
 

 We present NWPerf, a new system for analyzing 
fine granularity performance metric data on large-
scale supercomputing clusters.  This tool is able to 
measure application efficiency on a system wide basis 
from both a global system perspective as well as 
providing a detailed view of individual applications.  
NWPerf provides this service while minimizing the 
impact on the performance of user applications.  We 
describe the type of information that can be derived 
from the system, and demonstrate how the system was 
used detect and eliminate a performance problem in 
an application application that improved performance 
by up to several thousand percent. The NWPerf 
architecture has proven to be a stable and scalable 
platform for gathering performance data on a large 
1954-CPU production Linux cluster at PNNL 

 
 

1. Introduction 
 

Gathering performance statistics on large clusters 
introduces several problems that are generally not 
apparent on smaller systems.  A primary issue is the 
system interfering with user applications running on 
the system, e.g. [1].  Another major problem is the 
simple volume of data that is collected and how to 
present it in a manner that is both usable and 
meaningful for further analysis.  This paper discusses 
NWPerf; the methodology used in its development and 
provides an overview of the types of data we have 
acquired from observing the Pacific Northwest 
National Laboratory (PNNL) 977-node Linux 11.8 
TFLOPs cluster (MPP2) with 1954 Itanium-2 
processors.  NWPerf addresses the first challenge of 
minimizing overhead by ensuring that the monitoring 
client is very lightweight and carefully scheduling data 
collection at set time intervals.  The second issue of 
data storage is addressed by providing a multilayer 

data analysis system over a relational database [2] with 
a Structured Query Language (SQL [ 3 ]) interface 
using the PostgreSQL [4,5] database.   

NWPerf is a system designed to address the 
problem of gathering fine granularity performance 
metrics with low impact for user applications on large-
scale computing clusters.  In addition, it enables 
correlation of the gathered performance data with 
individual applications.  This provides two valuable 
capabilities: analysis and visualization of individual 
application runs, and gathering the aggregate 
information about the overall system performance.  
The ability to analyze individual applications 
highlights opportunities for optimization and helps 
identify the source of performance problems.  The 
aggregate information provides information about 
trends and the ability to highlight applications with 
certain performance characteristics.  The goal is to 
examine overall system efficiency and utilization from 
an outside perspective without requiring any 
understanding or knowledge of any particular 
application.  Thus the analysis of the system is 
application agnostic and provides a performance 
profile for all applications running on a cluster.   

The NWPerf architecture is based on a hybrid 
approach combining well-known and tested state-of-
the-art ideas and methodologies used in a variety of 
other well-known performance analysis systems.  In 
addition, it introduces several unique methods such as 
synchronized data collection (Figure 1) and system 
wide correlation of job and performance data. The 
experimental results presented in the paper 
demonstrate the low overhead introduced by NWPerf 
on the application performance. 

The remainder of the paper is organized in five 
additional sections.  Section 2 describes the design and 
methodologies adopted in development of NWPerf, 
and compares it to other related tools. Section 3 
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discusses techniques used to minimize perturbation 
effects on application performance.  Experimental 
results that validate this important design goal are 
included in Section 4.  Section 5 demonstrates some 
gathered using NWPerf on a large production cluster 
at PNNL.  Finally, the paper is concluded in Section 6. 

 
2. System Design 

 
One of the key system design goals for NWPerf 

was to cause less than a 1% perturbation in the time to 
solution for any job, and to be capable of obtaining 
samples at a 1-minute interval with a loss of less than 
10% of the data points across a 1000-plus node 
computational cluster.  This represents tradeoffs 
between the desire to reduce rounding and collection 
error while providing fine grained data and 
minimizing the interruption of applications running on 
the system.  To achieve these goals, the system must 
be able to perform all data collection and transmission 
from the client nodes to the collection server(s) in 
under 0.6 seconds per one-minute collection interval.  
This is to reduce the impact on large tightly coupled 
applications where overlapping interruptions can 
effectively combine to block the applications operation 
for the time comprised of the overlap of all the 
interruptions. 

