
Manuscript for HICSS-38

1

Abstract — The development of cost-effective high-

performance parallel computing on multi-processor
supercomputers makes it attractive to port excessively time
consuming simulation software from personal computers (PC) to
super computes. The power distribution system simulator
(PDSS) takes a bottom-up approach and simulates load at the
appliance level, where detailed thermal models for appliances are
used. This approach works well for a small power distribution
system consisting of a few thousand appliances. When the
number of appliances increases, the simulation uses up the PC
memory and its runtime increases to a point where the approach
is no longer feasible to model a practical large power distribution
system.

This paper presents an effort made to port a PC-based power
distribution system simulator to a 128-processor shared-memory
supercomputer. The paper offers an overview of the parallel
computing environment and a description of the modification
made to the PDSS model. The performance of the PDSS running
on a standalone PC and on the supercomputer is compared.
Future research direction of utilizing parallel computing in the
power distribution system simulation is also addressed.

Index Terms—parallel computation, load modeling, message
passing interface (MPI), multi-processor supercomputer.

I. INTRODUCTION

HYSICALLY-BASED modeling approaches [1][2] have been
widely used to simulation power distribution system loads,
because they are able to predict the individual load

dynamic response to ambient temperature variations, random
customer energy consumption, as well as the electricity
market prices. Using this approach, the Energy Science and
Technology Division (ESTD) within the Pacific Northwest
National Laboratory (PNNL) has created a prototype ultra
complex power system simulator [3][4][5] (called Power
Distribution System Simulator or PDSS) under a Laboratory
Directed Research and Development project titled the Energy
System Transformation Initiative. The key feature of this

This work is supported by the Pacific Northwest National Laboratory,

operated for the U.S. Department of Energy by Battelle Memorial Institute
under contract DE-AC06-76RL01830.

Ning Lu, Z. Todd Taylor, Dave P. Chassin, Ross Guttromson, and Scott
Studham are with Pacific Northwest National Laboratory, P.O. Box 999,
MSIN: K5-20, Richland, WA - 99352, USA. (e-mails: ning.lu@pnl.gov,
todd.taylor@pnl.gov, david.chassin@pnl.gov, ross.guttromson@pnl.gov,
scott.studham@pnl.gov.)

computer program is its ability to accurately predict load
shapes of various household appliances such as building
heating ventilation and air conditioning (HVAC) systems,
refrigerators, lighting, washers and dryers, dishwashers and
ranges. By solving the power at each individual load using
first principle calculations, this approach enables one to
simulate the price responsive load control technology under
various market structures. By aggregating individual loads at
the feeder level, one can simulate the aggregated response of
these loads with reasonable accuracy. This approach works
well for a power distribution system of a few thousand houses.
When the number of houses increases to around 10,000, its
runtime increases rapidly and the simulation uses up the PC
memory, making it infeasible to model a practical large power
distribution system.

One option to reduce the simulation time and conform to
the memory requirement is to conduct the simulation in multi-
processor supercomputers. The development of cost-effective
high-performance parallel computing on multi-processor
supercomputers makes it attractive to port excessively time
consuming simulation software from PCs to supercomputers.
PNNL acquired an SGI Altix 3000 128 CDM SMP
superconomputer for general purpose high performance
computing applications. The system runs a single Linux
operating system over 128 Intel Itanium 2 processors running
at 1.5 GHz. In addition, the system has 256 GB of RAM and
¼ TB of disk space. An effort is made to port the PC-based
PDSS to the Altix supercomputer. In this paper, the
technique used to modify the PDSS for parallel computation is
presented. The results indicate that the parallel computing
approach works well in physically-based distribution system
simulations. The memory requirement is met and the runtime
is significantly shortened.

