
Real-Time Document Cluster Analysis for Dynamic Data Sets
Mark T. Elmore, Joel W. Reed, Thomas E. Potok, and Robert M. Patton

Oak Ridge National Laboratory*
Computational Sciences and Engineering Division

Post Office Box 2008, Mail Stop 6364
Oak Ridge, Tennessee 37831-6364

Abstract
One of the most challenging analysis problems in the data mining and information retrieval
domains is organizing large amounts of information. In this paper, we present a fast
agglomerative clustering technique used in the Virtual Information Processing Agent Research
(VIPAR) project at the Oak Ridge National Laboratory. This approach extends the Vector Space
Model (VSM) to provide near real-time clustering of a moderately large and dynamic set of text
documents. In the traditional VSM, each document added or removed from the document set
requires a computationally expensive set of operations to be performed before analysis can
resume. While this prior calculation of all of the VSM values is feasible in some problem
domains, it is computationally prohibitive for near real-time operation with large, dynamic sets
of documents.

We present a method to quickly and accurately update the VSM values in an environment where
articles are being continuously added and removed. We conducted a series of experiments and
based on the results, we implemented a strategy that provides dynamic updates to the VSM
values while preserving high accuracy. This approach allows documents to be quickly added
and removed from the document set, providing accurate agglomerative clustering and enabling
real-time document analysis.

Introduction
One of the most challenging analysis problems in the data mining and information retrieval
domains is organizing large amounts of information. One approach to this problem is to cluster
information based on the content of a collection of documents. One widely used technique is to
represent documents as vectors in a Vector Space Model (VSM), compare those documents in a
dissimilarity matrix, and use agglomerative clustering to represent the document comparisons in
a dendogram. The Virtual Information Processing Agent Research (VIPAR) project at the Oak
Ridge National Laboratory makes significant use of this clustering technique with the goal of
enabling information from a number of Internet media sources to be integrated, then rapidly
searched, clustered, analyzed, and visually presented to an analyst for improved decision making.

In VIPAR, thousands of articles from Internet newspapers come streaming into the VIPAR
system throughout the day in an asynchronous manner. These articles must be immediately
placed into article clusters, and in near real-time, provided to analysts using VIPAR. However,
these requirements of dynamic datasets and real-time responsiveness were contradictory. While
the VSM-based agglomerative clustering approach has demonstrated value in organizing

* Oak Ridge National Laboratory is managed by UT-Battelle, LLC. The submitted manuscript has been authored by
a contractor of the U.S. Government under contract No DE-AC05-00OR22725. Accordingly, the U.S. Government
retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow
others to do so, for U.S. Government Purposes.

1

documents, its substantial computational complexity requires that the entire document set must
be available for calculation before analysis can begin. This means that every time a new
document is added to the system, the system must pause while recalculations are made for the
entire collection of documents. Due to the substantial computational complexity of the
recalculation, this pause may also be substantial and thus conflicting with the real-time
responsiveness required by VIPAR.

To resolve this conflict, we developed an approach that allows articles to be dynamically added
to, and deleted from, the clustering system while provide real-time responsiveness. We
conducted a series of experiments to determine how changes to the document set would affect
the VSM vectors, and hence the dissimilarity values used for agglomerative clustering. Based on
these experiments, we have developed a method to dynamically update the vectors and
dissimilarity matrix while maintaining sufficient fidelity for accurate agglomerative clustering.

Background
Clustering a relatively large volume of up-to-date newspaper articles is a challenging problem
with no simple solutions. In this environment, the document set is continuously changing as new
articles arrive and out of date articles are removed. The approach that we used for organizing the
newspaper information is to cluster them based on their content. One of the most widely used
clustering techniques for text document is agglomerative clustering.1 To apply agglomerative
clustering algorithms, a proximity measure between each pair of documents in the document set
is needed. We chose the vector space model (VSM) to determine this proximity measure, which
is one of the most widely used document representation approaches, and well suited for this
application. Using this method, each document is represented as a vector in hyperspace, with
each unique word in a collection of documents representing a dimension in the hyperspace. This
document vector is based on the frequency of the terms used within a document (local
frequency) and on the frequency of the terms used in the entire set of documents (global
frequency).

