
'

&

$

%

Parallel out-of-core extension to
ScaLAPACK

Ed D’Azevedo (e6d@ornl.gov)

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, TN 37831

Old Dominion University

April 15, 2005

1

'

&

$

%

Acknowledgements

• Jack Dongarra, Director of Innovative Computing Laboratory

(ICL) at the University of Tennessee, also Distinguished

Research Staff at ORNL for discussion and guidance.

• Piotr Luszczek, in ICL/UTK, for implementation of

check-point and restart capability.

• DARPA, DOE SciDAC (Scientific Discovery through Advanced

Computing) and ORNL Laboratory Directed Research and

Development (LDRD) Program.

• This research was performed at the Oak Ridge National

Laboratory, managed by UT-Battelle, LLC, for the U.S.

Department of Energy under contract DE-AC05-00OR22725.

2

Computer Science and Mathematics Division ORNL'

&

$

%

Overview

• Background on Out-of-core computation

• Background on ScaLAPACK

• Design on Software

• Design Decision on I/O

• Design on Algorithm

• Check-point and Restart

• Performance

3

Computer Science and Mathematics Division ORNL'

&

$

%

Motivation for Out-of-core Computation

• Solve very large dense matrix problems several times larger

than available memory.

• Disks storage is much cheaper than memory, e.g. 2 GBytes

PC2700 memory cost $200, 200 GBytes SATA drive cost $100

(factor 200).

• Scheduling of out-of-core computation and I/O should be much

more efficient than just “paging”. Large (many MBytes

request) I/O requests versus small (4 KBytes) pagesize.

4

Computer Science and Mathematics Division ORNL'

&

$

%

Rough Estimate for LU Factorization

• Typical x86 linux box with 3.2 GHz Pentium 4 and 2 GBytes

of memory. The processor can achieve about 5 Gflops/s with

SSE2 optimized BLAS. (64-bit Opteron multi-processor

workstation may accommodate up to 16 GBytes.)

• Largest dense complex*16 matrix is about N = 11585. LU

factorization requires about O(2.67N 3) flops, or about 14 min

at 5 Gflops/s.

• If I/O system can sustain 40 MBytes/s transfer, then

reading/writing 2 GBytes takes about a minute.

5

Computer Science and Mathematics Division ORNL'

&

$

%

Rough Estimate for Larger problems

• Let M denote the amount of memory, then problem size

N = O(
√

M). Work increases as O(N 3) or O(M3/2).

• If we increase available storage by 4 times, the work (or

runtime) increases by 43/2 = 8. Similarly, 9 times the storage

requires about 93/2 = 27 times the work.

• From previous example, 9 times storage is only 18 GBytes and

takes very roughly about 27× 14 min or 6.3 hr (378 min)

(assuming I/O overhead is not significant).

• Note it requires roughly 9 min to read or write 18 GBytes.

6

Computer Science and Mathematics Division ORNL'

&

$

%

Parallel Solver

• Another approach is to solve a large problem in parallel.

Suppose we have a 32 processor cluster and each processor has

its own local disk, then largest in-core complex*16 dense matrix

is N = 92682, and takes about 3.7 hrs for LU factorization.

• Similarly, 9 times the storage would require about

27× 3.7 hr ≈ 4.2 days.

• Adding more processors also add more memory, more disks and

higher I/O bandwidth. Some distributed memory machine, say

IBM SP, has a dedicated parallel file system. However, I/O

bandwidth is fixed and may not scale with more processors.

7

Computer Science and Mathematics Division ORNL'

&

$

%

Out-of-core Computation

• Out-of-core single frontal method in finite element

computation. More general multi-frontal method for sparse

Cholesky factorization.

• Thomas algorithm (LU factorization) for block tridiagonal

system where the “U” factors are stored on disk.

• Large dense matrices arise from many applications:

– Electromagnetic scattering off aircraft

– Response of plasma to radio frequency in fusion

– Boundary Element method

– Least-squares calculations in Geodesic Application

• Fast Multipole Method may be more appropriate in some cases.