II. THE MODELING APPROACH OF PARALLEL COMPUTATION

A. The modeling approach of the PDSS

The Power Distribution System Simulator developed by
PNNL takes a bottom-up approach, in which detailed
physically-based models of each type of appliance are
developed. As shown in Fig.1, residential appliances are
categorized into those that are thermostatically controlled and
those that are non-thermostatically controlled. There are three

Parallel Computing Environments and Methods
for Power Distribution System Simulation

Ning Lu, Z. Todd Taylor, Dave P. Chassin, Ross Guttromson, and Scott Studham

P

Manuscript for HICSS-38

2

types of thermostatically controlled appliances (TCAs)
allowed in the model: heating ventilation and air conditioning
(HVAC) systems, electric water heaters, and refrigerators.
Non-thermostatically controlled appliances include dish
washers, washers/dryers, and the like.

There are six appliance modules in PDSS, as shown in Fig.
2. PL is the power at the feeder head, PH is the power output
of a household, and B is the energy market price. The inputs
of each household load are temperature data, setpoint setting
sequence, customer consumption probabilities, electricity
market prices, and time steps. During the initialization, PDSS
reads the data and allocates memory for each house. PDSS
then calculates the power output for each appliance in a
household and then aggregates its energy consumptions at
each time step. For a non-TCA, PDSS determines its on/off
status based on its likelihood of on/off. For a TCA, PDSS
calculates the inflection points, where the appliance will turn-
on or turn-off, based on the current ambient temperature and
its temperature setpoint. As shown in Fig. 2, the calculation
of each household load is a highly parallel process and is
suitable for parallel computation.

Fig. 1: A bottom-up approach

Fig. 2: The block diagram of PDSS

B. The parallel processing modeling approach

There are two approaches to apply parallel computation for
the PDSS based on its software structure. The first approach is
the shared-memory approach; the second one is the message
passing interface (MPI) approach.

1) The shared-memory approach
The shared-memory [6][7] approach provides tasks with a

common asynchronous read/write-shared-address space,
where access is controlled by lock and semaphore
mechanisms.

As shown in Fig. 3, all the house data are put into the
shared-memory. The calculation of individual house loads is
evenly distributed among all the processors. The results
obtained are then written back to the shared-memory. The
advantages of this approach are:
• The runtime can be shortened significantly.

Communication between processors is minimized because
of the shared-memory.

• The calculation is efficient because the houses are evenly
distributed to processors.

• Synchronization is done at the end of each time step.
However, the approach requires significant coding efforts

to implement. Because the standalone version of the PDSS is
not developed for parallel computation, new codes need to be
written to modify the current PDSS codes for memory
allocation. The shared-memory will be used to store the house
parameters, and any updates after function calls need to write
back to the shared memory.

Fig. 3: An example of the shared-memory approach

In addition, in power distribution systems, the residential
load will mix with other load at the distribution substation
feeder head as shown in Fig. 1. Each feeder made of purely
residential load will normally consist of a few hundred to a

Manuscript for HICSS-38

3

few thousand households at maximum. It takes a standalone
PDSS (refer to t1 in Table I) around 0.71 second CPU time to
simulate a 1000-household load over a 100-hour period at 1
hour interval. To split the work among four processors (refer
to t4 in Table I), one can shorten the simulation time to 0.25
second (elapsed time). The runtime reduction is not
significant for parallel the simulation of houses if the number
of the houses at a feeder does not exceed 1000.

Furthermore, the control strategies, the weather tapes, as
well as price inputs either vary feeder by feeder or by control
groups. Thus, to account for the variations, it is easier to
parallelize the calculation at the feeder level and pass around
the aggregated load information. This leads to the second
approach, the MPI approach.

Table I: Simulation Time (Elapsed Seconds)

Number of
Households

1000 5000 10000

t1 (s) 0.71 2.31 4.54

t4 (s) 0.25 0.55 0.91

∆t = t1- t4 (s) 0.46 1.76 3.63

2) The MPI approach

As shown in the five-processor example (Fig. 4), the MPI
approach [8] is to parallelize the running of PDSS instead of
the houses inside PDSS. Let Processor 1 to 4 each run a copy
of PDSS, with each PDSS simulating a distribution feeder.
Let Processor 0 collect the aggregated outputs and process
them. Processor 0 can broadcast general information such as
the current market price to Processor 1 – 4, which will then
respond accordingly. The key to making this approach
efficient is to keep the communication between processors at
minimum. To do so, one needs to specify the data that needs
to be sent back and forth at the end of each time interval.
Currently, we only collect the aggregated power output from
each feeder and send the feeders the price data whenever the
price changes.