 
Figure 1: NWPerf Scheduled Reporting 
 

2.1 Related Work 
 
Most existing tools are focused either solely on the 

analysis of a single application run, or they are 
directed at modeling the system performance from a 
system administration perspective.  Initially, we 
investigated the possibility of utilizing Ganglia [6] to 
provide the information we desired; however, it did 
not adequately address several issues.  We found that 
Ganglia did not provide some of the specific metrics 
we needed.  While it provides readily available 
methods for extension, the version available required 

us to develop independent external applications to 
collect non-standard metrics, which potentially 
increases unsynchronized user application interrupt 
overhead.  Also, Ganglia’s storage system (RRDTool 
[ 7 ] based on MRTG [ 8 ]) while appropriate for 
Ganglia’s normal usage, automatically aggregates data 
into time series summaries causing information detail 
loss and more importantly the system is not designed 
to support easy ad-hoc queries.  We also considered 
Supermon [9]; however, it does not provide a data 
repository, so it would have required us to develop a 
major portion of the system anyway.  In addition, 
Supermon data collection is by default sequential in 
nature, which can amplify the cumulative interrupt 
problem.  We also examined other systems such as 
CARD [ 10 ], and PARMON [ 11 ] and dproc [ 12 ] 
however none of them have demonstrated scalability 
to the size of system we are examining, and other than 
dproc they tended to have higher system interrupt 
overhead than was desirable for collecting fine 
granularity data.  None of these systems attempts to 
address system interrupt overhead by aligning the 
sampling periods.  Dproc as shown in [12] exhibited 
near linear performance overhead, whereas NWPerf is 
designed to have constant overhead regardless of 
system size.  Ganglia and Supermon focus on 
lightweight clients and lower sampling intervals, and 
neither CARD nor PARMON address system 
overhead at all.  Some other applications including 
Clumon/PCP [13] are more for examining the state of 
the cluster at a specific point in time, instead of 
providing a long-term systematic view of the system.  
Also of concern is the reliance of supermon and dproc 
on kernel modules, this limits portability and 
complicates development and deployment. These 
applications can be invaluable resources for their 
target environment, but do not provide the detail and 
correlation capabilities that NWPerf does.  Application 
profiling tools such as Intel’s VTune Performance 
Analyzer [ 14 ], Vprof [ 15 ], Perfsuite [ 16 ], and 
traditional profilers like gprof [17, 18] can provide 
detailed information about application runs.  These 
systems all provide a much greater amount of detail 
about application performance than NWPerf is 
intended to provide, but are generally targeted at only 
analyzing individual runs.  NWPerf is not intended to 
replace application profilers; however, it can provide 
hints as to which applications may benefit most from a 
more detailed analysis from this type of tool.   

 
 
 



 

2.2 Architecture 
 

The NWPerf architecture is a lightweight, multi-tier 
design composed of a simple modular client running 
on each compute node, and a two-tier packet handler, 
queue drainer collection system on the collection 
server (Figure 2).  Most of the components operate as 
middleware, with the collection components being 
data agnostic and only the analysis interfaces and 
client modules need any understanding of the data 
collected. 

The client is a simple scheduler that dynamically 
loads modules at initialization and calls the collection 
routine for each of them at a specified interval.  The 
modules return a list of data points to the main client 
routines and the data is XDR encoded and transmitted 
over the network on a multicast channel.  In network 
encoding, NWPerf is very similar to Ganglia with two 
differences; the data is of a single standardized type, 
which reduces the flexibility but simplifies storage and 
increases speed, and the data points are bundled into a 
minimal set of network packets to reduce overhead.  
Multicast was chosen over unicast as a transport 
protocol to allow the easy addition of multiple data 
collectors that may possibly perform different 
operations (i.e. a real-time visualization tool), in 
practice we have only developed the database storage 
collector.  Using user datagram protocol (UDP) 
multicast also greatly simplifies the client application 
since the socket code is much simpler than a 
comparable unicast implementation.  The client 
simplification comes at the cost of more complexity 
and fragility in the server since it must be able to 
collect the unreliable datagrams quickly before the 
network stack discards them. 

 
Figure 2 NWPerf architecture 
The modules implement all of the intelligence for 

all data gathering to reduce dependencies and simplify 
the base client design.  The modules that collect the 
data on each client will often be site-specific.  In 
recognition of this, we developed a simple application-
programming interface (API) to allow the modules to 
be loaded into the client daemon at runtime This 

allows adding new metrics with very little effort and 
no change to the base system.  The downside to this 
approach is that module authors must be cognizant of 
minimizing the amount of time their module requires 
to run.  In addition, we recommend that the aggregate 
time to complete a data collection cycle should be 
tested before deploying NWPerf.  We currently know 
of no automatic method for alleviating this problem.   