8

Computer Science and Mathematics Division ORNL'

&

$

%

ScaLAPACK

• Parallel library for dense matrix problems. Subroutine name,

calling sequence and arguments modeled after LAPACK.

Written mostly in Fortran 77 and some C for portability.

• User Guide available at www.netlib.org/scalapack.

• Relies on Parallel Basic Linear Algebra Subroutines (PBLAS)

for performance and Basic Linear Algebra Subroutines

(BLACS) for communication.

• Variant of LU factorization used as benchmark in TOP 500 list

(www.top500.org) of fastest computers.

• PLAPACK (Parallel Linear Algebra Package) developed at

University of Texas at Austin also offer similar capability but

uses a objected oriented approach.

9

Computer Science and Mathematics Division ORNL'

&

$

%

Matrix Descriptor

• Two-dimensional block cyclic distributed storage on a

two-dimensional processor grid.

• Dense LU prefers a nearly square grid since p× 1 grid has high

communication cost in determining pivot row, but 1× p grid

has serial bottleneck.

• Matrix block size, communication context and other

information on distribution stored in matrix descriptor.

• Large block size MB may yield good serial performance but

reduce opportunity for concurrent computation. Very small

block size can incur high message overhead.

10

Computer Science and Mathematics Division ORNL'

&

$

%
11

Computer Science and Mathematics Division ORNL'

&

$

%

Utility Routines

DESCINIT Setup matrix descriptor

NUMROC Calculate locate extent or storage

INFOG2L Calculate local indices and processor coordinates from

global matrix indices

INDXL2G Calculate global matrix index from local index

INDXG2L Calculate local matrix index from global index

INDXG2P Calculate processor coordinate from global index.

12

Computer Science and Mathematics Division ORNL'

&

$

%

PBLAS

• Modeled after serial BLAS so that parallel code looks similar to

serial code.

• Original version 1 had alignment restrictions but version 2

(based on PhD work by Antoine Petitet, LAPACK Working

Notes 128 at www.netlib.org) has removed all alignment

restrictions.

• PBLAS version 2 has internal algorithmic blocking and

multiple optimized algorithms for special cases.

• For example, PZTRSM triangular solve checks whether it is more

efficient to transfer the RHS vectors or transfer a small

triangular matrix.

• PZGEADD can be used to copy submatrices. This is usually more

efficient than multiple calls to PZCOPY.

13

Computer Science and Mathematics Division ORNL'

&

$

%

Out-of-core Software

• Calling sequence and naming convention modeled after

ScaLAPACK.

• Generalized PBLAS like layer to operate on out-of-core matrix.

• Idea: Read large submatrices into memory, use in-core

ScaLAPACK routines. Perform sufficient work in memory so

that I/O overhead is acceptable.

• Generalization of ScaLAPACK matrix descriptor with extra

fields to store extra information about disk I/O.

14

Computer Science and Mathematics Division ORNL'

&

$

%

Software

• User specify amount of in-core memory (ASIZE) available

(without causing paging) for out-of-core software. Code

automatically switches to in-core solver if ASIZE is sufficiently

large to hold entire matrix.

• Implementation for LU, QR, Cholesky factorization and solver.

• Software available at

http://www.netlib.org/scalapack/prototype/

15

Computer Science and Mathematics Division ORNL'

&

$

%

Example

1 * LAPACK

2 CALL ZGETRF(M, N, A(IA,JA), LDA, IPIV, INFO)

3

4

5 * in-core ScaLAPACK

6 CALL DESCINIT(DESCA,M,N,MB,NB,RSRC,CSRC,ICONTEXT, &

7 LDA,INFO)

8 CALL PZGETRF(M, N, A, IA, JA, DESCA, IPIV, INFO)

9

10

11 * Out-of-core extension

12 CALL PFDESCINIT(DESCA,M,N,MB,NB,RSRC,CSRC,ICONTEXT, &

13 IODEV,’DISTRIBUTED’,MMB,NNB,ASIZE,FILENAME,INFO)

14 CALL PFZGETRF(M, N, A, IA, JA, DESCA, IPIV, INFO)

16

Computer Science and Mathematics Division ORNL'

&

$

%

Design of I/O

• Need an efficient and portable I/O interface. Currently uses C

read, write, lseek.

