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Abstract — The development of cost-effective high-

performance parallel computing on multi-processor 
supercomputers makes it attractive to port excessively time 
consuming simulation software from personal computers (PC) to 
super computes.  The power distribution system simulator 
(PDSS) takes a bottom-up approach and simulates load at the 
appliance level, where detailed thermal models for appliances are 
used.  This approach works well for a small power distribution 
system consisting of a few thousand appliances.  When the 
number of appliances increases, the simulation uses up the PC 
memory and its runtime increases to a point where the approach 
is no longer feasible to model a practical large power distribution 
system.   

This paper presents an effort made to port a PC-based power 
distribution system simulator to a 128-processor shared-memory 
supercomputer.  The paper offers an overview of the parallel 
computing environment and a description of the modification 
made to the PDSS model.  The performance of the PDSS running 
on a standalone PC and on the supercomputer is compared.  
Future research direction of utilizing parallel computing in the 
power distribution system simulation is also addressed.   
 

Index Terms—parallel computation, load modeling, message 
passing interface (MPI), multi-processor supercomputer. 

I. INTRODUCTION 

HYSICALLY-BASED modeling approaches [1][2] have been 
widely used to simulation power distribution system loads, 
because they are able to predict the individual load 

dynamic response to ambient temperature variations, random 
customer energy consumption, as well as the electricity 
market prices.   Using this approach, the Energy Science and 
Technology Division (ESTD) within the Pacific Northwest 
National Laboratory (PNNL) has created a prototype ultra 
complex power system simulator [3][4][5] (called Power 
Distribution System Simulator or PDSS) under a Laboratory 
Directed Research and Development project titled the Energy 
System Transformation Initiative.  The key feature of this 
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computer program is its ability to accurately predict load 
shapes of various household appliances such as building 
heating ventilation and air conditioning (HVAC) systems, 
refrigerators, lighting, washers and dryers, dishwashers and 
ranges.  By solving the power at each individual load using 
first principle calculations, this approach enables one to 
simulate the price responsive load control technology under 
various market structures.  By aggregating individual loads at 
the feeder level, one can simulate the aggregated response of 
these loads with reasonable accuracy.  This approach works 
well for a power distribution system of a few thousand houses. 
When the number of houses increases to around 10,000, its 
runtime increases rapidly and the simulation uses up the PC 
memory, making it infeasible to model a practical large power 
distribution system.  

One option to reduce the simulation time and conform to 
the memory requirement is to conduct the simulation in multi-
processor supercomputers. The development of cost-effective 
high-performance parallel computing on multi-processor 
supercomputers makes it attractive to port excessively time 
consuming simulation software from PCs to supercomputers.  
PNNL acquired an SGI Altix 3000 128 CDM SMP 
superconomputer for general purpose high performance 
computing applications. The system runs a single Linux 
operating system over 128 Intel Itanium 2 processors running 
at 1.5 GHz. In addition, the system has 256 GB of RAM and 
¼ TB of disk space.  An effort is made to port the PC-based 
PDSS to the Altix supercomputer.   In this paper, the 
technique used to modify the PDSS for parallel computation is 
presented.  The results indicate that the parallel computing 
approach works well in physically-based distribution system 
simulations. The memory requirement is met and the runtime 
is significantly shortened.   

II. THE MODELING APPROACH OF PARALLEL COMPUTATION 

A. The modeling approach of the PDSS 

The Power Distribution System Simulator developed by 
PNNL takes a bottom-up approach, in which detailed 
physically-based models of each type of appliance are 
developed. As shown in Fig.1, residential appliances are 
categorized into those that are thermostatically controlled and 
those that are non-thermostatically controlled. There are three 
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types of thermostatically controlled appliances (TCAs) 
allowed in the model:  heating ventilation and air conditioning 
(HVAC) systems, electric water heaters, and refrigerators. 
Non-thermostatically controlled appliances include dish 
washers, washers/dryers, and the like. 

There are six appliance modules in PDSS, as shown in Fig. 
2.  PL is the power at the feeder head, PH is the power output 
of a household, and B is the energy market price. The inputs 
of each household load are temperature data, setpoint setting 
sequence, customer consumption probabilities, electricity 
market prices, and time steps.  During the initialization, PDSS 
reads the data and allocates memory for each house.  PDSS 
then calculates the power output for each appliance in a 
household and then aggregates its energy consumptions at 
each time step.  For a non-TCA, PDSS determines its on/off 
status based on its likelihood of on/off.  For a TCA, PDSS 
calculates the inflection points, where the appliance will turn-
on or turn-off, based on the current ambient temperature and 
its temperature setpoint.  As shown in Fig. 2, the calculation 
of each household load is a highly parallel process and is 
suitable for parallel computation.   