Fig. 4: An example of the MPI approach.

The advantages of this approach are:

• Each PDSS has its own set of input data stored in the
local memory of each processor. Therefore, one can
run different load control strategies under different
weather conditions.

• Minimum coding effort and higher portability. MPI
is designed for high performance on both massively
parallel machines and clusters, and is a standard for
message passing in the parallel computing paradigm.
One can call MPI functions in C++ programs to
parallel the running of those programs without
changing the structure of the programs. The code
was tested on a four-processor computer, and then
was run on the 128-processor Altix. No additional
codes needed to be written.

The disadvantage of this approach is that the total runtime
is determined by the feeder serving the most houses. For
example, if there are four feeders containing 100, 500, 1000,
and 1500 houses, the other processors will have to wait at
each aggregation time step until the one simulating the 1500
houses finishes its calculation. Another disadvantage is that
each PDSS may run at its own time step. If there are some
exogenous changes, such as price, one needs to synchronize
each PDSS at each data sending and receiving point.

III. THE MODELING ENVIRONMENT

In our project, we used MPI on an SGI Altix 3700 super-
cluster. The computer consists of 128 Itanium 2 1.5 gigahertz
processors, and ¼ terabytes of globally addressable system
memory. Communication takes place over the NUMAlink
interconnect fabric, which provides latency as small as 50
nanoseconds and a bandwidth of 3.2 gigabytes/second. Altix1
runs a single modified Red Hat advanced server Linux
operating system. This presents the image that all the
processors in the system are available, as if it were a
workstation with 128 processors.

Altix1 recommends that any job taking more than 30
seconds of CPU time use the batch system, for reasons of
fairness as well as system efficiency. Altix1 uses the LSF
scheduler from Platform Computing to manage resources and
schedule jobs on the system. Gold allocation system is used
for job submission. LSF is a program that attempts to balance
the resource utilization on one or more computers among
competing users and their processes. The goal is to give many
users’ processes a “fair share” of CPU, memory and other
resources [9]. LSF works with a set of job queues. Many
different queues can be defined, each with its own criteria for
job resource allocation.

IV. PERFORMANCE RESULTS

To determine the best approach to parallelize the running of
PDSS, we first ran PDSS on a single processor PC and then
conducted three experiments on the Altix supercomputer. All
cases are run for 100 hours at 1-hour interval.

Case 1: Running on a standalone single processor PC
Using a single processor PC, which has a Pentium 4 CPU

(2.8 GHz) and 512 MB RAM, we evaluated the runtime of
PDSS for a distribution power grid consisting of 104, 10×104,

Manuscript for HICSS-38

4

20×104, and 50×104 houses. The results are listed in Table II.
Table II: The Runtime of PDSS (PC case)

Number of Houses 10000 100000 200000 500000

Elapsed Time (s) 11.4790 N/A N/A N/A

When the number of houses is greater than 10×104, the PC
runs out of memory and PDSS fails to complete the
simulation. Therefore, 10×104 is a threshold when the PC
resource has been depleted.

Case 2: Running on a single processor of Altix1
The base case is to run 104, 10×104, 20×104, 50×104 houses

on a single processor. Assuming that each feed is composed
of 104 houses, these cases simulate 1, 10, 20, and 50 feeders,
respectively. The CPU time tcpu is the total time spent by the
CPU on behave of PDSS and the wall clock time tw is the true
runtime (elapsed time) of the program. The resource usages
are shown in Table III.

There are three observations:

• As expected, the runtime is significantly shortened
compared with the runtime on PC.