Term Frequency, Inverse Document Frequency (TF-IDF) is a well established mechanism for
weighting the value of terms in a document for building a document’s vector. A term’s
frequency (TF) within a document (its local frequency) is a factor in determining the importance
of the term in the document; the more often a term appears in a document, the more important
the term is considered to be. Luhn2 used this as a foundation for his early work in Automated
Information Retrieval. However, as Zipf3 previously pointed out, a term that appears in many
documents in a collection becomes less important as a discriminator between documents. To
balance this, the inverse of the term’s frequency (IDF) within the entire document set (its global
frequency) is factored in; the more often a term appears across the document set, the less
important the term is considered to be in discriminating between documents. (An extreme case
of this would be stop words, words that appear so frequently they have no discriminating value.)
Salton4 experimented with variations on the TF-IDF theme. Sparck Jones5,6 compared different
approaches to term weighting, as did Salton.7 A number of variations on TF-IDF and of
applications using TF-IDF have been built upon these seminal works.

Once document vectors have been built using TF-IDF, each document’s vector is compared to
every other document’s vector to generate proximity measures. For each comparison, the

2

dissimilarity between the two vectors is recorded in a dissimilarity matrix. An agglomerative
clustering algorithm is then applied to the dissimilarity matrix. In the document clustering
domain, these algorithms are generally divided into two different families: hierarchical
algorithms and partitional algorithms.1,8

Most of the current clustering literature reports that hierarchical clustering has better text
document grouping performance compared to the partitional algorithms,9,10 although there are
reports of better results using hybrid hierarchical and partitional methods.8,11 Hierarchical
algorithms are better suited for use in the VIPAR system because the number of clusters to
produce does not have to be chosen beforehand, and a dendogram is built during the clustering
process. This dendogram is very helpful in visualizing the relationships among documents within
a sub-cluster and therefore is very useful in VIPAR. However, these algorithms do have some
features that make them difficult to use in the VIPAR environment. One difficulty is that the
agglomerative clustering process is computationally complex, but the main difficulty is in
dynamically updating the proximity measures needed for clustering. Typically, the matrix
holding these values must be completely recalculated every time the document set changes.
With the real-time demands placed on the system, it would be necessary to overcome this
problem to be able to use an agglomerative clustering algorithm in VIPAR.

A Typical Document Clustering System
In order to more clearly illustrate the dynamic data clustering advancements of the VIPAR
system, an overview of a typical document clustering system is in order. Although there are
many variants, typical document clustering systems have many steps in common. The first step
when adding a document to the document set is often the removal of all stop words. These are
words that are common in speech, but carry little meaning, such as the words "the" or "and."
Second, a stemming algorithm such as Porter’s12 is often applied to reduce the dimensionality of
the vector space. For example, the words “walk,” “walks,” “walked,” “walking,” etc. would all
be stemmed to the word “walk.” The remaining words may then be counted to determine the
frequency of each word within a given document (its local frequency) and determine the
frequency of each word over the entire set of documents (its global frequency). These frequency
counts are recorded in the local and global document frequency tables. The local document
frequency table contains an entry for each document that records the frequency of each term in
that document. The global frequency count table contains frequency counts for how often each
unique term appears in the entire document set. From these local and global frequencies a
document-term weighting is calculated by a TF-IDF function such as:8

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

∀d

tdttdt
dtdt n

GFLFGFLFLFWeight
2

2

log
)/(log*/1

Where LF is the local frequency for term t in document d, GF is the global frequency for term t,
and n is the total number documents in the set.

Since each term in the document has a weight associated with it, the document can be
represented by a vector composed of its term weights. The dimensionality of this vector space is
equal to the quantity of unique terms represented in the document collection. One of several
measures may be used to determine the dissimilarity between the vectors, (e.g.: dot product

3

between a pair of document vectors, Cartesian distance between the vector endpoints, etc.), and a
dissimilarity matrix is built containing these measures between each document and every other
document. For example, each cell of the dissimilarity matrix may be built by subtracting the dot
product of a pair of document vectors from 1. Whenever a new document is added to a document
set, a new row is added to the dissimilarity matrix. This row defines the dissimilarity between the
new document and every other document that is currently in the document set.

Further, and of great importance, for each new document added to a document set, every
document vector and hence every cell in the dissimilarity matrix must be recalculated. This is
because the dimensionality of the vector space is based on the global terms. The weights that
make up each document vector are based, in part, upon these global frequency counts. Any
change in the document set changes the global frequency counts and thus, all of the weights
within the vector space.