 
Fig. 1: A bottom-up approach 

 
Fig. 2: The block diagram of PDSS 

B. The parallel processing modeling approach 

There are two approaches to apply parallel computation for 
the PDSS based on its software structure. The first approach is 
the shared-memory approach; the second one is the message 
passing interface (MPI) approach.   

1) The shared-memory approach 
The shared-memory [6][7] approach provides tasks with a 

common asynchronous read/write-shared-address space, 
where access is controlled by lock and semaphore 
mechanisms.   

As shown in Fig. 3, all the house data are put into the 
shared-memory.  The calculation of individual house loads is 
evenly distributed among all the processors.  The results 
obtained are then written back to the shared-memory.  The 
advantages of this approach are:  
• The runtime can be shortened significantly. 

Communication between processors is minimized because 
of the shared-memory.  

• The calculation is efficient because the houses are evenly 
distributed to processors.  

• Synchronization is done at the end of each time step.   
However, the approach requires significant coding efforts 

to implement.  Because the standalone version of the PDSS is 
not developed for parallel computation, new codes need to be 
written to modify the current PDSS codes for memory 
allocation.  The shared-memory will be used to store the house 
parameters, and any updates after function calls need to write 
back to the shared memory.  

 
Fig. 3: An example of the shared-memory approach 

In addition, in power distribution systems, the residential 
load will mix with other load at the distribution substation 
feeder head as shown in Fig. 1. Each feeder made of purely 
residential load will normally consist of a few hundred to a 
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few thousand households at maximum.  It takes a standalone 
PDSS (refer to t1 in Table I) around 0.71 second CPU time to 
simulate a 1000-household load over a 100-hour period at 1 
hour interval.  To split the work among four processors (refer 
to t4 in Table I), one can shorten the simulation time to 0.25 
second (elapsed time).  The runtime reduction is not 
significant for parallel the simulation of houses if the number 
of the houses at a feeder does not exceed 1000.   

Furthermore, the control strategies, the weather tapes, as 
well as price inputs either vary feeder by feeder or by control 
groups.  Thus, to account for the variations, it is easier to 
parallelize the calculation at the feeder level and pass around 
the aggregated load information.  This leads to the second 
approach, the MPI approach.   

Table I: Simulation Time (Elapsed Seconds) 

Number of 
Households 

1000 5000 10000 

t1 (s) 0.71  2.31 4.54 

t4 (s) 0.25  0.55 0.91 

∆t = t1- t4 (s) 0.46 1.76 3.63 

 
2) The MPI  approach 

As shown in the five-processor example (Fig. 4), the MPI 
approach [8] is to parallelize the running of PDSS instead of 
the houses inside PDSS.  Let Processor 1 to 4 each run a copy 
of PDSS, with each PDSS simulating a distribution feeder.  
Let Processor 0 collect the aggregated outputs and process 
them.  Processor 0 can broadcast general information such as 
the current market price to Processor 1 – 4, which will then 
respond accordingly.  The key to making this approach 
efficient is to keep the communication between processors at 
minimum.  To do so, one needs to specify the data that needs 
to be sent back and forth at the end of each time interval.  
Currently, we only collect the aggregated power output from 
each feeder and send the feeders the price data whenever the 
price changes. 

 
Fig. 4: An example of the MPI approach. 

The advantages of this approach are: 

• Each PDSS has its own set of input data stored in the 
local memory of each processor. Therefore, one can 
run different load control strategies under different 
weather conditions.  

• Minimum coding effort and higher portability. MPI 
is designed for high performance on both massively 
parallel machines and clusters, and is a standard for 
message passing in the parallel computing paradigm.  
One can call MPI functions in C++ programs to 
parallel the running of those programs without 
changing the structure of the programs.  The code 
was tested on a four-processor computer, and then 
was run on the 128-processor Altix.  No additional 
codes needed to be written. 

The disadvantage of this approach is that the total runtime 
is determined by the feeder serving the most houses.  For 
example, if there are four feeders containing 100, 500, 1000, 
and 1500 houses, the other processors will have to wait at 
each aggregation time step until the one simulating the 1500 
houses finishes its calculation.  Another disadvantage is that 
each PDSS may run at its own time step.  If there are some 
exogenous changes, such as price, one needs to synchronize 
each PDSS at each data sending and receiving point.   

