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New world-class facility will be

housing leadership class computers
• Space and power:

40,000 ft2 computer center with

36-in. raised floor, 18 ft. deck-to-deck

8 MW of power (expandable) @ 5c/kWhr

• Classroom and training areas for users

• High-ceiling area for visualization lab

(Cave, Powerwall, Access Grid, etc.)

• Separate lab areas for computer

science and network research
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Spalation Neutron Source and Center

for Nanophase Materials Sciences
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New Approach: facility analogy

Spallation Neutron Source (SNS)
Center for Nanophase Materials Science (CNMS)

Ultra-high
vacuum station
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Relevant modeling at ORNL

• Magnetism, magnetic hetero (nano) structures

• Transport: magneto- and molecular electronics

• Strongly correlated electron systems
DFT based electronic structure (LDA, GGA, …, SIC-LSD)

Spin dynamics / statistics (ab initio, Heisenberg, spin-Fermion)

Strongly correlated models / effective medium theory (DMFT,
DCA)

• Structural / mechanical properties:
Alloy phase stability (nano phases)

Microstructure evolution

Radiation effects

Metallic classes

Fracture; continuum mechanics (Finite Element Meth.)

… and many more …

• Tribology, nano-fluids, polymers

• Protein / DNA structure
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Outline

• Introduction:

Computational “End-Station” concept for material, nano-, and

condensed matter sciences

• Selected example “simulations” (theory & computation):

Modeling assemblies of magnetic nanoparticles

Spin waves above Tc in Fe

• Software development in CCS-MRI and CNMS/NTI

-Mag toolkit

XML based I/O

• Summary and Conclusions

Is this useful for data analysis needs at SNS and HFIR?
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Collaborators

• Computational End-Station:

Malcolm Stocks (M&C Division) and Peter Cummings (CNMS/NTI)

Doug Lowndes (CNMS)

• Ongoing leadership computing applications

Thomas Maier and Gonzalo Alvarez (Wigner Fellows)

Mark Jarrell (U. of Cincinnati) and Elbio Dagotto (UT/ORNL)

Trey White and Mark Fahey (CCS)

• Modeling assemblies of nanoparticles and PsiMag development

Hwee Kuan Lee and Greg Brown (partly funded by CMSN)

Experimentalists (Korey Sorge, Jim Thompson, et al.; Jian Shen and his

group)

• Spin waves in paramagnetic Iron

Xiuping Tao and Davis Landau (UGA), Malcolm Stocks

• XML and Software analysis and quality control

Mike Summers (ORNL), Tom Swain (UT), and Greg Brown

• AND MANY OF THEIR COLLABORATORS
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Fe nanoparticle in Y-stabilized Zirconia

YSZ

70 nm

Fe nanoparticles

• Fe precipitates in Yttrium stabilized Zirconia

• Particles are coherent with matrix

• Packing fraction, orientation, and size distribution known
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Constructing the Model

Insert particles uniformly in to a slab oriented along three directions

Voronoi construction to determine relative volume

Scale with 

Gaussian profile

in perp. dirrection

Hamiltonian (no fitting parameters)
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Temperature dependence of

remnant magnetization
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Fe nano-particles on Cu (111)
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Constructing the model in this case

• Positions and sizes

known from experiment

• Hamiltonian

• Uniaxial anisotropy with

only free parameter K

• Monte Carlo simulations

starting from ordered

state
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Monte Carlo Simulations

• Magnetostatic interaction play minor

role

• Need to increase anisotropy by order of

magnitude compare to bulk bcc Fe (?)

• But particles are hemispherical

High anisotropy is hard to justify

Are we missing something in the model?
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Alternative mechanism

• Cu (111) has a well known surface state

• RKKY like interaction between Fe nanoparticles

2D electron gas, 1/r2 decay for atoms

• Check hypothesis by changing substrates

Pierce et. al., Phys. Rev. Lett., (May 2004)
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Spin Waves in Paramagnetic Iron

• Questions: can non-diffusive spin waves exist

in paramagnets?