To produce the necessary document groupings and a dendogram that displays those groupings,
we chose to use an agglomerative clustering algorithm. This method initially treats each
document as a cluster. Among all cluster pairs, the method then locates the most similar pair of
clusters using the dissimilarity matrix, and agglomerates this pair of clusters into a single cluster.
The dissimilarity matrix is then updated to reflect the merged clusters using Ward's Method:13

C
CBA

DCDCBDCA
D

nnn

ABnBDnnADnn
MC ∀⎥

⎦

⎤
⎢
⎣

⎡
++

−+++
=

**)(*)((

Where D represents the dissimilarity measure between two documents, M is the new cluster built
when clusters A and B are merged, and where C represents the cluster whose dissimilarity is
being updated. Also, An and Bn are the number of documents that make up the clusters being
merged to make cluster M, and Cn is the number of documents that make up the cluster being
updated. This merging process is repeated until all of the documents are in a single cluster

Depending on the size of the document set, the algorithms used, and the processing power
available, the recalculation of the document vectors and the dissimilarity matrix may take
minutes or hours (or days!). This is a significant roadblock to meeting an analyst’s need for an
agile, real-time system that allows an analyst to continue working while new documents are
continually added into the system. How to circumvent this roadblock was the challenge before
us.

Approach
In VIPAR, we needed something beyond the capabilities of a typical document clustering
system. While much has been done in document clustering, the ability process dynamic streams
of data in real-time is apparently an open issue. After much searching of the literature, we could
find no applicable solutions, so we developed a new approach to the problem and devised a
series of experiments to test its utility. The overall process is to adapt the typical document
clustering system described above to create a vector representation of the newspaper articles that
can be dynamically updated. From this, the dissimilarity matrix is updated with lower accuracy
but with sufficient accuracy for the agglomerative clustering. When the users of the system

4

make a clustering request, this matrix is then used to agglomerate the requested subset of articles
and generate a dendogram, which is displayed for the user.

To avoid recalculating all of the vectors every time a new document is added or deleted, we
proposed an experiment to recalculate only a portion of the vectors and the cells within the
dissimilarity matrix, and compare the results to a fully recalculating system. Although the fully
recalculating system would be prohibitively slow for a real-time updating system, it would
provide a benchmark to compare with the proposed real-time system. If the experimental results
showed minimal deviation between the results of the two systems, it would show that a real-time
system for a constantly changing document set was a viable solution for the analysts’ real-time
needs.

The novelty of our approach is to create a list of the matrix cells which is ordered by when they
were last updated. Using this list, each time a new document is added to the document set, the
oldest 5 percent of the matrix is updated. In other words, each time a document is added to the
document set, the pairs of document vectors corresponding to least recently updated 5 percent of
the matrix cells are recalculated, and then those matrix cells are updated using the new vectors.
Documents being removed from the system are handled in a very similar manner. This allows
documents to be quickly added to the system as they stream in, and removed from the system as
they are no longer needed.

Results
The VIPAR system is operational at a number of organizations. Each organization has different
information feeds. For this experiment, we gathered information from thirteen different Internet
newspaper sites. These newspapers are:

1. Asahi Shimbun 8. Pacific Islands Report
2. Asia Times 9. Sydney Morning Herald
3. BBC 10. Taipei Times
4. Japan Times Online 11. The Hindu
5. Japan Update 12. The Star
6. Korea Times 13. Times of India
7. Manila Times

Each newspaper has an information agent14 associated with it that sends new articles to the
VIPAR system on an hourly basis. The information agents are not synchronized, so news articles
can enter the VIPAR system at any time. Typically, averages of 20 to 30 new articles arrive
every hour depending on how rapidly the news is changing, although this number can be much
higher during system startup. The news articles are kept within the VIPAR system for
approximately 48 hours, and then are discarded from the system.

We first look at the performance increases associated with this new approach. Using the typical
approach of fully recalculating all of the document vectors every time an article is added or
removed is very time consuming. This causes the clustering process to lag far behind the
document gathering process. Also, it is important to note that any requests by users for document

5

grouping only causes more lag because the dissimilarity matrix needs to be locked during part of
the clustering process.

Conversely, dynamically updating the vectors in the VSM resulted in minimal lag of the
clustering process. Figure 1 shows how many documents have been downloaded but not yet
incorporated into the clustering system. The number of unclustered articles is shown on the
vertical axis versus time on the horizontal axis for both for the fully-recalculating clustering
method (line with open boxes) and for the dynamic clustering method (line with solid diamonds).
This data was gathered during the first 10 minutes of a typical VIPAR system startup and no
clustering requests were processed during this time. Clearly, the full update method lags far
behind and then begins to catch up to the download process, while the dynamic update method is
able to easily keep up.

