the difference
at each node k. Given the total work that will be completed
in hardware and software on an HPRC platform, we can rep-
resent the software only run time on a single processor as:

(EQ 15)

The overhead for the HPRC platform consists of the
FPGA configuration and data transfers as discussed earlier
and the synchronization between the nodes. We will initially
model the time required for synchronization as a logarithmic
growth with the number of nodes [29]. The communication
between nodes can be modeled using Eqn. 9. The speedup,
SP, for the HPRC platform is defined as the ratio of the run

time on a single processor to the run time on m RC nodes:

(EQ 16)

Using Eq. 16 we can investigate the impact of load
imbalance and various other overhead issues on the algo-
rithm performance by varying σk, ρ, tsynch, n, and the vari-

ables of Tcomm(c).

High Performance Reconfigurable
Computing Development Hardware

There are two HPRC clusters that will be available for
development and validation of the model. The Air Force
Research Laboratory in Rome, NY is assembling a “hetero-
geneous HPC” which is a cluster of four Pentium nodes pop-
ulated with Firebird boards [1]. Future plans include
expansion to more nodes. The HPRC cluster at UT consists
of eight Pentium nodes populated with Pilchard boards [23].
Other available hardware for parameter measurements
includes a cluster of Sun workstations, Wildforce, Firebird,
and SLAAC RC boards [21].

Figure 5 Flow of Synchronous Iterative Algorithm for Multi Node

Master
Setup

Config
FPGA(s)

P-P
Data

SW
task

Xfer
Data

HW
task

HW
task

Iterations

Config
FPGA(s)

Config
FPGA(s)

P-P
Data

P-P
Data

SW
task

HW
task

HW
task

Xfer
Data

Master
Shutdown

Synchronization

SW
task

Xfer
Data

HW
task

HW
task

P-RC
Data

P-RC
Data

P-RC
Data

Synchronization

RC-RC & P-P
CommunicationParallel Kernel

Master
Serial

Master
Serial

Iterations

Node
Serial

Node
Serial

Node
Setup

Node
Setup

Node
Setup

Node
Shutdown

Node
Shutdown

Node
Shutdown

twork m E tnode k,[]⋅=

E max
1 k m≤ ≤

tnode k,() ρ E tnode k,[]⋅=

E max
1 k m≤ ≤

tnode k,()
ρ twork⋅

m
--------------------=

R1 I tmserial tSW
1
σk
------ tHW

n
∑⋅+

 
 
 

k 1=

m

∑+⋅=

SP

tmserial tSW
1
σk
------ tHW

n
∑⋅+

 
 
 

k 1=

m

∑+

tmseria l

ρ twork⋅
m

-------------------- tsynch m()2log⋅[] Tcomm c()+ + +

---=

Reconfigurable Computing Model
Validation

We have made basic model parameter measurements
using a sample application for the Wildforce board as a
benchmark. Figure 6 shows plots of the model with the mea-
sured parameters. To validate the execution time prediction
of the model, the benchmark measurements are used with the
developed model to predict the runtime for three signal pro-
cessing demos: a high pass filter, and two version of an auto-
matic target recognition algorithm. From the benchmark, we
have determined the model parameters as shown in Table 2.
The configuration values for CPE0 and PE1 are significantly
different because they are two different Xilinx devices and
are therefore accounted for separately in the model calcula-
tions. For this application the only part of the algorithm con-
sidered as serial is the board configuration and setup. There
is only one iteration therefore I is set to 1. The remaining
unknowns are the values for the total work and the applica-
tion load imbalance.

The total work can be determined from the amount of
work completed by the software task plus the amount com-
pleted by the hardware task. This can be represented in terms
of the number of events to be processed multiplied by the
execution time per event:

(EQ 17)

Where Ne is the total number of events, thwexe is the
hardware execution time per event, and tswexe is the software

execution time. In this particular application, the software
and hardware tasks do not overlap.

Using the denominator of Eq. 8, we can predict the
runtime of the three demo algorithms. The average runtime
of fifty trials on the Wildforce RC system is shown in Table
3 and Figure 7 along with the model predictions. The num-
ber following the algorithm name indicates the input data
size. The value 128 indicates an input data set of 128x128
and similarly the value 256 indicates a 256x256 input data
set.

