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Tokamak microturbulence and the GYRO code

• The most aggressively studied con-

cept for power production by fu-

sion reactions is the tokamak

• Uncertainties remain in predicting

the confinement properties and

performance of successively larger,

reactor-scale devices

• Turbulence causes a slow loss of

plasma to the tokamak wall, but con-

finement is still a factor of 105 better

than without a magnetic field

ITER: an experimental fusion reactor based on

the tokamak concept
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Simulation of tokamak microturbulence

Basic concepts and equations

• Single-particle motion in electromagnetic fields via Hamiltonian description:

H(x, p) =
1

2
(p − A)2 + φ(x)

• Ensemble of particles, f(x, p, t), satisfies a kinetic equation

df

dt
=

∂f

∂t
+ [f, H] = 0

• But H depends on potentials (φ, A), which in turn depend on f ,

φ = φ[f ], A = A[f ]
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Simulation of tokamak microturbulence (cont.)

Average over gyromotion

• Particles exhibit fast gyromotion about a gyrocenter, R: x = R + ρ(ϑ)

• Eliminate the timescale by averaging over the gyroangle, ϑ

• The gyrokinetic-Maxwell (GKM) equations couple an averaged distribution h to the

electromagnetic fields Φ:

∂th = Lah + LbΦ + {h, Φ}

– FΦ =
∫ ∫

dv1dv2 h are the Maxwell equations

– La, Lb, and F are linear operators

– f(r, v1, v2) is discretized over a 5-d grid (3 spatial, 2 velocity)

– electromagnetic fields Φ(r) = [φ, A‖] are independent of velocity

– where φ and A‖ are the electrostatic and electromagnetic potentials
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Simulation of tokamak microturbulence (cont.)

Specific Eulerian formulation

• h = f + zv‖A‖ and

∂h

∂t
+

(

v‖(θ)

qR

∂

∂θ
+ iωD

)

(h − 〈U〉) + iω∗〈U〉 + i
q

r
{〈U〉, h} = 0

• the operator 〈·〉 represents a gyroaverage

• U = φ − v‖A‖

• ωD is the curvature drift operator

• ω∗ represents the instability drive
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GYRO overview

• 5-d Eulerian GKM solver developed by Jeff Candy and Ron Waltz at General Atomics

• Computes the turbulent radial transport of particles and energy in tokamak plasmas

• Electron parallel motion treated implicitly, and other dynamics explicitly, using

Implicit-Explicit (IMEX) Runge-Kutta time-integration scheme

– Discretized on an Eulerian grid (not PIC).

• both global and electromagnetic capabilities

– Radially global: able to accomodate arbitrary profile variation

– Electromagnetic fluctuations with real electrons (mi/me = 3600)

• Toroidally spectral (single-n to full torus)

– Can switch between global and flux-tube operational modes

• Most comprehensive GKM code, worldwide
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Discretization schemes

• toroidal angle: fully spectral

• radius: upwind differencing for linear advective derivatives on f , and centered

differencing for field derivatives

• poloidal angle: upwind differencing for ∂f/∂τ , and centered differencing for τ field

derivatives

• velocity-space: Gauss-Legendre quadrature for velocity-space integration

• nonlinearity: nonlinear Poisson bracket approximated with conservative

difference-spectral analogue of the Arakawa method

• collisions: represented by second-order diffusive-type operator

• time-advance: second-order IMEX RK scheme for electron parallel motion
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GYRO accomplishments

Comparison with DIII-D L-mode ρ∗ experiments

• calculations matched experimental results for electron and ion energy transport [1]

within experimental error bounds

• Bohm-scaled diffusivity of the experiments was reproduced

• most physically comprehensive tokamak turbulence simulations ever undertaken

Evaluation of minimum-q theory of transport barrier formation

• found that a minimum-q surface (where s = 0) in a tokamak plasma does not act as

the catalyst for ion transport barrier formation [4]