Figure 1. A comparison of the full clustering methods versus the dynamic clustering method.
Next we look at how the clustering results from the dynamic approach compared with the full
update approach. Figure 2 shows a screen shot results of clustering a small document set, six
articles, using our dynamic clustering approach. This cluster diagram is a dendogram similar in
appearance to the Phylip Tree15 visualizations for evolutionary trees. Here, the dendogram is
used for visualization of agglomerative hierarchical clustering. The leaves of the tree represent
each article while the links between the nodes represents relationships. In general, the closer two
leaves are, the more similar the articles. When links from two leaves share a vertex, then these
articles are the most closely related in the set of articles. The longer the links between articles,
the greater the dissimilarity is between the articles. The clustering of these produced three
distinct groups of articles.

6

Figure 2. Small scale dynamic clustering.

Figure 3 shows the same articles, but clustered using the slower full-clustering approach. There
appears to be no difference between Figure 2 and 3. This is most likely due to the fact that this
small set of articles does not have a significant difference in the words used in each article.
Therefore, there is no benefit from full clustering versus dynamic clustering.

Figure 3. Small scale full clustering.

Figure 4 shows the dynamic clustering of hundreds of articles, forming several sub-clusters. The
cluster shown in Figure 5 represents a full clustering of this same set of documents. From a
qualitative analysis, the clusters represented in these two figures differ only slightly. Individual
articles may minimally change position, but the overall sub-clusters remain much the same. It
appears that from an analyst’s viewpoint, there is little discernable distinction between the
figures.

7

Figure 4. Large scale dynamic clustering.

Figure 5. Large scale full clustering.
The results of this dynamic clustering algorithm are very positive. There is a significant
reduction in the amount of time required to add and remove documents from the system. This
allows the algorithm to be used in applications where the document set changes at a fast pace.
Additionally, and most importantly, it appears that there is little difference in the fidelity of the
resulting clusters between the full and approximate methods.

Discussion
The results visibly indicate that it is indeed possible to cluster large volumes of textual
information in an asynchronous environment. During the testing phase of development, we
compared this algorithm against one that was identical except that the entire dissimilarity matrix
was updated each time an article was added or removed. While the full update algorithm
performance would not allow real-time use of the system, it provided comparison of the clusters
produced using actual newspaper data. We were surprised to find that experiments using multiple

8

data sets resulted in very similar dendograms. It was very rare for any of the documents to
agglomerate in a different order and generally the only difference was a slight change in the
position of the leaf points of the dendogram. Since we use the distance between two clusters
being agglomerated as a factor in the distance between leaves in the dendogram, this variance in
the leaf node position is attributable to the approximations in the dissimilarity matrix.

We were very pleased at the efficiency gains we observed, particularly since the cost in accuracy
was so small. We have many ideas for future expansion of this algorithm. One idea is to
incorporate multi-threading. For example, to have one higher priority thread that handles
document additions and removals and user clustering requests, while another lower priority
thread updates the dissimilarity matrix. This would result in dissimilarity matrix that is less
approximate during times of low system activity and more approximate during the time when
many articles are being added and removed and when many users are requesting groupings.
Another idea is the incorporation of Latent Semantic Indexing techniques to allow reduction of
dimensionality of the vector space and allow even larger article sets. We also have relied on
qualitative comparisons of the similarity of clusters. We plan to provide more formal metrics in
the future.

Future Work
One of the challenges that we still face in this project is performance as the number of articles
increases over 1000. The initial requirement of the project was to support 5 newspapers to
demonstrate the feasibility of the approach. Over time, we have expanded these numbers to as
high as 21 newspapers and a maximum of 2500 articles. Performance quickly degraded on our
test computer with 256M of memory. The VSM model has a computational complexity of
approximately O(n2), while the agglomerative clustering algorithm (using Ward’s Update
function) has a computational complexity of approximately O(n3) where n is the number of
documents to be processed. This quickly limits the size of document sets that can be clustered.
From our analysis, it appears that the memory usage in this algorithm is the major performance
bottleneck. A quick evaluation shows that memory usage is increasing at approximately an O(n2)
rate, see Figure 6. In figure 6, the memory usage on the vertical axis is shown versus the number
of documents on the horizontal axis, with the solid line showing actual values from the VIPAR
system. The dotted line is the result of using regression analysis to fit a curve to the data points;
extending the curve give an estimate of memory requirements as the number of documents
grows. This regression analysis indicates that using the current algorithms, doubling the number
of articles to be processed required quadrupling the amount of memory. Even with our dynamic
algorithm, additional algorithmic improvements are going to be required to see significant
increases in the number of newspaper articles that can be processed. We are currently working
to address this problem so that tens of thousands of news articles could be comfortably processed
without significant lost of precision.

