

 We present NWPerf, a new system for analyzing
fine granularity performance metric data on large-
scale supercomputing clusters. This tool is able to
measure application efficiency on a system wide basis
from both a global system perspective as well as
providing a detailed view of individual applications.
NWPerf provides this service while minimizing the
impact on the performance of user applications. We
describe the type of information that can be derived
from the system, and demonstrate how the system was
used detect and eliminate a performance problem in
an application application that improved performance
by up to several thousand percent. The NWPerf
architecture has proven to be a stable and scalable
platform for gathering performance data on a large
1954-CPU production Linux cluster at PNNL

1. Introduction

Gathering performance statistics on large clusters
introduces several problems that are generally not
apparent on smaller systems. A primary issue is the
system interfering with user applications running on
the system, e.g. [1]. Another major problem is the
simple volume of data that is collected and how to
present it in a manner that is both usable and
meaningful for further analysis. This paper discusses
NWPerf; the methodology used in its development and
provides an overview of the types of data we have
acquired from observing the Pacific Northwest
National Laboratory (PNNL) 977-node Linux 11.8
TFLOPs cluster (MPP2) with 1954 Itanium-2
processors. NWPerf addresses the first challenge of
minimizing overhead by ensuring that the monitoring
client is very lightweight and carefully scheduling data
collection at set time intervals. The second issue of
data storage is addressed by providing a multilayer

data analysis system over a relational database [2] with
a Structured Query Language (SQL [3]) interface
using the PostgreSQL [4,5] database.

NWPerf is a system designed to address the
problem of gathering fine granularity performance
metrics with low impact for user applications on large-
scale computing clusters. In addition, it enables
correlation of the gathered performance data with
individual applications. This provides two valuable
capabilities: analysis and visualization of individual
application runs, and gathering the aggregate
information about the overall system performance.
The ability to analyze individual applications
highlights opportunities for optimization and helps
identify the source of performance problems. The
aggregate information provides information about
trends and the ability to highlight applications with
certain performance characteristics. The goal is to
examine overall system efficiency and utilization from
an outside perspective without requiring any
understanding or knowledge of any particular
application. Thus the analysis of the system is
application agnostic and provides a performance
profile for all applications running on a cluster.

The NWPerf architecture is based on a hybrid
approach combining well-known and tested state-of-
the-art ideas and methodologies used in a variety of
other well-known performance analysis systems. In
addition, it introduces several unique methods such as
synchronized data collection (Figure 1) and system
wide correlation of job and performance data. The
experimental results presented in the paper
demonstrate the low overhead introduced by NWPerf
on the application performance.

The remainder of the paper is organized in five
additional sections. Section 2 describes the design and
methodologies adopted in development of NWPerf,
and compares it to other related tools. Section 3

NWPerf: A System Wide Performance Monitoring Tool for Large Linux
Clusters

Ryan Mooney
ryan.mooney@pnl.gov

 R. Scott Studham
scott.studham@pnl.gov

Kenneth P Schmidt
kenneth.schmidt@pnl.gov

 Jarek Nieplocha
jarek.nieplocha@pnl.gov

Pacific Northwest National Laboratory
Richland, Washington, USA, 99352

discusses techniques used to minimize perturbation
effects on application performance. Experimental
results that validate this important design goal are
included in Section 4. Section 5 demonstrates some
gathered using NWPerf on a large production cluster
at PNNL. Finally, the paper is concluded in Section 6.

2. System Design

One of the key system design goals for NWPerf

was to cause less than a 1% perturbation in the time to
solution for any job, and to be capable of obtaining
samples at a 1-minute interval with a loss of less than
10% of the data points across a 1000-plus node
computational cluster. This represents tradeoffs
between the desire to reduce rounding and collection
error while providing fine grained data and
minimizing the interruption of applications running on
the system. To achieve these goals, the system must
be able to perform all data collection and transmission
from the client nodes to the collection server(s) in
under 0.6 seconds per one-minute collection interval.
This is to reduce the impact on large tightly coupled
applications where overlapping interruptions can
effectively combine to block the applications operation
for the time comprised of the overlap of all the
interruptions.