• As expected, both CPU time and elapsed time go
up almost linearly with the number of houses. We
see from the memory report that the simulation
takes enormous physical memory and swap
memory. Therefore, a PC’s resources can be
easily depleted.

• The system efficiency is higher when running
more houses. This is because the overhead time is
relatively fixed. Therefore, the overhead time
takes less share in the total time consumed, when
the core program runs longer. Note that when the
number of houses is greater than 20×104, the
efficiency increase reaches its peak.

Table III: The Resource Usage Summary (single processor)

No. of Processors 1 1 1 1

No. of Houses 104 10×104 20×104 50×104

CPU Time (s) 0.42 33.64 79.17 198

Wall Clock Time (s) 5.28 42.98 83.03 208.60

Efficiency (tcpu / tw) 8% 78.3% 95.4% 94.5%

Max Memory (MB) 5 152 284 680

Max Swap (MB) 10 4049 4181 4577

Case 3: Running on multiple processors (104 houses per

processor)
With each processor allocated one feeder of 104 houses, we

then run PDSS on 1, 10, 20, and 50 processors to simulate
one-feeder (104 houses), 10-feeder (10×104 houses), 20-feeder

(20×104 houses), and 50-feeder (50×104 houses) cases. We
have the feeders running completely in parallel and the
communication between feeders happens at the end of the
simulation (at 100th hr). The resource usage summary is
shown in Table IV.

There are several observations based on the results:

• Compared with the non-parallel case shown in
Table III, the runtime is shortened in proportion to
the number of processors used. The runtime of the
one-processor-per-feeder case is almost equal to
that of single processor simulating one feeder case.
This is as expected because we have limited the
number of communications between feeders,
which makes the overhead time spent on
communication negligible.

• The memory usage is regular. Because each
processor is running a simulation of 104 houses,
the memory occupation is distributed to each
processor. Therefore, it is not necessary for Altix1
to arrange Swap to meet the needs of house
parameter storage.

• The efficiency is also similar to that of the single
processor case.

Table IV: The Resource Usage Summary (one feeder per processor)

No. of Processors 1 10 20 50

No. of Houses 104 10×104 20×104 50×104

Total CPU Time (s) 0.42 0.42 0.44 0.44

Wall Clock Time (s) 5.28 5.38 5.41 5.54

Efficiency (tcpu / tw) 8% 7.8% 7.4% 8%

Max Memory (MB) 5 5 5 5

Max Swap (MB) 10 10 10 10

From the results, one can reach the conclusion that by
simply running the simulations in parallel, we can shorten the
simulation time significantly, depending on how many
processors one has.

Case 4: Running on multi- processors (104 houses in total)
To study the optimal number of houses to partition to each

processor, a total number of 10,000 houses is divided among
10, 20, and 50 processors. As shown in Table V, the runtime
is first shortened when dividing the 10,000 houses to 10
processors. However, when dividing the 10,000 houses to 20
or 50 processors, the runtime starts to increase. This is
because the overhead time spent on communication and on
partition jobs starts to take a greater share in the total program
runtime (the wall clock time). Therefore, parallel running
very small numbers (200 or 250) of houses will result in an
increase of runtime. Thus, the number of houses simulated by
each processor should be more than 1000 to make good use of
parallel computation.

Manuscript for HICSS-38

5

Table V: The Resource Usage Summary (one feeder per processor)

No. of Processors 1 10 20 50

No. of Houses on

Each Processor

10,000 1,000 250 200

Total No. of Houses 104 104 104 104

Total CPU Time (s) 0.42 0.54 0.47 0.42

Wall Clock Time (s) 5.28 0.7 1.39 1.38

Case 5: Running multi- processes on a single processor

If the number of feeders exceeds the number of processors,
one needs to run multi-process on each processor. To study
the impact of running multi-process on each processor, a total
number of 10,000 houses is divided to 1, 10, 20, and 50
processes and has been run on the 4 processors of Altix1. As
shown in Table VI, we observed that the runtime is similar to
or longer than the single processor case. Therefore, one may
need to combine the simulation of the many small feeders to a
few major feeders whenever it is possible.