• Use multiple files to get around maximum 2 GBytes file limit

(32-bit lseek file pointer)

• No asynchronous I/O:

– No simple, portable implementation

– Extra buffer space can be more efficiently used for

computation

– No help if application is already compute bound or I/O

bound

17

Computer Science and Mathematics Division ORNL'

&

$

%

Layout of Data on Disk

• lseek can be expensive, especially on a parallel file system.

Fortran column oriented storage is not suitable for reading in

wide submatrices. Similarly, image of entire distributed 2D

block-cyclic ScaLAPACK matrix is also not efficient for

copying submatrices.

• Use record-oriented storage. Each record is an image of an

in-core Scalapack matrix of size MMB=L1*MB*P by NNB=L2*NB*Q

on P by Q processor grid.

• Each processor concurrently reads or writes (L1*L2) blocks of

size (MB*NB) to get good performance.

18

Computer Science and Mathematics Division ORNL'

&

$

%

Three Modes for I/O

Distributed: Each processor has own set of files with unique

filenames on a local (maybe shared on SMP) file system.

Interleaved: All processors write to a single large file on a parallel

file system. Data from each record is interleaved to facilitate

caching by the parallel file system.

Shared: All processors write to a single large file on a parallel file

system. Similar to concatenation of many distributed files to

reduce the total number of file descriptors.

19

Computer Science and Mathematics Division ORNL'

&

$

%

Parallel Read and Write

• Subroutines ZLAREAD and ZLAWRITE to transfer a M× N

submatrix between disk and in-core ScaLAPACK matrix.

• Data record is first transfered (or copied) to an intermediate

buffer, which is also a ScaLAPACK in-core matrix.

• Software perform message communication and memory copy if

I/O is not aligned on same processors. Use PBLAS PZGECOPY

for data transfer.

• Network communication is commonly faster than disk I/O.

20

Computer Science and Mathematics Division ORNL'

&

$

%

Disk cache

• Some system perform very aggressive caching of disk in

memory. For small problems, or using only a subset of

processors on a shared memory machine, this may yield

unrealistically high I/O bandwidth (basically memory to

memory copy from cache).

• There is little reuse of data unless a very significant fraction of

disk file can be cached. However, the memory for this buffer or

cache memory can be more effectively used by out-of-core

solver.

• There is no simple and portable way to discover how much

in-core memory is actually available without paging.

21

Computer Science and Mathematics Division ORNL'

&

$

%

Algorithm

• Algorithm keeps two column panels (label X, Y) in memory.

• If pivoting is not required, rectangular subblocks might be used

for Cholesky factorization. This package uses column panels

even for QR and Cholesky factorization.

• Panel X should be NNB columns wide to get good I/O

performance and panel Y should take up the remaining storage

to be as wide as possible.

22

Computer Science and Mathematics Division ORNL'

&

$

%

• Panel X acts as a buffer to hold and apply previously

computed factors to panel Y.

• Once all previous updates are applied, panel Y is factored

using in-core ScaLAPACK and written out to disk.

• I/O volume (and time) is dominated by multiple reading for

panel X. Number of passes depends on the width of panel Y.

• Minimum in-core memory is for 2 panels, each panel is a

N× NNB in-core ScaLAPACK matrix.