Figure 1: NWPerf Scheduled Reporting

2.1 Related Work

Most existing tools are focused either solely on the

analysis of a single application run, or they are
directed at modeling the system performance from a
system administration perspective. Initially, we
investigated the possibility of utilizing Ganglia [6] to
provide the information we desired; however, it did
not adequately address several issues. We found that
Ganglia did not provide some of the specific metrics
we needed. While it provides readily available
methods for extension, the version available required

us to develop independent external applications to
collect non-standard metrics, which potentially
increases unsynchronized user application interrupt
overhead. Also, Ganglia’s storage system (RRDTool
[7] based on MRTG [8]) while appropriate for
Ganglia’s normal usage, automatically aggregates data
into time series summaries causing information detail
loss and more importantly the system is not designed
to support easy ad-hoc queries. We also considered
Supermon [9]; however, it does not provide a data
repository, so it would have required us to develop a
major portion of the system anyway. In addition,
Supermon data collection is by default sequential in
nature, which can amplify the cumulative interrupt
problem. We also examined other systems such as
CARD [10], and PARMON [11] and dproc [12]
however none of them have demonstrated scalability
to the size of system we are examining, and other than
dproc they tended to have higher system interrupt
overhead than was desirable for collecting fine
granularity data. None of these systems attempts to
address system interrupt overhead by aligning the
sampling periods. Dproc as shown in [12] exhibited
near linear performance overhead, whereas NWPerf is
designed to have constant overhead regardless of
system size. Ganglia and Supermon focus on
lightweight clients and lower sampling intervals, and
neither CARD nor PARMON address system
overhead at all. Some other applications including
Clumon/PCP [13] are more for examining the state of
the cluster at a specific point in time, instead of
providing a long-term systematic view of the system.
Also of concern is the reliance of supermon and dproc
on kernel modules, this limits portability and
complicates development and deployment. These
applications can be invaluable resources for their
target environment, but do not provide the detail and
correlation capabilities that NWPerf does. Application
profiling tools such as Intel’s VTune Performance
Analyzer [14], Vprof [15], Perfsuite [16], and
traditional profilers like gprof [17, 18] can provide
detailed information about application runs. These
systems all provide a much greater amount of detail
about application performance than NWPerf is
intended to provide, but are generally targeted at only
analyzing individual runs. NWPerf is not intended to
replace application profilers; however, it can provide
hints as to which applications may benefit most from a
more detailed analysis from this type of tool.

2.2 Architecture

The NWPerf architecture is a lightweight, multi-tier
design composed of a simple modular client running
on each compute node, and a two-tier packet handler,
queue drainer collection system on the collection
server (Figure 2). Most of the components operate as
middleware, with the collection components being
data agnostic and only the analysis interfaces and
client modules need any understanding of the data
collected.

The client is a simple scheduler that dynamically
loads modules at initialization and calls the collection
routine for each of them at a specified interval. The
modules return a list of data points to the main client
routines and the data is XDR encoded and transmitted
over the network on a multicast channel. In network
encoding, NWPerf is very similar to Ganglia with two
differences; the data is of a single standardized type,
which reduces the flexibility but simplifies storage and
increases speed, and the data points are bundled into a
minimal set of network packets to reduce overhead.
Multicast was chosen over unicast as a transport
protocol to allow the easy addition of multiple data
collectors that may possibly perform different
operations (i.e. a real-time visualization tool), in
practice we have only developed the database storage
collector. Using user datagram protocol (UDP)
multicast also greatly simplifies the client application
since the socket code is much simpler than a
comparable unicast implementation. The client
simplification comes at the cost of more complexity
and fragility in the server since it must be able to
collect the unreliable datagrams quickly before the
network stack discards them.