NWPerf when deployed on our dual-CPU based 
cluster is currently using two modules to collect the 
following metrics per each node:  

• CPU Performance Counters including: 
percent of peak flops (for CPU 0 and 1), memory 
bytes per cycle (for CPU 0 and 1), 
• Vmstat like information including: percent of 
time spent on kernel processes, percent of time 
spent on user space processes,  swap utilization 
and swap blocks in and out, and block device KB 
in and out. 

We acquire the data for the peak flops and memory 
bytes per cycle metrics from the Itanium hardware 
counters [19] using the libpfm library [20].  Since only 
four counters are available per CPU, we are limited as 
to the number of events we can monitor without doing 
sampling.  To calculate flops used requires one 
register, and to calculate memory access requires two 
registers leaving one register available for future 
expansion.  The system collects the remaining 
measurements listed using the Linux proc file system 
via the libprocps [21] library.  We have tested the 
system with up to 14 metrics per node across all 977 
nodes while maintaining a data loss of less than 10%. 

The collection server is comprised of two major 
components, a network packet handler and a database 
inserter.  Multiple instances of each are run depending 
on load requirements and cluster size.  On the PNNL 
cluster, informal tests showed that 128 clients and two 
packet handlers per socket resulted in the least amount 
of dropped packets.  We expect to be able to support at 
least twice as many clients per socket by aggregating 
multiple data metrics from one client into a single 
datagram.  In order to support the entire cluster we 
open multiple sockets on the collection server and 
have clients split into groups (currently based on 
cluster position) to the packet handlers running on 
each socket.  The version under development 
simplifies this greatly by having a central authority tell 
each client where and when to send their datagrams. 

The packet handler creates a secondary buffer 
between the network and writing the data to disk to 
address the problem of high-volume UDP traffic 
overwhelming the operating system socket buffers.  



 

Once packets are pulled from the network socket they 
are inserted into a lightweight shared memory queue.  
The queue-drainer removes the packets from the 
shared memory queue, decodes them, and inserts the 
data into the database.  The queue-drainer performs all 
decoding and translation to lessen the amount of work 
per iteration the packet handler has to perform.  As an 
alternative to deploying multiple types of collection 
servers, we are investigating the possibility of having a 
queue-drainer serve data streams on demand to 
visualization and analysis clients in addition to 
performing the database inserts.   

Since data storage is asynchronous from the 
network component, we can use the gaps between data 
collection intervals to allow the queue-drainer time to 
finish storing the data.  Collecting 12 metrics on 977 
hosts had queue drain times approached 10 seconds, 
when other queries were being performed, illustrating 
the necessity of the multitier architecture.  An 
additional benefit to this design is that it allows the 
collection system to be broken up across multiple 
collection servers to allow it to handle larger clusters.  
The system can be broken apart so that the packet 
handlers and queue-drainers reside on separate servers 

from the database system.  In addition, one can deploy 
multiple servers running packet handlers and queue-
drainers for different portions of the cluster reporting 
the data to a central database server.  The only 
component that creates a bottleneck in this design is 
the database, and with clustered databases, in theory, it 
should scale to arbitrarily large clusters.   

To facilitate easy data mining, we perform periodic 
post processing to correlate the collected performance 
data with application runs at the end of each job.  A 
job is simply a collection of nodes across an interval of 
time.  In the specific case examined here, we are using 
job information collected from the LSF scheduler [22, 
23] to provide the node list and time range for each 
job; this also provides other information including job 
owner, batch queue and project association (Figure 3).  
As part of the analysis of each job, we also calculate 
some statistical information for each of the metrics 
collected and store the results into a Job Averages 
table.  This allows quick data mining of interesting 
data items such as finding peak performing jobs or 
jobs with high I/O requirements without having to 
query the larger source dataset.  Currently we calculate 
the mean, global min, global max, standard deviation, 
some information about node-to-node variation and a 
count of the points collected for each metric for each 
job.  A database view combines the job table and the 
job averages table to provide a simple interface to 
performance data by job with all of the job details 
visible. 