One possible candidate for the error in the model pre-
diction is our measurement techniques for the model param-
eters. We believe that the measurements have enough
accuracy and the problem with over estimation of the runt-
ime could be in the overhead introduced by the probes.

Another possible error contribution is from the model
methodology and assumptions. Being the first pass at model-
ing the performance of an RC system, the representation for
the total work and application workload balance may be
inaccurate. More studies of different algorithms and systems
will be required to make a final determination on the accu-
racy of this representation.

Finally, issues not represented in the model may be
contributing to the error. System issues such as caching, opti-
mum data packet size, and other optimization techniques

used in operating systems and possibly the RC board API
will need to be investigated.

High Performance Reconfigurable
Computing Model

Again we will use the measured values from the Wild-
force and Firebird experiments for the RC parameters. Fig-
ure 8 shows the speedup curves for the model. As seen in the
figures, the speedup improves with increasing workload for
lower load imbalance values but is inversely impacted by
increasing load imbalance. Model vaildation work for the
complete HPRC model is in progress.

tRCwork Ne thwexe⋅ tswexe+=

Table 2 Model Parameters for Wildforce from
Benchmark Application

Table 3 Runtime Predictions and Measurements
(time in seconds)

benchmark
(usec)

CPE0 535274.96
PE1 257232.82
HW 1250.52
Data 33282.08

Setup (tsw) 68892.34
Serial 40750.46

model prediction average
hipass_128 0.911342 1.313353
hipass_256 1.773769 1.907098
START_128 5.166674 4.597426
START_256 6.175542 6.121883
START20_128 7.253404 8.134971
START20_256 8.292768 8.855299

Figure 7 Comparison of RC Model Prediction with
Measurement Results

0.000000

2.000000

4.000000

6.000000

8.000000

10.000000

12.000000

hipass_128 hipass_256 START_128 START_256 START20_128 START20_256

modelprediction

measurement
(averageof50
trials)

CONCLUSIONS AND FUTURE WORK
The first editions of the RC and HPRC models are pre-

sented including initial parameter analysis and measure-
ments. The parameter measurements for the RC platform
need to be expanded to include tests for determining the
background load parameter. Future work includes parameter
and validation measurements for the multi node environment
as well as further model development for node-to-node com-
munications in networks with contention. Models to predict
the load imbalance factors are currently under development
expanding on the results from Peterson’s work [29]. Also,
cost functions for power and total cost of the system need to
be fully modeled and verified. Finally, as the HPRC platform
applications are developed and studied, the use of the model
for scheduling and load balancing will be demonstrated as a
manual exercise.

While the primary motivation for the development of
the HPRC modeling framework is for performance modeling

of the HPRC platform, the model can also serve as the foun-
dation for task scheduling and load balancing CAD tools. A
specific RC performance related use of the model is for com-
puting performance classification of an RC node. The Net-
Solve [3] and SinRG [4] programs at the University of
Tennessee or other similar projects such as Condor [2] would
potentially find the performace classification capabilities
useful for their tools.

Finally, many parallels can be drawn between the archi-
tecture and design issues encountered in Systems on a Chip
(SoC) design and the HPRC architecture. SoC is a self-con-
tained electronic system residing on a single piece of silicon
as shown in Figure 9. The HPRC modeling framework could
provide vital performance analysis information to the SoC
designer during intital phases of the design process. SoC
processors and memory modules are very similar to the
nodes in an HPRC system and both architectures can also
incorporate reconfigurable units. Also, both architectures

(a)

(b)

Figure 6 Speedup Curves: a) Vary total work by hardware and b) Vary hardware acceleration factor

0

1

2

3

4

5

6

7

8

9

10

5 9 13 17 21 25 29 33 37 41

thw (sec)