9

Figure 6. Graph of the projected memory usage based on existing algorithms.

Conclusion
Previous agglomerative clustering variants have shown the value of the approach to organizing
and classifying large amounts of information. However, before analysis could begin, a prior
calculation was required because of the substantial computational complexity of (1) creating
vectors to represent the documents using TF-IDF, then (2) comparing the vectors with proximity
measures and storing the results in a dissimilarity matrix, and then finally (3) performing the
agglomerative clustering. Each new document added or old document removed changed the
underlying TF-IDF vectors and required another set of prior calculations before analysis could
resume. This prevents the use of this approach to provide the capability of real-time analysis of
dynamic datasets. Responding to the need for such a capability, we have developed a method to
dynamically update the vectors and dissimilarity matrix while preserving sufficiently high
accuracy.

Using this strategy, every time a single document is added or deleted, the oldest 5% of the cells
in the dissimilarity matrix and the document vectors that correspond to them are updated. This
approach allows documents to be quickly added and removed from the document set and results
in sufficiently accurate agglomerative clustering that provide little discernable difference to an
information analyst.

The significance of this computationally feasible approach is that it shows little discernable
difference and no functional difference when compared to the computationally too-expensive
approach of fully updating the VSM and dissimilarity matrix. While not as mathematically
accurate, this partial updating of the dissimilarity matrix was computationally feasible within the
dynamic data environment of VIPAR. This approach provided the same document groupings
with only insignificant variations in the dendogram visualizations, while calculating the
groupings in a fraction of the time and thus providing real-time responsiveness.

In this paper, we show an example of software agents traversing 13 Internet newspapers,
downloading thousands of articles throughout the course of each day, and making these articles
available to analysts in real-time. In this dynamic environment, the clustering algorithm has
performed well, providing increased power to analysts with its novel approach.

10

References
1 A. K. Jain, M. N. Murtly, and P. J. Flynn, Data Clustering: A Review. ACM Computing Surveys, Vol. 31, No.3.,
1999
2 H.P. Luhn, A statistical approach to mechanized encoding and searching of literary information, IBM J. Res.
Develop. I, 4 , 1957
3 G.K. Zipf, Selective Studies and the Principle of Relative Frequency in Language, Harvard University Press,
Cambridge,Massachusetts,1932
4 G. Salton, M.E.Lesk, The SMART Automatic Document Retrieval System” Communications of the ACM, vol 8,
Number 6, June 1965
5 K. Sparck Jones, Index term weighting, Information Storage and Retrieval, 9, 619-633, 1973
6 K. Sparck Jones, Automatic Indexing: A State of the Art Review, review commissioned by the Office for Scientific
and Technical Information, London, 1974
7 G. Salton , C. Buckley, Term-weighting approaches in automatic text retrieval, Information Processing and
Management: an International Journal, v.24 n.5, p.513-523, 1988
8 M. Steinbach, G. Karypis, and V. Kumar, A Comparison of Document Clustering Techniques. University of
Minnesota Technical Report #00-034, 2000
9 A. V. Leouski, W. B. Croft, An Evaluation of Techniques for Clustering Search Results, Technical Report IR-76,
Department of Computer Science, University of Massachusetts. 1996
10 Y. Yang, J. Carbonell, R. Brown, T. Pierce, B. Archibald, and X. Liu, Learning Approaches for Detecting and
Tracking News Events. IEEE Intelligent Systems, Vol 14, No.4., 1999
11 H. Frigui and R. Krishnapuram A Robust Competitive Clustering Algorithm with Applications in Computer Vision,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 21, No. 5, pp. 450-465,1999
12 M.F. Porter, An Algorithm for Suffix Stripping, Program, Vol. 14, No. 3, pp. 130-137, 1980
13 J. H. Ward Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical
Association, Vol 24, No 301, 1963
14 T. E. Potok, M. T. Elmore, J. Reed, S. F. Samatova, and N. Ivezic, VIPAR: Advanced Information Agents
discovering knowledge in an open and changing environment, Fifth International Workshop CIA-2001 on
Cooperative Information Agents 2001
15 J. Felsenstein, PHYLIP (Phylogeny Inference Package), Distributed by the author. Department of Genetics,
University of Washington, Seattle 1980, 2004

11