 
3. Optimizing System Perturbation 
Effects 

 
One of the fundamental design goals was to 

minimize the effect monitoring has on user 
applications on the system.  We address this issue in 
two ways: by minimizing the interval at which 
NWPerf execute across all of the compute nodes, and 
by attempting to reduce the amount of time NWPerf 
takes to collect and transmit the data on an individual 
node.   

 NWPerf schedules the data collection to happen 
during a very short interval during which all nodes in 
the cluster gather data and transmit it to the server.  
This reduces the cross cluster impact to just the 
interrupt during the time the collection is happening.  
For the data used in this paper, the data collection 
intervals on the client were scheduled using the 
select() system call to trigger an alarm synchronized 
with a time interval on the local node.  All of the 
nodes in the cluster are time-synchronized, using the 

 
Figure 3: Job analysis data flow 



 

network time protocol (NTP).  The problem we 
encountered with this approach is that NTP is slow to 
resynchronize [24], and the clocks in the nodes used 
tended to drift by relatively large amounts of time if 
they lost synchronization for any reason (i.e., during 
an outage).  These issues combined to create variation 
from the ideal collection interval.  Figure 4 shows the 
distribution of packet arrival times at the collection 
server using NTP as a clock synchronization source 
across all 977 nodes in the PNNL cluster.  In the 
sample taken, 87.77% of packets arrived within the 
0.6-second window, leaving just under 13% outside of 
the window.  We did not consider network latency as a 
factor for this test since the network is a single flat 
gigabit Ethernet network.  Packet latency is sub 100 
usec, allowing us to approximate it as zero without 
significantly affecting the results. 

To address the deficiencies observed when using 
the local clock to schedule packet collection, a new 
version is in development that uses a central server to 
trigger data collection on the clients via a unicast UDP 
packet sent to each client.  The client then responds to 
the specified collection server with a dataset 
containing their metrics.  In order to avoid overloading 
the collection server the scheduler will briefly pause 
between scheduling groups of clients.  This method 
still preserves the synchrony of the time based 
scheduling as long as the combined overlap time of the 
scheduler activity and the data collection on the client 
is less than the interrupt window.  This can be 
deterministic if the time taken by the scheduler is 
known, it can provide a maximum timeout to the 
clients so that they do not exceed the collection 
window.  

Table 1: Resolution of various methods of 
pausing a process and transmitting a 
scheduler packet under Linux 2.4.24 

Seconds 

Linux 
Process 

Scheduler 

SysCall Tested  
(unspecified 
 times in ns) Mean Stddev 

Default nanosleep(100000) 1.99E-02 2.45E-04 
Default nanosleep(10000) 1.99E-02 1.39E-04 
Default nanosleep(1000) 1.99E-02 2.27E-04 
Default nanosleep(1) 1.99E-02 2.92E-05 
Default select(1000us) 9.96E-03 2.68E-04 
Default select(1us) 9.96E-03 2.06E-04 
FIFO nanosleep(100000) 1.00E-04 3.65E-07 
FIFO nanosleep(10000) 1.00E-04 4.14E-07 
FIFO nanosleep(1000) 1.06E-05 3.76E-07 
FIFO nanosleep(1) 1.63E-06 4.55E-07 
FIFO select(1000us) 1.62E-06 4.82E-07 
FIFO select(1us) 9.96E-03 1.01E-04 
RR nanosleep(100000) 9.96E-03 9.70E-05 
RR nanosleep(10000) 1.00E-04 3.60E-07 
RR nanosleep(1000) 1.00E-04 4.59E-07 
RR nanosleep(1) 1.06E-05 3.72E-07 
RR select(1000us) 1.63E-06 4.60E-07 
RR select(1us) 1.62E-06 4.53E-07 
Default Empty for() loop 6.25E-08 4.45E-07 
FIFO Empty for() loop 3.63E-08 5.46E-08 
RR Empty for() loop 6.25E-08 4.45E-07 
Default sched_yield() 8.51E-07 4.69E-07 
FIFO sched_yield() 7.87E-07 4.63E-07 
RR sched_yield() 7.88E-07 4.69E-07 
Default sendto() 120 bytes 4.20E-06 1.03E-06 
FIFO sendto() 120 bytes 4.20E-06 1.08E-06 
RR sendto() 120 bytes 4.20E-06 1.08E-06 