• it was clearly shown that transport is smooth across an s = 0 surface due to the

appearance of gap modes
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GYRO accomplishments

Resolving the local limit of global GK simulations

• a global transport scaling study [6] overestimated the benchmarked local value [5],

contradicting the local hypothesis which states that global and flux-tube simulations

should agree at small ρ∗

• GYRO found an ion diffusivity χi that matched the Cyclone value at small ρ∗ [3]

• GYRO further showed for these large-volume simulations, there is a long transient

period for which χi exceeds the statistical average

Particle and impurity transport

• first systematic gyrokinetic study of particle transport, including impurity transport and

isotope effects

• found that in a burning D-T plasma, the tritium is better confined than deuterium, with

the implication that the D-T fuel will separate as tritium is retained
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GYRO performance: Two physical test problems

1. Waltz Standard Case Benchmark (WSCk)

2. Plasma Edge Case

Problem size fixed in scaling study (strong scaling)
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GYRO performance: Test platforms

1. Cray X1 at ORNL: 512 multistreaming processors

2. AMD cluster at PPPL (Princeton): 48 2-way Athlon MP2000+ (1.667 GHz), gigE

interconnect

3. IBM p690 cluster at ORNL: 27 32-way p690 SMP nodes (1.3 GHz Power4), Federation

Switch

4. IBM Nighthawk II cluster at NERSC: 416 16-way SMP nodes (375 MHz Power3), SP2

Switch

5. SGI Altix at ORNL: 256-way single-system image, NUMAflex fat-tree interconnect, 1.5

Ghz Itanium II
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GYRO performance – communication design

Summary of message-passing design GYRO

• Transpose operations coded using loops over MPI ALL TO ALL. Performance of these

routines is the ultimate scaling limiter.

• Implementation details

– created TRANSPOSE and SSUB libraries to perform 3-index row transposes and

2-index column tranposes,

– utilizing subcommunicators COMM ROW and COMM COLL

• code has been run up to 2000 processors on Power3 cluster at NERSC (Seaborg), but

scaling flattened out fairly quick after 512 processors
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GYRO performance – Waltz standard case

Problem 1: Waltz Standard Case

• parameters defined in [2], used as reference case in various publications

• no electromagnetic effects

• electron collisions

• flux-tube, 16 toroidal modes, electrons and ions

• 16 × 140 × 8 × 8 × 20 × 2 grid

• grid typical of production runs and represents roughly the minimum grid size to obtain

physically accurate results

• grid is relatively coarse
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GYRO performance – Plasma edge case

Problem 2: Plasma edge case

• prototype case to explore parameter

space characteristic of the plasma edge

• magnetic shear and safety factor are high

at the outer plasma boundary, and equilib-

rium gradients are steep

• global, 28 toroidal modes, ions only (adia-

batic electrons)

• 28 × 200 × 10 × 10 × 28 × 1 grid
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Time in milliseconds

Machine processors time/step %MPI-time/step Steps/sec

IBM Power3 896 602.45 17.2

cluster 1344 544.58 14.9

1792 405.19 16.7 2.5

2240 431.48 17.0

2688 422.91 15.7

IBM Power4 224 994.94 21.1

cluster 448 561.21 23.9 1.8

SGI Altix 224 554.12 34.0 1.8

Cray X1 224 121.98 12.3

448 72.25 9.6

504 62.35 9.7 16
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Conclusions

• GYRO development has reached all its original capability objectives

• Refinements are continually being added

• Several important research results have been obtained just over the last year and a half

• X1 has provided a platform where new physics scenarios have been quickly designed

and analyzed just in the last year

• The performance of GYRO on nonvector machines is constrained by communication

bandwidth; not true on X1, where the GYRO MPI ALL TO ALL costs have dropped to the

lowest levels ever

• Collisions perform rather poorly on the X1 despite several optimizations to improve

vectorization to its current state. Any further improvement will probably be gained via a

new algorithm.
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