Figure 2 NWPerf architecture
The modules implement all of the intelligence for

all data gathering to reduce dependencies and simplify
the base client design. The modules that collect the
data on each client will often be site-specific. In
recognition of this, we developed a simple application-
programming interface (API) to allow the modules to
be loaded into the client daemon at runtime This

allows adding new metrics with very little effort and
no change to the base system. The downside to this
approach is that module authors must be cognizant of
minimizing the amount of time their module requires
to run. In addition, we recommend that the aggregate
time to complete a data collection cycle should be
tested before deploying NWPerf. We currently know
of no automatic method for alleviating this problem.

NWPerf when deployed on our dual-CPU based
cluster is currently using two modules to collect the
following metrics per each node:

• CPU Performance Counters including:
percent of peak flops (for CPU 0 and 1), memory
bytes per cycle (for CPU 0 and 1),
• Vmstat like information including: percent of
time spent on kernel processes, percent of time
spent on user space processes, swap utilization
and swap blocks in and out, and block device KB
in and out.

We acquire the data for the peak flops and memory
bytes per cycle metrics from the Itanium hardware
counters [19] using the libpfm library [20]. Since only
four counters are available per CPU, we are limited as
to the number of events we can monitor without doing
sampling. To calculate flops used requires one
register, and to calculate memory access requires two
registers leaving one register available for future
expansion. The system collects the remaining
measurements listed using the Linux proc file system
via the libprocps [21] library. We have tested the
system with up to 14 metrics per node across all 977
nodes while maintaining a data loss of less than 10%.

The collection server is comprised of two major
components, a network packet handler and a database
inserter. Multiple instances of each are run depending
on load requirements and cluster size. On the PNNL
cluster, informal tests showed that 128 clients and two
packet handlers per socket resulted in the least amount
of dropped packets. We expect to be able to support at
least twice as many clients per socket by aggregating
multiple data metrics from one client into a single
datagram. In order to support the entire cluster we
open multiple sockets on the collection server and
have clients split into groups (currently based on
cluster position) to the packet handlers running on
each socket. The version under development
simplifies this greatly by having a central authority tell
each client where and when to send their datagrams.

The packet handler creates a secondary buffer
between the network and writing the data to disk to
address the problem of high-volume UDP traffic
overwhelming the operating system socket buffers.

Once packets are pulled from the network socket they
are inserted into a lightweight shared memory queue.
The queue-drainer removes the packets from the
shared memory queue, decodes them, and inserts the
data into the database. The queue-drainer performs all
decoding and translation to lessen the amount of work
per iteration the packet handler has to perform. As an
alternative to deploying multiple types of collection
servers, we are investigating the possibility of having a
queue-drainer serve data streams on demand to
visualization and analysis clients in addition to
performing the database inserts.

Since data storage is asynchronous from the
network component, we can use the gaps between data
collection intervals to allow the queue-drainer time to
finish storing the data. Collecting 12 metrics on 977
hosts had queue drain times approached 10 seconds,
when other queries were being performed, illustrating
the necessity of the multitier architecture. An
additional benefit to this design is that it allows the
collection system to be broken up across multiple
collection servers to allow it to handle larger clusters.
The system can be broken apart so that the packet
handlers and queue-drainers reside on separate servers

from the database system. In addition, one can deploy
multiple servers running packet handlers and queue-
drainers for different portions of the cluster reporting
the data to a central database server. The only
component that creates a bottleneck in this design is
the database, and with clustered databases, in theory, it
should scale to arbitrarily large clusters.

To facilitate easy data mining, we perform periodic
post processing to correlate the collected performance
data with application runs at the end of each job. A
job is simply a collection of nodes across an interval of
time. In the specific case examined here, we are using
job information collected from the LSF scheduler [22,
23] to provide the node list and time range for each
job; this also provides other information including job
owner, batch queue and project association (Figure 3).
As part of the analysis of each job, we also calculate
some statistical information for each of the metrics
collected and store the results into a Job Averages
table. This allows quick data mining of interesting
data items such as finding peak performing jobs or
jobs with high I/O requirements without having to
query the larger source dataset. Currently we calculate
the mean, global min, global max, standard deviation,
some information about node-to-node variation and a
count of the points collected for each metric for each
job. A database view combines the job table and the
job averages table to provide a simple interface to
performance data by job with all of the job details
visible.