To verify that this method will schedule the client 
activities in a timely fashion, we performed 
measurements to determine how long it takes to send 
each scheduler packet, and what resolution we can 
expect for the pauses between scheduling clients.  For 
the experiment, we used a single processor 2.4Ghz 
Xeon system that was idle except for normal system 
processes.  We also ran a representative subset of the 
tests on a dual 3.2GHz Xeon system and a 1.5Ghz 
Itanium-2 system with comparable results.  We tested 
each method for either a minimum of 1000 samples or 
1-second runtime, whichever was greater. To read 
processor cycle counts the rtdsc assembly call was 
used on IA32-based systems and the ar.itc register on 

 
Figure 4: Packet arrival distribution with 
NTP  synchronization  



 

IA64 systems.  The initial clock reading was 
subtracted from the clock reading at the end of each 
sample, and the result was placed into an array to be 
printed out at the end of each run.  Since usleep is 
implemented in terms of nanosleep, and pselect is 
implemented in terms of select and nanosleep, only 
nanosleep and select were tested.  Also included is the 
time required to perform a sendto() operation on a 
UDP multicast socket because this is included in the 
server side overhead of scheduling the client 
application. 

Table 1 shows the resolution of various methods of 
pausing the scheduler process and the time taken to 
transmit a scheduler packet.  Based on the timings 
obtained this system should be able to schedule at least 
30,000 clients with a short (0.01 second) pause 
between each client with in 0.6 second window every 
minute preserving the synchrony of the data collection 
system.  For larger systems, the scheduler could be 
scaled to an N tier system with master schedulers that 
schedule sub schedulers that schedule the actual 
collection agents to maintain the short cross cluster 
schedule time, and the collection system scaled across 
more servers as described above.  All of the scheduler 
packets are constructed once at system startup to 
reduce the possibility of variation in scheduling due to 
packet construction overhead.  

 
4.  Experimental Evaluation of 
Perturbation Effects 

 
We measured the time to collect and transmit 12 

data points to the network in order to determine the 
interruption caused by individual instances of NWPerf 
on a single node.  This measurement was performed an 
otherwise quiescent node with a slightly modified 
client.  We removed the scheduling code and replaced 
it with a loop that simply iterated over the collection 
process 10,000 times.  An average time per iteration 
0.0078 seconds was calculated by dividing the total 
time by the number of iterations.  The overhead per 
iteration was also measured by running whatelse [25], 
the same tool used in [1] to measure the NWPerf 
overhead.  For example, in a 500 second run it 
reported NWPerf using 0.054 seconds of run time, 
commensurate with the data gathered above and with 
seven collection cycles happened in the 8-minute 
period.  This was substantially less than the overhead 
of some other daemons running on the system, one of 
which (LSF lim daemon) consumed 0.604 seconds in 
the same interval, and is comparable with Ganglia, 
which used 0.033 seconds.  It is expected that NWPerf 

will use slightly more CPU time than Ganglia since 
the NWPerf collection interval is much shorter, 
Ganglia only performs approximately one collection 
cycle for every five NWPerf collection cycles.  The 
NWPerf overhead is mitigated by the fact that its 
collection intervals are carefully aligned whereas 
Ganglia’s tend to be more evenly distributed over time. 

The reliance on collective communication 
operations increases application sensitivity to system 
noise, see e.g., [1].  To measure the impact of NWPerf 
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Figure 5: Impact of NWPerf monitoring rate 
on performance of all-to-all (top)  and all-
reduce (bottom) communications for 128 
nodes with 256 processors 



 

monitoring on performance of collective 
communications, we used a subset of the LLCbench 
benchmark suite [26, 27], specifically the all-to-all and 
all-reduce benchmarks from the MPI Bench subset of 
the suite.  We ran each benchmark across 128 nodes 
using 256 CPUs with no monitoring, with the normal 
one collection cycle per minute monitoring and with 
ten times normal monitoring doing one collection 
cycle every six seconds.  Each benchmark was run at 
least seven times and the lowest three numbers were 
used.  This was done to reduce the effects of other 
system noise (e.g., LSF daemons), which as we have 
demonstrated above is significant and to attempt to 
isolate the noise to just that caused by NWPerf.  

