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Stick-Slip Dynamics

• Has been observed from the nano - to macro scales - from 
the atomic scale to earthquakes. 
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Both periodic and chaotic 
stick-slip dynamics have 
been observed



Friction Models

Persson, PRB 55, 8004 (1997)
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/ /n n n n n nmx x U x V x fγ η+ = −∂ ∂ − ∂ ∂ + +

Friction is ruled by robust dynamics
Good qualitative agreement between variety of models and types of 
interaction potentials used for a model choice of parameters may be 
even more important than the choice of a model !!!
Initial conditions !

Persson, PRB 55, 8004 (1997)



Modeling the AFM Motion

sin ( )x x x K vt xγ+ + = −
J. S. Helman, W. Baltensperger, and J. A. Holst, 
Phys. Rev. B 49, 3831 (1994)

int 1 int 1sin ( ) ( , ) ( , )n n n cm n n n nx x x K vt x F x x F x xγ + −+ + = − + +
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Frenkel-Kontorova Model -
QCM Experiment

/ /n n n n n nmx x U x V x f Fγ+ = −∂ ∂ −∂ ∂ + +

1 1sin ( 2 )n n n n n nx x x f x x xγ κ + −+ + = + − +

( ) ( ) 2 ( )F t F t kT t tγ δ′ ′< >= −

m - the mass of the sliding particle
γ - the dissipation coefficient
U - the interaction potential between the 
particles
V - the surface potential (surface – particle 
interaction)
f - the external driving force
F - the thermal noise 

Dimensionless units, sinusoidal potential, F=0

1 1sin ( 2 )n n n n n nx x x f x x xγ κ + −+ + = + − +&&

κ ∝ inter-atomic interaction/atom-substrate interaction potentials
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Values of the Sliding Velocities
for Small Forcing

Only particular values of velocities 
of the “uncontrolled motion” can be observed:

v = f/γ - free sliding

v = vchaotic = 1.8 (just a single value 
for given parameter set)

v = kv0   here 
1

1/ 2 1/ 2
0

2 cos( ) ( )c
fv

mN
π π κ κ

γ π

−−
= −

Y. Braiman, F. Family, and H. G. E. Hentschel, Phys. Rev. 
E 53, R3005 (1996)

N is the number of particles
and k is an integer



Dynamics of Propagating Arrays

We separate the center of mass motion of array from 
spatiotemporalfluctuations (which only dissipate energy) 

( ) ( ) ( )n nx t x t x tδ= +

where < δxn(t) > = 0 by construction

Keeping fluctuations small, the center of mass obeys

2sin( )[1 / 2]nx x x x fγ δ+ + − < > =&& &

The spatiotemporal fluctuations obey

1 1 cos( ) ( 2  )n n n n n nx x C x x x x xδ γ δ δ κ δ δ δ+ −+ + = − +&& &



Resonant Parametric Forcing

We make the Fourier decomposition

2 /( ) ( ) imn N
n m

m

x t x t e πδ δ= ∑

and equations of motion for the modes

2[ cos( )] 0m m m mx x C x xδ γ δ δ+ + Ω + =&& &

where )/sin(2 Nmm πκ=Ω

Shows parametric forcing when 2/ω=Ωm



Spatial Coherence and Mode Selection

If we look for a solution for the m’th mode of the form

sin( / 2 )m m mx b tδ ω β= +

we then find:

Only one mode can exist at a time.

There are N such solutions. Each is spatially coherent with a different 
center of mass velocity and different amplitude fluctuations.