Table VI: The Resource Usage Summary (4-processor case)

No. of Processes 1 10 20 50

No. of Processors 4 4 4 4

No. of Houses 104 10×104 20×104 50×104

Total CPU Time (s) 4.159 42.462 88.352 221.022

Wall Clock Time (s) 5.210 43.550 89.340 222.100

To summarize, we conclude

• The runtime of running the parallel version of PDSS
is shortened proportional to the processors used.

• To make the parallel computation worthwhile, the
number of houses running on each processor is better
above 1000 houses.

• For cases having less than 20000 houses, a single
processor will be competent for the simulation.

• Running multi-process on a single processor is not
going to save runtime.

V. CONCLUSION

This paper presents the results obtained by an effort made
to port a serial software package used for power distribution
system simulation to a parallel computation environment. The
physically-based residential load simulation is especially
amiable to parallel computation because there is minimal
interaction between each household load. To simulate each
individual load with a detailed thermal model, large memory
storage is needed. The solving of distributed differential
equations also takes significant computer time. To port the
simulation to supercomputers, the program runtime is
shortened significantly. With 256 GB RAM and ¼ GB disk
space, one can simulate the power consumption of millions of

households within minutes.

Future research direction will be to fully utilize the MPI and
feed price information to each feeder and study the interactive
behavior among loads that reside in different distribution
feeders. It is also promising to port power flow calculation
software packages to the supercomputer and link the
distribution system simulation together with the transmission
simulation to study the responsive load impact to the overall
power systems. Because the distribution simulation and the
transmission simulation can be done in a pipelining manner, it
can fully utilize the parallel computer resources and extend the
simulation ability to the whole power network.

ACKNOWLEDGMENT

The authors would like to thank their colleague Kenneth P
Schmidt for the technical support and suggestions on setting
up the experiments.

REFERENCES
[1] M. L. Chan, E. N. Marsh, J. Y. Yoon, G. B. Ackerman, and N.

Stoughton, “Simulation-based Load Synthesis Methodology for
Evaluating Load-management Programs,” IEEE Trans. on Power
Apparatus and Systems, vol. PAS-100, pp. 1771-1778, Apr. 1981.

[2] A. Molina, A. Gabaldon, J. A. Fuentes, and C. Alvarez, “Implementation
and Assessment of Physically Based Electrical Load Models:
Application to Direct Load Control Residential Programmes,”
Generation, Transmission and Distribution, IEE Proceedings, vol. 150,
pp. 61-66, 2003.

[3] R. T. Guttromson, D. P. Chassin, and S. E. Widergren, “Residential
Energy Resource Models for Distribution Feeder Simulation,” Proc. of
2003 IEEE PES General Meeting, Toronto, Canada, pp. 108-113, 2003.

[4] N. Lu and D. P. Chassin, “A State Queueing Model of Thermostatically
Controlled Appliances,” IEEE Trans. on Power Systems, vol. 19, no.3,
pp. 1666-1673, Aug. 2004.

[5] N. Lu, D. P. Chassin, and S. E. Widergren, “Modeling Uncertainties in
Aggregated Thermostatically Controlled Loads Using a State Queueing
Model,” submitted to IEEE Trans. on Power System, 2004.

[6] G. Fadlallah, M. Lavoie, and L.-A. Dessaint, “Parallel Computing
Environments and Methods,” Proc. of 2000 International Conference on
Parallel Computing in Electrical Engineering, pp. 2-7, Aug. 2000.

[7] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP.
New York: McGraw-Hill, 2004.