III. THE MODELING ENVIRONMENT 

In our project, we used MPI on an SGI Altix 3700 super-
cluster. The computer consists of 128 Itanium 2 1.5 gigahertz 
processors, and ¼ terabytes of globally addressable system 
memory. Communication takes place over the NUMAlink 
interconnect fabric, which provides latency as small as 50 
nanoseconds and a bandwidth of 3.2 gigabytes/second. Altix1 
runs a single modified Red Hat advanced server Linux 
operating system. This presents the image that all the 
processors in the system are available, as if it were a 
workstation with 128 processors.  

Altix1 recommends that any job taking more than 30 
seconds of CPU time use the batch system, for reasons of 
fairness as well as system efficiency.  Altix1 uses the LSF 
scheduler from Platform Computing to manage resources and 
schedule jobs on the system. Gold allocation system is used 
for job submission.  LSF is a program that attempts to balance 
the resource utilization on one or more computers among 
competing users and their processes. The goal is to give many 
users’ processes a “fair share” of CPU, memory and other 
resources [9].  LSF works with a set of job queues.   Many 
different queues can be defined, each with its own criteria for 
job resource allocation.    

IV. PERFORMANCE RESULTS 

To determine the best approach to parallelize the running of 
PDSS, we first ran PDSS on a single processor PC and then 
conducted three experiments on the Altix supercomputer.  All 
cases are run for 100 hours at 1-hour interval.   

Case 1: Running on a standalone single processor PC 
Using a single processor PC, which has a Pentium 4 CPU 

(2.8 GHz) and 512 MB RAM, we evaluated the runtime of 
PDSS for a distribution power grid consisting of 104, 10×104, 
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20×104, and 50×104 houses. The results are listed in Table II.  
Table II: The Runtime of PDSS (PC case) 

Number of Houses 10000 100000 200000 500000

Elapsed Time (s) 11.4790 N/A   N/A N/A

When the number of houses is greater than 10×104, the PC 
runs out of memory and PDSS fails to complete the 
simulation. Therefore, 10×104 is a threshold when the PC 
resource has been depleted. 

Case 2: Running on a single processor of Altix1 
The base case is to run 104, 10×104, 20×104, 50×104 houses 

on a single processor.  Assuming that each feed is composed 
of 104 houses, these cases simulate 1, 10, 20, and 50 feeders, 
respectively. The CPU time tcpu is the total time spent by the 
CPU on behave of PDSS and the wall clock time tw is the true 
runtime (elapsed time) of the program.  The resource usages 
are shown in Table III.   

There are three observations:  

• As expected, the runtime is significantly shortened 
compared with the runtime on PC. 

• As expected, both CPU time and elapsed time go 
up almost linearly with the number of houses.  We 
see from the memory report that the simulation 
takes enormous physical memory and swap 
memory.  Therefore, a PC’s resources can be 
easily depleted.   

• The system efficiency is higher when running 
more houses.  This is because the overhead time is 
relatively fixed.  Therefore, the overhead time 
takes less share in the total time consumed, when 
the core program runs longer.  Note that when the 
number of houses is greater than 20×104, the 
efficiency increase reaches its peak. 

Table III: The Resource Usage Summary (single processor) 

No. of Processors 1 1 1 1 

No. of Houses 104 10×104 20×104 50×104

CPU Time (s) 0.42 33.64 79.17 198

Wall Clock Time (s) 5.28 42.98 83.03 208.60

Efficiency (tcpu / tw) 8% 78.3% 95.4% 94.5%

Max Memory (MB) 5 152 284 680

Max Swap (MB) 10 4049 4181 4577

 
Case 3: Running on multiple  processors (104 houses per 

processor) 
With each processor allocated one feeder of 104 houses, we 

then run PDSS on 1, 10, 20, and 50 processors to simulate 
one-feeder (104 houses), 10-feeder (10×104 houses), 20-feeder 

(20×104 houses), and 50-feeder (50×104 houses) cases.  We 
have the feeders running completely in parallel and the 
communication between feeders happens at the end of the 
simulation (at 100th hr). The resource usage summary is 
shown in Table IV.   

There are several observations based on the results: 

• Compared with the non-parallel case shown in 
Table III, the runtime is shortened in proportion to 
the number of processors used.  The runtime of the 
one-processor-per-feeder case is almost equal to 
that of single processor simulating one feeder case.  
This is as expected because we have limited the 
number of communications between feeders, 
which makes the overhead time spent on 
communication negligible. 