As the spatial fluctuations bm increase, phase synchronization decreases, 
and so the average center of mass velocity decreases.
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Velocity of the Center of Mass

If we look for a solution for the m’th mode of the form

sin( / 2 )m m mx b tδ ω β= +

and the center of mass motion is 
described by 

0 sin( )x x t B tω ω= + +

then the velocity of the center of 
mass is
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H. G. E. Hentschel, F. Family, and Y. Braiman, PRL 83, 104 (1999)



Sliding on Disordered Substrate

Friction coefficient can be significantly reduced  
(by orders of magnitude) when sliding on irregular surfaces
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Key Issue ⇒ Phase Synchronization

The better the array is phase synchronized - the faster it moves !
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Phase Synchronization

We define phase synchronization as the inverse of the fluctuations σ
from the center of mass motion
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Disorder - Enhanced Synchronization

Time series of positions of all the particles in N=25 particle array for: 
( a ) the identical array; ( b ) 20% of disorder; 
( c ) 25 % of disorder; ( d ) 30 % of disorder 

(a) (b)

(c) (d)

Vcm=0.05Vcm=0.05

Vcm=0.146
Vcm=0.258



The position of a particle #12
in array as a function of time.

The bottom curve corresponds to 
the identical array. 

The middle curve corresponds to 
to the arrays with 20% of 

disorder, 
The top curve corresponds to the 

array with 30% of disorder.

The inset shows the average 
velocity of the center of mass as 

a function of the amount of 
disorder

Sliding is Faster on Disordered Surfaces

Y. Braiman, F. Family, H. G. E. Hentschel, 
C. Mak, and J. Krim, PRE 59, R4737 (1999)



Time series of the fluctuations 
from the center of mass f(σ) for 
different amounts of disorder.

The left-hand part of the plot 
corresponds to the identical 

array. 
The middle part corresponds to 

σ=15%.
The right-hand part corresponds 

to σ=30%.
The inset shows the average 
fluctuations from the center of 

mass as the function of the 
velocity of the center of mass.

Sliding is Faster for a Better Synchronized Array

Y. Braiman, F. Family, H. G. E. Hentschel, 
C. Mak, and J. Krim, PRE 59, R4737 (1999)



Cumulative slip time distribution 
for the array. 

The bottom curve corresponds 
to the identical array.

The middle curve corresponds to 
σ = 2.5%.

The top curve corresponds to 
σ = 5%.

Disorder Induced Depinning

Y. Braiman, F. Family, H. G. E. Hentschel, 
C. Mak, and J. Krim, PRE 59, R4737 (1999)



Friction Control - Motivation

• Velocity/friction force control during sliding

• Ability to reach desired targeted behavior

• Achieve fast transient times

• The applied control is limited in strength

• Requires only limited accessibility

• Uses global variables 



Friction can be manipulated by applying small perturbations to
accessible elements and parameters of the sliding system. 

• Using a surface force apparatus, modified for measuring friction forces while 
simultaneously inducing normal (out-of-plane) vibrations between two boundary-
lubricated sliding surfaces, load- and frequency-dependent transitions between a 
number of "dynamical friction" states have been observed [1]. 

• Extensive grand-canonical molecular dynamics simulations [2] revealed the nature
of the dynamical states of confined sheared molecular films, their structural 
mechanisms, and the molecular scale mechanisms underlying transitions between 
them. 

• Methods to control friction in systems under shear that enable to eliminate chaotic 
stick-slip motion were proposed in [3]. Significant changes in frictional responses 
were observed in the two-plate model [4] by modulating the normal response to 
lateral motion [5]. 

• The surface roughness and the thermal noise are expected to play a significant role 
in deciding control strategies at the micro and the nano-scale [6].  

1. M. Heuberger, C. Drummond, and J. Israelachvili, J. Phys. Chem. B 102, 5038 (1998).
2. J. P. Gao, W. D. Luedtke, and U. Landman, J. Phys. Chem. B, 102, 5033 (1998).
3. M. G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. E 57, 7340 (1998).
4. M. G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. Lett., 77, 683 (1996), and Phys. Rev. E 54, 6485 (1996).
5. V. Zaloj, M. Urbakh, and J. Klafter, Phys. Rev. Lett., 82, 4823 (1999).
6. Y. Braiman, F. Family, H. G. E. Hentschel, C. Mak, and J. Krim, Phys. Rev. E, 59, R4737 (1999).