 Unfortunately, we were not able to remove the 
other sources of noise altogether as the major causes 
are critical system components required for jobs to run.  
The all-to-all benchmark was run for 12,000 iterations 
of the benchmark, and since the benchmark performs 
tests at 16 different packet sizes for each iteration, that 
yields 192,000 all-to-all operations.   

The all-reduce benchmark was run for 20,000 
iterations of the benchmark, and since the benchmark 
performs tests at 16 different message sizes for each 
iteration that yields 320,000 total all-reduce operations.  
Figure 5 shows the effects of NWPerf on the 
performance of the two communication benchmarks; 
all-to-all and all-reduce.  For normal rate (1X) 
monitoring the other noise on the system obscures the 
effects of NWPerf effectively making its impact 
immeasurably small, at 10 times (10X) the normal 
monitoring rate we see an increase of approximately 
27% for the all-to-all and 9.46% for all-reduce in mean 
time to benchmark completion.  We found a bug with 
the LLCbench all-to-all benchmark after having 
obtained the data from our test runs, which restricted 
the useful byte range to only be from 1 to 64 bytes. 
 
5. Experience with NWPerf  
 
5.1 System-Wide Performance Analysis  
 

With the introduction of the Earth Simulator [28] 
and its ability to sustain a large fraction of peak 
performance, many funding agencies and 
supercomputer center management are interested in 
measuring the efficiency of computational resources.  
This raises the question of what exactly efficiency 
means.  The most commonly used metric is percent of 
peak flops achieved.  For example, the LINPACK 
benchmark measures peak flops and is used to place 
systems on a list of the top 500 supercomputing sites.  

However, many have questioned the practicality of 
flops as a measure of useful work and point out the 
importance of measuring other aspects of computer 
performance [29].  In order to address both audiences 
we attempt to collect a representative sample of 
several different types of metrics so that the combined 
information can be used to provide several different 
views of system performance and utilization.  It is not 
practical to perform a detailed analysis of, and tune, 
every application run.  However, we can collect 
detailed metrics that we can use to examine how 
effectively jobs are, as a whole, using the various 
components of the machine.   

To present a fair view of system performance, we 
excluded from the results presented here some jobs run 
on the system.  We attempted to remove most 
benchmark and development applications by 
restricting this analysis to jobs of eight CPUs or more 
that ran for over 10 minutes in the normal user job 
queues.  This excluded about 9,360 jobs or 45% of the 
total jobs run on the system.  Just over 5,600 of the 
excluded jobs ran in development queues, and over 
7,200 ran for less than 10 minutes.  We excluded these 
jobs because development and benchmark jobs often 
exercise only specific components of the machine or 
under-perform due to debugging activities.  Obviously, 
some test and development runs submitted to the 
normal queues are still included in the results; 
however, there is no practical way to exclude them, 
and we expect the number to be relatively small.  With 
these restrictions, we are showing data on 
approximately 11,557 jobs run from October 23 2003 
through April 12 2004.  Due to site queue policies 
only 35 jobs that used more than 1024 processors met 
our selection criteria.  That portion of the data is not 
statistically meaningful and is included here only for 
completeness and interest.  When we examined the 
data, we found that numerous pieces did not follow a 
normal distribution.  Because of this, we have 
generally avoided using statistical functions that 
assume a normal distribution (such as standard 
deviation) for most of the analysis.  For performing 
most of the statistical analysis, we used the perl 
Statistics::Descriptive [30] module since some of the 
desired statistics functions were lacking in the 
database.  Where possible, we cross verified the perl 
modules results with the results from the 
corresponding database functions to ensure that the 
results were consistent. 