• The memory usage is regular.  Because each 
processor is running a simulation of 104 houses, 
the memory occupation is distributed to each 
processor.  Therefore, it is not necessary for Altix1 
to arrange Swap to meet the needs of house 
parameter storage. 

• The efficiency is also similar to that of the single 
processor case.   

Table IV: The Resource Usage Summary (one feeder per processor) 

No. of Processors 1 10 20 50 

No. of Houses 104 10×104 20×104 50×104

Total CPU Time (s) 0.42 0.42 0.44 0.44

Wall Clock Time (s) 5.28 5.38 5.41 5.54

Efficiency (tcpu / tw) 8% 7.8% 7.4% 8%

Max Memory (MB) 5 5 5 5

Max Swap (MB) 10 10 10 10

From the results, one can reach the conclusion that by 
simply running the simulations in parallel, we can shorten the 
simulation time significantly, depending on how many 
processors one has.   

Case 4: Running on multi- processors (104 houses in total) 
To study the optimal number of houses to partition to each 

processor, a total number of 10,000 houses is divided among 
10, 20, and 50 processors.  As shown in Table V, the runtime 
is first shortened when dividing the 10,000 houses to 10 
processors.  However, when dividing the 10,000 houses to 20 
or 50 processors, the runtime starts to increase.  This is 
because the overhead time spent on communication and on 
partition jobs starts to take a greater share in the total program 
runtime (the wall clock time).  Therefore, parallel running 
very small numbers (200 or 250) of houses will result in an 
increase of runtime.  Thus, the number of houses simulated by 
each processor should be more than 1000 to make good use of 
parallel computation. 
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Table V: The Resource Usage Summary (one feeder per processor) 

No. of Processors 1 10 20 50 

No. of Houses on  

Each Processor 

10,000 1,000 250 200 

Total No. of Houses 104 104 104 104

Total CPU Time (s) 0.42 0.54 0.47 0.42

Wall Clock Time (s) 5.28 0.7 1.39 1.38

 
Case 5: Running multi- processes on a single processor  

If the number of feeders exceeds the number of processors, 
one needs to run multi-process on each processor.  To study 
the impact of running multi-process on each processor, a total 
number of 10,000 houses is divided to 1, 10, 20, and 50 
processes and has been run on the 4 processors of Altix1.  As 
shown in Table VI, we observed that the runtime is similar to 
or longer than the single processor case.  Therefore, one may 
need to combine the simulation of the many small feeders to a 
few major feeders whenever it is possible. 

Table VI: The Resource Usage Summary (4-processor case) 

No. of Processes 1 10 20 50 

No. of Processors 4 4 4 4 

No. of Houses 104 10×104 20×104 50×104

Total CPU Time (s) 4.159 42.462 88.352 221.022

Wall Clock Time (s) 5.210 43.550 89.340 222.100

 
To summarize, we conclude  

• The runtime of running the parallel version of PDSS 
is shortened proportional to the processors used. 

• To make the parallel computation worthwhile, the 
number of houses running on each processor is better 
above 1000 houses. 

• For cases having less than 20000 houses, a single 
processor will be competent for the simulation. 

• Running multi-process on a single processor is not 
going to save runtime. 

V. CONCLUSION 

This paper presents the results obtained by an effort made 
to port a serial software package used for power distribution 
system simulation to a parallel computation environment.  The 
physically-based residential load simulation is especially 
amiable to parallel computation because there is minimal 
interaction between each household load.  To simulate each 
individual load with a detailed thermal model, large memory 
storage is needed.  The solving of distributed differential 
equations also takes significant computer time.  To port the 
simulation to supercomputers, the program runtime is 
shortened significantly.  With 256 GB RAM and ¼ GB disk 
space, one can simulate the power consumption of millions of 

households within minutes. 

Future research direction will be to fully utilize the MPI and 
feed price information to each feeder and study the interactive 
behavior among loads that reside in different distribution 
feeders.  It is also promising to port power flow calculation 
software packages to the supercomputer and link the 
distribution system simulation together with the transmission 
simulation to study the responsive load impact to the overall 
power systems.  Because the distribution simulation and the 
transmission simulation can be done in a pipelining manner, it 
can fully utilize the parallel computer resources and extend the 
simulation ability to the whole power network. 
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