23

Computer Science and Mathematics Division ORNL'

&

$

%Panel X Panel Y

24

Computer Science and Mathematics Division ORNL'

&

$

%

LU Factorization

• Block partitioned matrix, suppose there is no pivoting (for

simplicity)

A =





A11 A12

A21 A22



 ≈





L11

L21 L22









U11 U12

U22





• Factor first panel

A11 = L11U11, L21 = U11\A21

• Update second panel from already computed factors L11, U11,

L21,

U12 = L11\A12 , Ã22 = A22 − L21U12 , Ã22 = L22U22

25

Computer Science and Mathematics Division ORNL'

&

$

%

LU Factorization

• First panel, combine storage for X and Y

1. LAREAD: read in part of original matrix

2. PxGETRF: ScaLAPACK in-core factorization




L11

L21



 (U11)← P1





A11

A21





3. LAWRITE: write out factors

26

Computer Science and Mathematics Division ORNL'

&

$

%

LU Factorization

• Let panel Y hold A12, and A22, panel X hold L11, and L21

1. LAREAD: read in part of factor into panel X

2. LAPIV: physically exchange rows in panel Y to match

permuted ordering in panel X




Ã12

Ã22



← P1





A12

A22





3. PxTRSM: triangular solve to compute upper triangular factor

U12 ← L−1

11
Ã12

4. PxGEMM: update remaining lower part of panel Y

Ã22 ← Ã22 − L21U12 .

27

Computer Science and Mathematics Division ORNL'

&

$

%

LU Factorization

• After all updates are applied to Ã22, we apply PxGETRFto

compute LU factors in panel Y

L22U22 ← P2Ã22

• LAWRITEto write panel Y to disk

• A final extra pass over the computed lower triangular L matrix

may be required to rearrange the factors in the final

permutation order

L̃12 ← P2L12

28

Computer Science and Mathematics Division ORNL'

&

$

%

Left-looking Algorithm

• All panel X are to the “left” of panel Y so that each panel Y is

read in once and written out once.

• A “right-looking” algorithm immediately updates all panels to

the right of panel X once X is factored. This would require

higher I/O volume to repeatedly read in and write out panel Y.

• In-core ScaLAPACK uses a right-looking algorithm to expose

more work for parallelism.

29

Computer Science and Mathematics Division ORNL'

&

$

%

Check-point and Restart

• Runs may take several days that may exceed time limit in

batch queue policy, or approach MTBF on linux cluster built

with off-the-shelf components.

• Recovery or restarting is conceptually simple since the factors

and partial results are still on disk.

• May require redundant (or duplicate) computation from a

consistent check-point.

• Two types of termination: (i) expected termination (time limit

in batch queue) (ii) unexpected termination (system crash due

to software or memory error) .

30

Computer Science and Mathematics Division ORNL'

&

$

%

Approach

• Simulate out-of-core computation to generate

“micro-instructions” in file. The instructions are easily mapped

to high-level subroutine calls such as read in panel (ZLAREAD),

write out panel (ZLAWRITE), perform update (PBLAS), in-core

factorization (PZGETRF).

• Simple driver to process (or play back) list of instructions.

Driver can write out partial results and last instruction before

stopping.

• Details: driver look ahead in instruction list to find next write

instruction in check-point; driver look back to find read

command to restore panel in memory.

31

Computer Science and Mathematics Division ORNL'

&

$

%

Micro-instructions

32

Computer Science and Mathematics Division ORNL'

&

$

%

Writing out in 2-Steps

• The factored panel is first written out to a temporary location.

Out-of-core matrix is not affected if this fails.

• If this is successful, the out-of-core matrix is then updated.

Even if a machine crash corrupts the matrix, the intact data in

the temporary location can be used for recovery.

• Details: other (empty) temporary files are used to mark

progress, e.g. 00143a.dat (00143b.dat) indicate first (second)

write is successful for instruction 143.

33

Computer Science and Mathematics Division ORNL'

&

$

%

Limitations

• Need to restart with same set of processors if a local file system

(e.g. /tmp on linux cluster) is used.

• Assume all data is automatically “synced” or flushed out to

disk after the file is closed. Delayed writes may hinder recovery

on unexpected machine crash since the data may still be in

volatile memory and not written to disk.