 

Figure 6 shows a scatter plot of sustained flops 
across all of the jobs analyzed, with the median and 
the 25th and 75th percentiles indicated across the 
scatter plot.  Peaks flops are represented as a 
percentage of the 6 gigaflops theoretical peak that the 
Itanium II processors used for the MPP2 cluster are 
capable.  This type of data is interesting because it 
assists in the spotting of trends and identifying outliers 
from the average jobs of a particular class.  For 
example, there is an apparent anomaly at 256 CPU 
size jobs where an unusually a large number of jobs 
fall above the 75th percentile, indicating that 
something unusual is likely happening.  Further 
investigation of jobs using 256 CPU’s shows that 
essentially all of the jobs performing substantially 
above the norm can be attributed to two particular 
users working on grand challenge projects.  Given the 
nature of the projects, we can assume that the 
developers paid more attention to optimizing the code 
than usual and thus we see the higher performance.  
When we excluded these two users, the mean peak 
flops for jobs using 256 CPUs fell almost by half from 
6.7 to 3.4, almost exactly mirroring the median of 3.46 
and the 75th percentile also fell accordingly validating 
our assumption that we had identified some unusual 
behavior.  We could invert this type of analysis and 
use the base data to easily find all jobs performing 
below an expected point (i.e. the 25th percentile) and 
determine if they belong to certain users who may 
require more assistance with their application. 

Another simple metric that is useful for 
determining how effectively applications are using the 
system is the amount of time the applications are 
actually in run state.  To collect this information, we 
measured the amount of time the system scheduler had 
user and system space processes in the run queue.  
User space is where the bulk of the applications run 

time should be, kernel time is consumed for activities 
such as block I/O, floating-point assists, raid driver 
overhead, and other kernel tasks.  These data are the  
same as that reported as user time from the UNIX 
utility vmstat and indicates the amount of time the 
system was not in idle state.  The anomaly for 
extremely large jobs in the 1024 and over CPU count 
is attributable to a single user who has a well-tuned 
application specifically designed to utilize large 
numbers of nodes.  Although we collect the metrics 
individually Figure 7 presents a view with them added 
together.  This view is useful since it shows how many 
jobs ran with virtually idle CPUs for some substantial 
part of their run. 

Another factor that can affect system performance 
is memory use and usage patterns.  We show in Figure 
8 how often the CPU transferred data to or from main 
memory averaged by job.  The Itanium-2 processors 
present this information via two performance counters, 
one for memory transfers equal to 128bytes 
(mem_eq_128) and one for memory transfers less than 
128 bytes (mem_lt_128).  We use this information to 
calculate an estimate of memory bandwidth utilization 
with the following formula (mem_eq_128 * 128 + 

 
Figure 6 Percent of peak flops by job size 

 
Figure 7 Operating system system+user 
time by job size 

 
Figure 8 Estimated memory bytes per cycle 
by job 



 

mem_lt_128 * 64) / (CPU cycles per interval). This 
has the side effect that if there are many small-
granularity memory accesses we may see an 
artificially inflated memory usage.   

Since we were able to deploy our data-gathering 
system near the beginning of the life span of the 
computing system, we have the opportunity to observe 
how system usage patterns change over time.  To 
examine this type of change, we examined efficiency 
as measured by percent of peak flops as a function of 
time averaged by month.  As shown in Figure 9, there 
is an upward trend from October of 2003 to March of 
2004 with the mean of 6.73 increasing to 9.98 and the 
median from 5.50 to 7.50.  This is especially 
significant since during the same time the mean job 
size increased 12% during the same interval.  

 
Figure 9 Percent of peak flops by month 

 
5.2 Monitoring and Analysis of individual job 
performance 
 

In addition to reporting system wide performance, 
NWPerf allows the examination of the details data 
gathered for individual jobs.  For example, this can be 
used to identify anomalies for individual jobs and to 
correlate the effects of interactions between the 
various metrics observed.  This also helps us identify 
job signatures that can be fed into the summary 
generation process to enable identification of specific 
performance problems.   

Examining the effects that the utilization of one 
portion of the system has on the rest of the system 
provides two points of interest.  First, it allows system 
designers who wish to tune their system for specific 
job classes to have a better understanding of where 
key bottlenecks lie.  It also gives users insights into 
where they may have opportunities to optimize how 
they use the systems resources, or where their code 
may be exhibiting problematic behavior 

Understanding the tradeoffs of using different 
components of the systems is one of the key factors in 
optimizing performance as a function of time to 
solution.  For example, disk I/O is generally expensive 
relative to the cost of computation and memory access.  
However, the tradeoff may be worth the cost if the 
time saved is more than the cost of the alternative 
methods of calculating or recalculating the same value.  
While we cannot determine the user’s intent without 
knowing the intended result and methodology used by 
the application, we can observe interactions that are 
evident in the data from the job run.  From these 
observations, we can make some general statements 
about which areas of the job may benefit from a more 
detailed analysis to determine if the application is 
performing as expected. 