• Experimentally, friction can be manipulated by applying in-plane and 
out-of-plane surface vibrations. This is realized, for example, by the use of 
a quartz piezo-element that oscillates the surface of frictional contact. The 
frequency of such an oscillation may vary from few Hz to MHz, and, 
perhaps to GHz limit using micro/nano cantilevers 

• Our experiments demonstrate that already very slow (in the range of 100 
Hz) vibrations can significantly alter the frictional behavior of the sliding 
system. This evidence  strongly indicates the existence of a much slower 
time scale that governs the dynamics of the frictional system. 

• From the algorithmic standpoint, friction can be controlled by applying 
small perturbations to accessible elements and parameters of the sliding 
system. Here, the challenge is to design control strategies that require only 
minimal accessibility. 

• Both feedback and non-feedback means of control have been considered 
and speed, accessibility, and predictability considerations are those that 
prevail in choosing the optimal best strategy. 
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Time series of the center of mass velocity (in dimensionless units). The red line shows the target 
velocity function,  v(t) = 0.2 + 0.2 sin(0.05 t),  and the blue line shows the center of mass 
velocity.  The control is applied every time step, starting at t = 250.  The parameters are: N = 15, 
γ = 0.1, f = 0.3, κ = 0.26, α = 1, b = 0, and ζ = 7.

Friction Control



Non-Lipschitzian Dynamics 

1/ 7( )tφ φ= −Consider:

Lipschitz condition: the derivatives of the right-hand side of 
the dynamical equations with respect to the state variables
is bounded

At the equilibrium point, φ = 0, Lipschitz condition is violated, 
since 6/7/ (1/7)φ φ φ−∂ ∂ = − tends to -∞ as φ tends to zero.

Thus the equilibrium point φ = 0 is an attractor with “infinite”
attraction power (terminal attractor). 



Non-Lipschitzian Control of Friction 
for AFM and SFM-type experiments

Control:

1 arg( ) ( ( ) )t et mC t f t f βα= −Attractor:

Repeller:

2 arg arg( ) ( ) sgn[( )( ( ) )] [ | ( ) |]av m av m m t et t et avC t f f f f f f t H r f t fβρ= − × − − × − −

( ) 1  0,  and ( ) 0  0  H z for z H z for z= > = <

1/(2 1),  1,2,3,...n nβ = + =

1 2( ) ( ) ( )C t C t C t= −



Non-Lipschitzian Control of Friction
for QCM-type of experiment

Control:

1 arg( ) ( ( ) - )t et cmf t v t v βα=Attractor:

Repeller:

2 arg arg( ) ( ) sgn[( )( )] [ | |]av cm av cm cm t et t et avf t v v v v v v H r v vβρ= − × − − × − −

( ) 1  0,  and ( ) 0  0  H z for z H z for z= > = <

1/(2 1),  1,2,3,...n nβ = + =

1 2( ) ( ) ( )cf t f t f t= −

Y. Braiman, J. Barhen, & V. Protopopescu, 
Physical Review Letters 90, 094301 (2003).



Friction Control - a Model

/ /
n n n n n n

mx x U x V x f F Controlγ+ = −∂ ∂ −∂ ∂ + + +

xj is the position of the particle j
m is the mass of the sliding particle
γ is the dissipation coefficient
U is the interaction potential
V is the surface potential
f is the external driving force
η is the thermal noise (temperature 
effect)

arg( ) ( ( ) - )t et cmC t v t v βα=
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Y. Braiman, J. Barhen, & V. Protopopescu, 
Physical Review Letters 90, 094301 (2003).