S
p

ee
d

up

beta=1 n=1

beta=1 n=2

beta=1 n=4

beta=3 n=1

beta=3 n=2

beta=3 n=4

sigma=9.5

0

2

4

6

8

10

12

14

16

18

5 7 9 11 13 15 17 19 21 23

sigma

S
p

ee
d

up

beta=1 n=1

beta=1 n=2

beta=1 n=4

beta=3 n=1

beta=3 n=2

beta=3 n=4

Figure 8 Speedup Curves: a) Vary number of nodes b) Vary total hardware work and
c) Vary hardware acceleration factor

0

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

nodes

S
p

ee
d

u
p beta=1

beta=2

beta=4

sigma=9.5

0

5

10

15

20

25

30

35

40

45

50

5 9 13 17 21 25 29 33 37 41

thw (sec)

S
p

ee
d

u
p

p=1 n=1

p=1 n=2

p=1 n=4

p=6 n=1

p=6 n=2

p=6 n=4

sigma=9.5

0

5

10

15

20

25

30

35

40

45

0.75 2.75 4.75 6.75 8.75 10.75 12.75 14.75 16.75 18.75

sigma

S
p

ee
d

u
p

p=1 n=1

p=1 n=2

p=1 n=4

p=6 n=1

p=6 n=2

p=6 n=4

(a)

(b)

(c)

have an interconnection network between nodes. Consider-
ing these similarities, the HPRC modeling framework would
also be useful in the area of SoC design.

REFERENCES
[1] Annapolis Microsystems, Available from http://

www.annapmicro.com.
[2] Condor, Available from http://www.cs.wisc.edu/condor/.
[3] NetSolve, Available from http://icl.cs.utk.edu/netsolve/.
[4] SInRG: Scalable Intracampus Research Grid, Available

from http://www.cs.utk.edu/sinrg/index.html.
[5] Nallatech FPGA-centric Systems & Design Services, Avail-

able from http://www.nallatech.com/ .
[6] Virtual Computer Corporation, Available from http://

www.vcc.com/index.html.
[7] Amdahl, G. M. 1967. "Validity of the Single Processor

Approach to Achieving Large Scale Computing Capabili-
ties." In AFIPS Conference Proceedings, 483-485.

[8] Atallah, Mikhail J. et al. 1992. "Models and Algorithms for
Coscheduling Compute-Intensive Tasks on a Network of
Workstations." Journal of Parallel and Distributed Comput-
ing, No. 16: 319-327.

[9] Bondalapati, Kiran et al. 1999. "DEFACTO: A Design
Environment for Adaptive Computing Technology." In Pro-
ceedings of the 6th Reconfigurable Architectures Workshop
(RAW99), Springer-Verlag.

[10] Chamberlain, Roger D. 1995. "Parallel Logic Simulation of
VLSI Systems." In Proc. of 32nd Design Automation Conf.,
139-143.

[11] Clement, Mark J. and Quinn, Michael J. 1993. "Analytical
Performance Prediction on Multicomputers." In Proceed-
ings of Supercomputing '93.

[12] Clement, Mark J., Steed, Michael R., and Crandall, Phyllis
E. 1996. "Network Performance Modeling for PVM Clus-
ters." In Proceedings of Supercomputing '96.

[13] Compton, K. and Hauck, S. 1999. "Configurable Comput-
ing: A Survey of Systems and Software." Northwestern
University, Dept. of ECE Technical Report. Northwestern
University.

[14] DeHon, Andre. 1998. "Comparing Computing Machines."
Proceedings of SPIE, No. 3526(Configurable Computing:
Technology and Applications): 124.

[15] Gokhale, M. et al. 1991. "Building and Using a Highly Par-
allel Programmable Logic Array." IEEE Computer, No.
24(1): 81-89.

[16] Goldstein, Seth Copen et al. 2000. "PipeRench: A Reconfig-
urable Architecture and Compiler." IEEE Computer, 70-77.

[17] Gustafson, J. L. 1988. "Reevaluating Amdahl's Law." Com-
munications of the ACM, No. 31(5): 532-533.

[18] Hauck, Scott et al. 1997. "The Chimaera Reconfigurable
Functional Unit." IEEE Symposium on Field-Programmable
Custom Computing Machines, -10.