A simple example of a correlation that is visible in 
some jobs is an inverse correlation between peak flops 
(compared to the job average) and block I/O.  
Unfortunately, without a detailed understanding of the 
application we cannot tell if this matches the expected 
behavior.  To find anomalies we can invert the 
expected correlations and look for behaviors that 
usually occur in proximity with another type of event 
where the matching event is missing.  An example of 
this type of behavior is that block I/O usually has a 
high correlation to high kernel utilization.  If we find 
applications with high kernel utilization that do not 
have a corresponding level of block I/O then we 
should look for another factor that is causing the high 
kernel utilization.   

An example of uncorrelated behavior is shown in 
Figure 10 and 11 where a tandem mass spectroscopy 
code averaged 74% of the time in kernel (system) 
space but only averaged about 11KB/s to disk.  The 
high system time left only 26% of the processor time 
for the application code to run.  A developer initially 
brought this code to our attention because it had 
recently shown a dramatic decrease in performance.  
The problem was determined to be due to an 
aggressive pre-fetch optimization the compiler made 
inside variable length loops causing it to operate on 
un-initialized data.  The data referenced may contain 
NaNs (Not-a-Number) and thus generate a floating-
point assist.  Each floating-point assist causes a 
context switch and a kernel call.  The aggregate affect 
of millions of floating-point assists accounted for 
substantially all of the system time in this job.  The 
developer had made a minor change to their code, 
which caused the problem inside the performance 
critical section of the code.  We worked with the 
developer and created an interim solution to resolve 



 

the problem by padding their arrays with extra doubles 
pre-initialized to NUL while waiting for a resolution 
from the compiler developers.  This solution resulted 
in increasing the application performance by 40,000 
percent.   

Using the performance profile of this application as 
a template, we were then able to identify other 
applications with the same problem.  Because floating-
point assists may have other causes than the compiler 
bug (i.e., under- and overflows), depending on the 
applications precision requirements they can 
sometimes be optimized away with compiler flags (i.e. 
flush to zero).  We proactively informed other users 

whose jobs fit the profile and explained ways in which 
they might easily increase their performance.  Using 
our feedback a user of a biogeochemistry code was 
able to obtain over a 50% performance gain by only 
changing two compiler flags.  As our analysis tools 
mature, we expect to be able to perform correlations 
on more complex interactions and to provide 
automated feedback for jobs that meet the criteria for a 
known problem.  

Providing detailed job analysis data has proven 
valuable for analyzing system performance and 

interactions as well as pinpointing problems within 
individual applications.  By analyzing in detail the 
components of the system that individual jobs use we 
can provide better analysis of future system needs.  
Detailed job performance data has also proven 
valuable in solving a variety of application problems, 
of which we have provided a highlight.   

 
5. Conclusions and Future Work 

 
The paper described NWPerf, a lightweight system 

wide performance monitoring tool, discussed 
methodology for collecting performance data and 
experience with  collecting some samples of the types 
of data on a large high performance cluster.  The 
experimental results show that NWPerf provides a 
scalable and efficient collection system.  NWPerf was 
used to identify trends and variations from those trends 
to highlight jobs with interesting performance 
characteristics.  Our experience indicates that NWPerf 
can be effective in identifying application problems 
and can be used to collect information for diagnosing 
and improving application performance.  The NWPerf 
architecture has proven to be a stable and scalable 
platform for gathering performance data on a large 
1954-CPU production cluster at PNNL.  Our future 
work will be directed toward further validation of the 
tool design in its everyday operation and optimizing its 
implementation.  We also plan testing and validation 
on other clusters and with different application profiles.  
We will extend the analysis functionality to include 
automated anomaly detection and automated hints for 
users for various predefined anomalies. Finally, we 
will work with application developers to provide them 
with information on their application performance and 
use their feedback on type of measurements that 
NWPerf should provide to make performance 
debugging less challenging than it is today.    
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