34

Computer Science and Mathematics Division ORNL'

&

$

%

Performance Results

• Runs performed on a Linux cluster where each node is a dual

AMD Opteron 242 (1.6 GHz) processor with 2 GBytes of

memory. Each node equiped with Maxtor EIDE-133

120 GByte 7200 RPM disk with 8 MByte internal cache and

connected with a fast quadrics switch.

• Code compiled with g77 but linked to optimized BLAS by

Kazushige Goto (http://www.cs.utexas.edu/~flame/goto/).

The optimized BLAS library achieves about 2.7 Gflops/s in

1000× 1000 matrix multiply in ZGEMM and about 2.2 Gflops/s

in LAPACK ZGETRF.

• In-core ScaLAPACK PZGETRF for N=2200 (MB=NB=50) on 4 cpus

achieved about 2.15 Gflops/s per processor. Two MPI tasks are

spawned on each node to take advantage of dual processors.

35

Computer Science and Mathematics Division ORNL'

&

$

%

Run with 16 cpus

• N=60000, 512 MBytes for ASIZE, MB=NB=50, L1=L2=4,

P=Q=4 . Overall performance about 2.0 Gflops/s per cpu. Total

matrix size is about 54 GBytes or about 3.4 GBytes/cpu.

Routine No. of Calls Time (percentage)

ZEXPFGETRF 1 17775s (100%)

ZLAREAD 922 1266s (7.1%)

PZGETRF 7 2005s (11.3%)

ZLAWRITE 13 465s (2.6%)

PZLAPIV 27 243s (1.4%)

PZTRSM 3636 15s (0.1%)

PZGEMM 3636 12877s (72.4%)

36

Computer Science and Mathematics Division ORNL'

&

$

%

Extra Write for Recovery

• Overall runtime increased to about 19128s if an extra write is

performed for recovery from unexpected termination.

• Performance is about 1.88 Gflops/s per cpu.

• Increase of about 7.6% (from 17775s).

• Single call to PZGETRF (without micro-instructions) took about

18368s. Performance at about 1.96 Gflops/s per cpu.

37

Computer Science and Mathematics Division ORNL'

&

$

%

Performance on Hydra

• 8 1200 MHz UltraSPARC IV processors with 64 GBytes of

RAM

• ZGEMM on 1000× 1000 achieved about 2.13 Gflops/s, ZGETRF

achieved about 1.67 Gflops/s.

• In-core ScaLAPACK PZGETRF on N=8000, MB=NB=99, 2× 2

processor grid achieved about 1.51 Gflops/s per cpu.

• Write bandwidth about 11 MBytes/s per cpu.

• Largest complex*16 problem is N=63000. If each cpu can

sustain 1.5 Gflops/s in ScaLAPACK PZGETRF, the factorization

will take about 15.5 hr.

38

Computer Science and Mathematics Division ORNL'

&

$

%

2× 2 Processors on Hydra

• N=30000, 512 MByes for ASIZE, MB=NB=50, L1=L2=2.

Overall performance about 1.37 Gflops/s per cpu. Total matrix

size is about 13.7 GBytes or about 3.4 GBytes per cpu.

Routine No. of Calls Time (percentage)

ZEXPFGETRF 1 13203s (100%)

ZLAREAD 610 562s (4.3%)

PZGETRF 8 1427s (10.8%)

ZLAWRITE 15 1277s (9.7%)

PZLAPIV 35 303s (2.3%)

PZTRSM 2380 23s (0.2%)

PZGEMM 2380 9609s (72.8%)

39

Computer Science and Mathematics Division ORNL'

&

$

%

Summary

• Out-of-core software enable larger problems to be solved.

• The out-of-core software has similar interface as ScaLAPACK

and LAPACK.

• The I/O overhead accounts for only a small fraction of overall

time and yields good performance.

• Check-point and restart capability convenient for long jobs.

40