[8] Available at: http://www-unix.mcs.anl.gov/mpi/
[9] Available at: http://www-cdf.fnal.gov/offline/runii/fcdfsgi2/

Manuscript for HICSS-38

6

Ning Lu (M’98) received her B.S.E.E. from Harbin Institute of Technology,
Harbin, China, in 1993, and her M.S. and Ph.D. degrees in electric power
engineering from Rensselaer Polytechnic Institute, Troy, New York, in 1999
and 2002, respectively. Her research interests are in modeling and analyzing
deregulated electricity markets. Currently, she is a research engineer with the
Energy Science & Technology Division, Pacific Northwest National
Laboratory, Richland, WA. She was with Shenyang Electric Power Survey
and Design Institute from 1993 to 1998.

Z. Todd Taylor

David P. Chassin (M’02) received his B.S. of Building Science from
Rensselaer Polytechnic Institiute in Troy, New York. He is a staff scientist
with the Energy Science & Technology Division at Pacific Northwest
National Laboratory, where he has worked since 1992. He was Vice-
President of Development for Image Systems Technology from 1987 to 1992,
where he pioneered a hybrid raster/vector computer aided design (CAD)
technology called CAD OverlayTM. He has experience in the development of
building energy simulation and diagnostic systems, leading the development
of Softdesk Energy and DOE’s Whole Building Diagnostician. He has served
on the International Alliance for Interoperability’s Technical Advisory Group
and chaired the Codes and Standards Group. His recent research focuses on
emerging theories of complexity as they relate to high-performance simulation
and modeling.

Ross T. Guttromson (M’01) received a B.S.E.E degree from Washington
State University, Pullman. Currently, he is a senior research engineer with the
Energy Science & Technology Division, Pacific Northwest National
Laboratory, Richland, WA. He was with R. W. Beck Engineering and
Consulting, Seattle, WA, from 1999 to 2001 and with the Generator
Engineering Design Group, Siemens-Westinghouse Power Corporation,
Orlando, FL, from 1995 to 1999. Ross has one U.S. and one international
patent, and is author and co-author of several papers on power systems and
distributed resources. He is a member of the WECC Load Modeling Task
Force, IEEE SCC 21 P1547.2 standards group on Interconnecting Distributed
Resources with Electric Power Systems, and the IEEE Wind Model
Development Task Force. Ross is a U.S. Navy submarine veteran, having
served on the USS Tautog (SSN 639) from 1987 to 1991.

Scott Studham received his B.S. (1997) and M.S. (2003) from Washington
State University. He is currently managing the operations of the MSCF in the
Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest
National Laboratory. His responsibilities include operations management of
the Molecular Science Computing Facility, supercomputer upgrades, and
supervision of EMSL’s data management needs. He has a dual assignment to
the Computational Sciences and Mathematics directorate, where he is
responsible for High Performance Computing and Facilities Operations. From
1998 - 2000, Mr. Studham serviced the National Weather Service
supercomputer center in Bowie MD where he led a team responsible for two
supercomputers that are used to predict the nation’s weather. From 1992 -
1998 he worked on consulting projects related to high performance
computing. Previous to this he worked as a system administrator in support of
computational chemistry for a research organization. Mr. Studham is an IBM
Certified Advanced Technical Expert and IBM Certified Senior Program
Manager.

Filename: super_computer_internal_after dave Sue and Todd.doc
Directory: C:\Documents and Settings\d3g637\Local Settings\Temporary Internet

Files\OLKF9
Template: C:\Documents and Settings\d3g637\Application

Data\Microsoft\Templates\Normal.dot
Title: Parallel Computing Environments and Methods for Power Distribution

System Simulation
Subject: IEEE Transactions on Power Systems
Author: N. Lu, Z. T. Taylor, D. P. Chassin, R. T. Guttromson, R. S. Studham
Keywords:
Comments: submitted 9/2004 to IEEE Transactions on Power Systems
Creation Date: 9/9/2004 4:23 PM
Change Number: 2
Last Saved On: 9/9/2004 4:23 PM
Last Saved By: Ning Lu
Total Editing Time: 4 Minutes
Last Printed On: 9/18/2004 9:03 AM
As of Last Complete Printing
 Number of Pages: 6
 Number of Words: 3,734 (approx.)
 Number of Characters: 21,287 (approx.)