• Inelastic Neutron scattering experiments:

YES: Lynn, PRB (75); Mook and Lynn, JAP (75);

NO: Collins et al. PR (69); Wicksted et. al. PRB (84);

• Theory:

Possible with short range order postulated: Horeman

et al. PRB (1977)

Only diffusive spin waves: Hubbard PRB (79,81);

Morva (91)

No spin waves with early spin dynamics simulations:

Shartry PRL (84)
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Construct a model for this problem

• 3D classical Heisenberg model for BCC lattice

• Solve equation of motion for spin system

J1=18.2 meV; J2=10.3 meV; J3=-0.8 meV; J4=1.2 meV (ab initio calculation)

• Calculate spin-spin correlation function

    and dynamics structure factor

• Computational challenge:

Large systems (40x40x40 lattice = 128K spins)

Long time scale integration: Trotter dynamics

Good statistics: average over many runs

                               (generate initial state with Metropolis MC)
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Constant Energy Scans:

Constant E scan along (q,q,0)



19OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY

Computational Instrumentation for 

Materials, Nano-, and Condensed Matter Sciences

Constant q Scan:

 q= /a(1,0,0)
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Analyzing the Structure Factor

q=0.22qzb T=1.0Tc q=0.22qzb T=1.1Tc q=0.22qzb T=1.2Tc

q=0.5qzb T=1.2Tc
q=0.5qzb T=1.1Tc

q=0.5qzb T=1.0Tc
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Dispersion below, at, and above Tc

• Non-diffusive spin waves

only defined for large q

vectors

Consistent with magnetic

short range order

• Dispersion above and

below Tc similar

• Traveling spin waves in

paramagnetic iron

definitely exist!
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Extensible “Heisenberg” Model

• Flexibly add / remove energy terms

• Efficient algorithms to evaluate energy terms

Long range interactions (FFT, FMM, Ewald)

• Various types of Monte Carlo sampling schemes

• Spin dynamics simulations

Regular spin dynamics; Trotter dynamics; Stochastic dynamics
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Currently Planned Extensions

• Spin Fermion Models

Apps: Manganites, Dilute Magnetic Semiconductors

Based on realistic band structure (LDA, SIC-LSD)

• Free energy surface of magnetic nanoparticles

Apps: FePt, CoPt, magnetic data storage

Challenge: simple spin models fail (1/3 at. @ surface)

Energy functional based on Local Spin Density

Approximation to Density Functional Theory
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Implementation: The -Mag Toolkit

• C++ library for computational  magnetism and

serves as a prototype for a more general  library

for computational materials science.

New effort: expand -Mag for molecular simulations

• Design is modeled and inspired by the generic

programming techniques of the C++ standard

template library (STL).
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Language: C++ and the STL
• C++ programming language:

Object oriented “extension” of C

Can be as efficient at C

Support of templates (replacement of pre-processor)

Templates allow for compile time polymorphism

• Standard Template Library (STL)

Generic algorithms and data structures (lists, sort, …)

Designed for extensibility: “to use STL is to extend it”

Algorithms are decoupled from containers

Extensible and customizable without inheritance

Abstractions based on compile time polymorphism

• C++ (and STL) exist on HPC just like C & Fortran
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-Mag Toolkit: an extension of STL
• No claim for completeness:

Implement carefully what is needed

Extensible design makes adding tools rather simple

• Layered software structure with minimal interdependence
no horizontal dependence

Individual classes are simple

• Applications using -Mag:

Can access all layers directly

Small and therefore flexible / maintainable

• New site approximately end of April 2005: http://psimag.org

ANSI/ISO C++ ANSI Fortran 77 BLASMPI

STL LAPACK

Common interfaces: Real.h, Complex.h, BLAS.h, LAPACK.hSTL extensions CMS

specific data structures

Basic tools (similar to numerical recipes)

Comp. Cond-Mat / CMS specific tools (eg. Lattices, FMM, ...)

Ab initio MC-toolsspin dyn./ micro mag. ….

Applications (spin dynamics, Monte Carlo, ab initio / MC hybird, …)
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Code Repository built …
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XML based

I/O system
Nanoscience

End-Stations

(Cray X1, BG/L,…)

Fusion Materials

End-Stations

(Cray X1, BG/L,…)

Thermo-Mechanical

Engineering

End-Stations

(Cray X1, BG/L,…)

• around common I/O system

emphasis is on user

• with community and from existing codes
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A Meaningful Evolution of Software?

User Community / Other Software Frameworks

I/O

App.

Code

App.

Code

Basic Libraries

I/O Common I/O system

App.

Code

Optimized kernels

Generic toolkits

App.

Code

App.

Code

App.

Code

App.

Code

Today Current Reseach Future

STATUS

XML I/O Prototype

-Mag, ALPS

Combination of 

User-developed and 

Code Repository

Current Research

Using Cray, BG/L

BLAS, FFT, etc.

• Reduce size of application code

• Improve usability of codes

• Enhance productivity / creativity

• Optimize performance / efficiency

• Simplify user access to machines

• Prioritization of resources
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Lots of Opportunities in Nanoscience at ORNL:

Center for Nanophase Materials Sciences

Nanomateirals Theory Institute

http://www.cnms.ornl.gov/

Inaugural CNMS User Meting

May 23-25, 2005

Registration Now Open
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