[19] Hauser, John R. and Wawrzynek, John. 1997. "Garp: A
MIPS Processor With a Reconfigurable Coprocessor." IEEE
Symposium on Field-Programmable Custom Computing
Machines.

[20] Hu, Lei and Gorton, Ian. 1997. "Performance Evaluation for
Parallel Systems: A Survey." UNSW-CSE-TR-9707. Uni-
versity of NSW, School of Computer Science and Engineer-
ing, Sydney, Australia.

[21] I.S.I.East, SLAAC: System-Level Applications of Adaptive
Computing, Available from http://www.east.isi.edu/
projects/SLAAC/.

[22] Jones, Mark T., Langston, Michael A., and Raghavan,
Padma. 1998. "Tools for Mapping Applications to CCMs."
In SPIE Photonics East '98.

[23] Leong, P. H. W. et al. 2001. "Pilchard - A Reconfigurable
Computing Platform With Memory Slot Interface." In Pro-
ceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), (California USA,
IEEE).

[24] Mohapatra, Prasant, Das, Chita R., and Feng, Tse-yun.
1994. "Performance Analysis of Cluster-Based Multipro-
cessors." IEEE Transactions on Computers, 109-115.

[25] Moll, L., Vuillemin, J., and Boucard, P. 1995. "High-Energy
Physics on DECPeRLe-1 Programmable Active Memory."
In ACM/SIGDA International Symposium on Field-Pro-
grammable Gate Arrays, 47-52.

[26] Myers, M., Jaget, K., Cadambi, Srihari, Weener, J., Moe,
Matt, Schmit, Herman, Goldstein, Seth Copen, and Bower-
sox, D. 1998. "PipeRench Manual." Carnegie Mellon Uni-
versity.

[27] Noble, Bradley L. and Chamberlain, Roger D. 1999. "Per-
formance Model for Speculative Simulation Using Predic-
tive Optimism." In Proceedings of the 32nd Hawaii
International Conference on System Sciences, 1-8.

[28] Noble, Bradley L. and Chamberlain, Roger D. 2000. "Ana-
lytic Performance Model for Speculative, Synchronous,
Discrete-Event Simulation." In Proc.of 14th Workshop on
Parallel and Distributed Simulation,

[29] Peterson, Gregory D. 1994. "Parallel Application Perfor-
mance on Shared, Heterogeneous Workstations." Doctor of
Science, Washington University Sever Institute of Technol-
ogy, Saint Louis, Missouri.

[30] Peterson, Gregory D. and Chamberlain, Roger D. 1996.
"Parallel Application Performance in a Shared Resource
Environment." Distributed Systems Engineering, No. 3: 9-
19.

[31] Peterson, J. L. 1981. Petri Net Theory and the Modeling of
Systems, Prentice-Hall, Englewood Cliffs, NJ.

Figure 9 SoC Architecture Example

Memory FPGA

System-on-Chip

FPGACache
Memory

Embedded
Host

µµµµP
Core

ASIC
Core

µµµµP
Core

ASIC
Core

[32] Reynolds, Paul F., Jr. and Pancerella, Carmen M. 1992.
"Hardware Support for Parallel Discrete Event Simula-
tions." TR-92-08. Computer Science Dept.

[33] Reynolds, Paul F., Jr., Pancerella, Carmen M., and Srini-
vasan, Sudhir. 1992. "Making Parallel Simulations Go
Fast." In 1992 ACM Winter Simulation Conference.

[34] Reynolds, Paul F., Jr., Pancerella, Carmen M., and Srini-
vasan, Sudhir. 1993. "Design and Performance Analysis of
Hardware Support for Parallel Simulations." Journal of
Parallel and Distributed Computing.

[35] Thomasian, A. and Bay, P. F. 1986. "Analytic Queueing
Network Models for Parallel Processing of Task Systems."
IEEE Transactions on Computers, No. C-35 (12): 1045-
1054.

[36] Underwood, Keith D., Sass, Ron R., and Ligon, Walter B.,
III. 2001. "A Reconfigurable Extension to the Network
Interface of Beowulf Clusters." In Proc. of the 2001 IEEE
International Conference on Cluster Computing, IEEE
Computer Society, -10.