3. Optimizing System Perturbation
Effects

One of the fundamental design goals was to

minimize the effect monitoring has on user
applications on the system. We address this issue in
two ways: by minimizing the interval at which
NWPerf execute across all of the compute nodes, and
by attempting to reduce the amount of time NWPerf
takes to collect and transmit the data on an individual
node.

 NWPerf schedules the data collection to happen
during a very short interval during which all nodes in
the cluster gather data and transmit it to the server.
This reduces the cross cluster impact to just the
interrupt during the time the collection is happening.
For the data used in this paper, the data collection
intervals on the client were scheduled using the
select() system call to trigger an alarm synchronized
with a time interval on the local node. All of the
nodes in the cluster are time-synchronized, using the

Figure 3: Job analysis data flow

network time protocol (NTP). The problem we
encountered with this approach is that NTP is slow to
resynchronize [24], and the clocks in the nodes used
tended to drift by relatively large amounts of time if
they lost synchronization for any reason (i.e., during
an outage). These issues combined to create variation
from the ideal collection interval. Figure 4 shows the
distribution of packet arrival times at the collection
server using NTP as a clock synchronization source
across all 977 nodes in the PNNL cluster. In the
sample taken, 87.77% of packets arrived within the
0.6-second window, leaving just under 13% outside of
the window. We did not consider network latency as a
factor for this test since the network is a single flat
gigabit Ethernet network. Packet latency is sub 100
usec, allowing us to approximate it as zero without
significantly affecting the results.

To address the deficiencies observed when using
the local clock to schedule packet collection, a new
version is in development that uses a central server to
trigger data collection on the clients via a unicast UDP
packet sent to each client. The client then responds to
the specified collection server with a dataset
containing their metrics. In order to avoid overloading
the collection server the scheduler will briefly pause
between scheduling groups of clients. This method
still preserves the synchrony of the time based
scheduling as long as the combined overlap time of the
scheduler activity and the data collection on the client
is less than the interrupt window. This can be
deterministic if the time taken by the scheduler is
known, it can provide a maximum timeout to the
clients so that they do not exceed the collection
window.

Table 1: Resolution of various methods of
pausing a process and transmitting a
scheduler packet under Linux 2.4.24

Seconds

Linux
Process

Scheduler

SysCall Tested
(unspecified
 times in ns) Mean Stddev

Default nanosleep(100000) 1.99E-02 2.45E-04
Default nanosleep(10000) 1.99E-02 1.39E-04
Default nanosleep(1000) 1.99E-02 2.27E-04
Default nanosleep(1) 1.99E-02 2.92E-05
Default select(1000us) 9.96E-03 2.68E-04
Default select(1us) 9.96E-03 2.06E-04
FIFO nanosleep(100000) 1.00E-04 3.65E-07
FIFO nanosleep(10000) 1.00E-04 4.14E-07
FIFO nanosleep(1000) 1.06E-05 3.76E-07
FIFO nanosleep(1) 1.63E-06 4.55E-07
FIFO select(1000us) 1.62E-06 4.82E-07
FIFO select(1us) 9.96E-03 1.01E-04
RR nanosleep(100000) 9.96E-03 9.70E-05
RR nanosleep(10000) 1.00E-04 3.60E-07
RR nanosleep(1000) 1.00E-04 4.59E-07
RR nanosleep(1) 1.06E-05 3.72E-07
RR select(1000us) 1.63E-06 4.60E-07
RR select(1us) 1.62E-06 4.53E-07
Default Empty for() loop 6.25E-08 4.45E-07
FIFO Empty for() loop 3.63E-08 5.46E-08
RR Empty for() loop 6.25E-08 4.45E-07
Default sched_yield() 8.51E-07 4.69E-07
FIFO sched_yield() 7.87E-07 4.63E-07
RR sched_yield() 7.88E-07 4.69E-07
Default sendto() 120 bytes 4.20E-06 1.03E-06
FIFO sendto() 120 bytes 4.20E-06 1.08E-06
RR sendto() 120 bytes 4.20E-06 1.08E-06