The Model

1 1sin ( 2 )n n n n n nx x x f x x x Controlγ κ + −+ + = + − + +

Driven Frenkel-Kontorova Model

xj - position of the particle j
γ - single particle dissipation
f - external forcing
κ - the ratio of the interparticle

to substrate interactions 

200 250 300 350 400
0.05

0.10

0.15

0.20

Vcm = 0.1

C
en

te
r o

f M
as

s 
Ve

lo
ci

ty

Time

300 400 500 600
0

1

2

3

V cm = 1.8

C
en

te
r o

f M
as

s 
Ve

lo
ci

ty

Time

900 925 950 975 1000
-0.2

0.0

0.2

0.4

V
cm

 = 0

C
en

te
r o

f M
as

s 
Ve

lo
ci

ty

Time



0 1000 2000 3000

0

1

2

3

(a)

Vtarget = 0.Ve
lo

ci
ty

 o
f t

he
 C

en
te

r o
f M

as
s

Time
0 1000 2000 3000

0

1

2

3

(b)

Vtarget = 0.5Ve
lo

ci
ty

 o
f t

he
 C

en
te

r o
f M

as
s

Time

0 1000 2000 3000
-1

0

1

2

3

(c)

Vtarget = 1.

Ve
lo

ci
ty

 o
f t

he
 C

en
te

r o
f M

as
s

Time
0 1000 2000 3000

-1

0

1

2

3

(d)

Vtarget = 3.

Ve
lo

ci
ty

 if
 th

e 
C

en
te

r o
f M

as
s

Time

Figure: Performance of control algorithm for four values of the center of mass 
velocity ( 0, 0.5, 1.0, and 3.0) for a 15 - particle array.  Control was initiated at 
t=2000.  Blue lines show time series of the center of mass velocities, while red lines 
show the control. In all cases, the desired behavior was rapidly achieved.   All the 
units are dimensionless and initial conditions were chosen randomly.

1. New algorithm developed
–fast and efficient
–enables to induce any arbitrarily 
chosen behavior compatible with 
the system's dynamics.

2. Methodology is based on two 
original concepts:

– non-Lipschitzian dynamics 
– global  behavior targeting

3. Quickly reaches targeted 
behavior.

Y. Braiman, J. Barhen, & V. Protopopescu, 
Physical Review Letters 90, 094301 (2003).

Demonstration of Friction Control



Effect of the Repeller
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V. Protopopescu & J. Barhen, Chaos  14, 400 (2004).



Control Towards Desired Functional Behavior

0 200 400 600 800 1000
-0.5

0.0

0.5

1.0

1.5

2.0

v_
cm

time
0 200 400 600 800 1000

-0.5

0.0

0.5

1.0

1.5

2.0

v_
cm

time

V. Protopopescu & J. Barhen, Chaos  14, 400 (2004).



Pulsed Control
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Pulsed Control Schematic
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V. Protopopescu & J. Barhen, Chaos  14, 400 (2004).



Step-Like Control
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Step-Like Control Schematic

V. Protopopescu & J. Barhen, Chaos  14, 400 (2004).
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Dependence on Oscillation Amplitude
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S. Jeon, T. G. Thundat, and Y. Braiman, submitted to Applied Physics Letters



Dependence on the Frequency
of Oscillations
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Resonance Response
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Summary

• Nanoscale arrays can exhibit a variety of modes of motion with 
different degrees of spatial coherence which affects frictional 
properties of the array

• Spatiotemporal fluctuations in small discrete nonlinear arrays 
affect the dynamics of the center of mass. Here we presented 
numerical evidence indicating that phase synchronization is 
related to the frictional properties of such sliding atomic scale 
objects. 

 

• We discussed mechanisms and implementation of how the 
resulting atomic scale friction can be tuned with noise, 
quenched disorder, and surface vibrations.



Summary
We derived the properties of a general control algorithm for 
quantities describing global features of nonlinear extended 
mechanical systems.  The control algorithm is based on the 
concepts of non-Lipschitzian dynamics and global targeting.  
We showed that:  

(i) Certain average quantities of the controlled system can 
be driven – exactly or approximately – towards desired 
targets which become linearly stable attractors for the 
system’s dynamics;  

(ii) The basins of attraction of these targets are reached in 
very short times; and  

(iii) While within reasonably broad ranges, the time-scales 
of the control and of the intrinsic dynamics may be 
quite different, this disparity does not affect 
significantly the overall efficiency of the proposed 
scheme, up to natural fluctuations.   

OAK RIDGE NATIONAL LABORATORY
U.S. DEPARTMENT OF ENERGY