[37] Vuillemin, J. et al. 1996. "Programmable Active Memories:
Reconfigurable Systems Come of Age." IEEE Transactions
on VLSI Systems, No. 4 (1): 56-69.

[38] Ye, Zhi Alex et al. 2000. "CHIMAERA: A High-Perfor-
mance Architecture With A Tightly-Coupled Reconfig-
urable Functional Unit." In Proc. of International
Symposium on Computer Architecture, (Toronto, Canada).

Melissa C. Smith is a doctoral candidate in electrical
engineering at the University of Tennessee and a research
and development staff member at Oak Ridge National Labo-
ratory. Her research interests include reconfigurable comput-
ing, parallel and distributed computing, and performance
modeling and analysis. She received her MS in electrical
engineering in 1994 and her BS in electrical engineering in
1993, all from Florida State University. She is a member of
IEEE, ACM, Eta Kappa Nu, Tau Beta Pi and Phi Kappa Phi.

Gregory D. Peterson is an assistant professor of elec-
trical engineering at the University of Tennessee. He con-
ducts research and teaches in the areas of computer
architecture, digital systems, reconfigurable and parallel
computing. He received his DSc in electrical engineering in
1994, his MS in electrical engineering in 1992 and his BS in
electrical engineering in 1990, all from Washington Univer-
sity in St. Louis, Missouri. He is a member of IEEE, ACM,
Eta Kappa Nu, and Tau Beta Pi.

	Analytical Modeling for High Performance Reconfigurable Computers
	Melissa C. Smith and Gregory D. Peterson The University of Tennessee, Department of Electrical an...
	Abstract
	Introduction
	Figure 1 High Performance Reconfigurable Computer (HPRC) Architecture

	Architecture Background and Performance Metrics
	Reconfigurable Computing
	High Performance Reconfigurable Computing
	Speedup and Efficiency
	(EQ 1)
	(EQ 2)

	Performance Evaluation, Analysis and Modeling
	Overview
	Table 1 Symbols and Definitions

	Reconfigurable Computing Node Analysis
	Figure 2 Synchronous Iterative Algorithm
	(EQ 3)
	Figure 3 Reconfigurable Computing Task Completion

	(EQ 4)
	(EQ 5)
	(EQ 6)
	(EQ 7)
	(EQ 8)

	High Performance Computing Communication Analysis
	(EQ 9)
	Figure 4 Communication Model and Measurements

	High Performance Reconfigurable Computing Multi-Node Analysis
	(EQ 10)
	Figure 5 Flow of Synchronous Iterative Algorithm for Multi Node

	(EQ 11)
	(EQ 12)
	(EQ 13)
	(EQ 14)
	(EQ 15)
	(EQ 16)

	High Performance Reconfigurable Computing Development Hardware
	Reconfigurable Computing Model Validation
	(EQ 17)
	Table 2 Model Parameters for Wildforce from Benchmark Application
	Table 3 Runtime Predictions and Measurements (time in seconds)
	Figure 6 Speedup Curves: a) Vary total work by hardware and b) Vary hardware acceleration factor

	High Performance Reconfigurable Computing Model
	Figure 7 Comparison of RC Model Prediction with Measurement Results
	Figure 8 Speedup Curves: a) Vary number of nodes b) Vary total hardware work and c) Vary hardware...

	Conclusions and Future Work
	Figure 9 SoC Architecture Example

	References
	[1] Annapolis Microsystems, Available from http:// www.annapmicro.com.
	[2] Condor, Available from http://www.cs.wisc.edu/condor/.
	[3] NetSolve, Available from http://icl.cs.utk.edu/netsolve/.
	[4] SInRG: Scalable Intracampus Research Grid, Available from http://www.cs.utk.edu/sinrg/index.h...
	[5] Nallatech FPGA-centric Systems & Design Services, Available from http://www.nallatech.com/ .
	[6] Virtual Computer Corporation, Available from http:// www.vcc.com/index.html.
	[7] Amdahl, G. M. 1967. "Validity of the Single Processor Approach to Achieving Large Scale Compu...
	[8] Atallah, Mikhail J. et al. 1992. "Models and Algorithms for Coscheduling Compute-Intensive Ta...
	[9] Bondalapati, Kiran et al. 1999. "DEFACTO: A Design Environment for Adaptive Computing Technol...
	[10] Chamberlain, Roger D. 1995. "Parallel Logic Simulation of VLSI Systems." In Proc. of 32nd De...
	[11] Clement, Mark J. and Quinn, Michael J. 1993. "Analytical Performance Prediction on Multicomp...
	[12] Clement, Mark J., Steed, Michael R., and Crandall, Phyllis E. 1996. "Network Performance Mod...
	[13] Compton, K. and Hauck, S. 1999. "Configurable Computing: A Survey of Systems and Software." ...
	[14] DeHon, Andre. 1998. "Comparing Computing Machines." Proceedings of SPIE, No. 3526(Configurab...
	[15] Gokhale, M. et al. 1991. "Building and Using a Highly Parallel Programmable Logic Array." IE...
	[16] Goldstein, Seth Copen et al. 2000. "PipeRench: A Reconfigurable Architecture and Compiler." ...
	[17] Gustafson, J. L. 1988. "Reevaluating Amdahl's Law." Communications of the ACM, No. 31(5): 53...
	[18] Hauck, Scott et al. 1997. "The Chimaera Reconfigurable Functional Unit." IEEE Symposium on F...
	[19] Hauser, John R. and Wawrzynek, John. 1997. "Garp: A MIPS Processor With a Reconfigurable Cop...
	[20] Hu, Lei and Gorton, Ian. 1997. "Performance Evaluation for Parallel Systems: A Survey." UNSW...
	[21] I.S.I.East, SLAAC: System-Level Applications of Adaptive Computing, Available from http://ww...
	[22] Jones, Mark T., Langston, Michael A., and Raghavan, Padma. 1998. "Tools for Mapping Applicat...
	[23] Leong, P. H. W. et al. 2001. "Pilchard - A Reconfigurable Computing Platform With Memory Slo...
	[24] Mohapatra, Prasant, Das, Chita R., and Feng, Tse-yun. 1994. "Performance Analysis of Cluster...
	[25] Moll, L., Vuillemin, J., and Boucard, P. 1995. "High-Energy Physics on DECPeRLe-1 Programmab...
	[26] Myers, M., Jaget, K., Cadambi, Srihari, Weener, J., Moe, Matt, Schmit, Herman, Goldstein, Se...
	[27] Noble, Bradley L. and Chamberlain, Roger D. 1999. "Performance Model for Speculative Simulat...
	[28] Noble, Bradley L. and Chamberlain, Roger D. 2000. "Analytic Performance Model for Speculativ...
	[29] Peterson, Gregory D. 1994. "Parallel Application Performance on Shared, Heterogeneous Workst...
	[30] Peterson, Gregory D. and Chamberlain, Roger D. 1996. "Parallel Application Performance in a ...
	[31] Peterson, J. L. 1981. Petri Net Theory and the Modeling of Systems, Prentice-Hall, Englewood...
	[32] Reynolds, Paul F., Jr. and Pancerella, Carmen M. 1992. "Hardware Support for Parallel Discre...
	[33] Reynolds, Paul F., Jr., Pancerella, Carmen M., and Srinivasan, Sudhir. 1992. "Making Paralle...
	[34] Reynolds, Paul F., Jr., Pancerella, Carmen M., and Srinivasan, Sudhir. 1993. "Design and Per...
	[35] Thomasian, A. and Bay, P. F. 1986. "Analytic Queueing Network Models for Parallel Processing...
	[36] Underwood, Keith D., Sass, Ron R., and Ligon, Walter B., III. 2001. "A Reconfigurable Extens...
	[37] Vuillemin, J. et al. 1996. "Programmable Active Memories: Reconfigurable Systems Come of Age...
	[38] Ye, Zhi Alex et al. 2000. "CHIMAERA: A High-Performance Architecture With A Tightly-Coupled ...