To verify that this method will schedule the client
activities in a timely fashion, we performed
measurements to determine how long it takes to send
each scheduler packet, and what resolution we can
expect for the pauses between scheduling clients. For
the experiment, we used a single processor 2.4Ghz
Xeon system that was idle except for normal system
processes. We also ran a representative subset of the
tests on a dual 3.2GHz Xeon system and a 1.5Ghz
Itanium-2 system with comparable results. We tested
each method for either a minimum of 1000 samples or
1-second runtime, whichever was greater. To read
processor cycle counts the rtdsc assembly call was
used on IA32-based systems and the ar.itc register on

Figure 4: Packet arrival distribution with
NTP synchronization

IA64 systems. The initial clock reading was
subtracted from the clock reading at the end of each
sample, and the result was placed into an array to be
printed out at the end of each run. Since usleep is
implemented in terms of nanosleep, and pselect is
implemented in terms of select and nanosleep, only
nanosleep and select were tested. Also included is the
time required to perform a sendto() operation on a
UDP multicast socket because this is included in the
server side overhead of scheduling the client
application.

Table 1 shows the resolution of various methods of
pausing the scheduler process and the time taken to
transmit a scheduler packet. Based on the timings
obtained this system should be able to schedule at least
30,000 clients with a short (0.01 second) pause
between each client with in 0.6 second window every
minute preserving the synchrony of the data collection
system. For larger systems, the scheduler could be
scaled to an N tier system with master schedulers that
schedule sub schedulers that schedule the actual
collection agents to maintain the short cross cluster
schedule time, and the collection system scaled across
more servers as described above. All of the scheduler
packets are constructed once at system startup to
reduce the possibility of variation in scheduling due to
packet construction overhead.

4. Experimental Evaluation of
Perturbation Effects

We measured the time to collect and transmit 12

data points to the network in order to determine the
interruption caused by individual instances of NWPerf
on a single node. This measurement was performed an
otherwise quiescent node with a slightly modified
client. We removed the scheduling code and replaced
it with a loop that simply iterated over the collection
process 10,000 times. An average time per iteration
0.0078 seconds was calculated by dividing the total
time by the number of iterations. The overhead per
iteration was also measured by running whatelse [25],
the same tool used in [1] to measure the NWPerf
overhead. For example, in a 500 second run it
reported NWPerf using 0.054 seconds of run time,
commensurate with the data gathered above and with
seven collection cycles happened in the 8-minute
period. This was substantially less than the overhead
of some other daemons running on the system, one of
which (LSF lim daemon) consumed 0.604 seconds in
the same interval, and is comparable with Ganglia,
which used 0.033 seconds. It is expected that NWPerf

will use slightly more CPU time than Ganglia since
the NWPerf collection interval is much shorter,
Ganglia only performs approximately one collection
cycle for every five NWPerf collection cycles. The
NWPerf overhead is mitigated by the fact that its
collection intervals are carefully aligned whereas
Ganglia’s tend to be more evenly distributed over time.

The reliance on collective communication
operations increases application sensitivity to system
noise, see e.g., [1]. To measure the impact of NWPerf

256 Way All to All 180,000 operations

0

100

200

300

400

500

600

700

Min Mean

T
im

e
to

 C
om

pl
et

io
n

(s
ec

on
ds

)

None

1X

10X

All-to-All time to Completion
All to All 256 CPU (12K runs LLCbench)

0

200

400

600

800

1000

1 2 4 8 16 32 64

Message Size [B]

B
an

dw
id

th
 [M

B
/s

] None

1X

10X

All-to-All Throughput

256 Way All Reduce 300000 operations

220

225

230

235

240

245

250

Min Mean

T
im

e
to

 C
om

pl
et

io
n

(s
ec

on
ds

)

None

1X

10X

All-Reduce Time to Solution
All Reduce 256 CPU (20K runs LLCbench)

0

2

4

6

8

10

12

14

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Message Size [B]

B
an

dw
id

th
 [M

B
/s

]

None

1X

10X

All-Reduce Throughput

Figure 5: Impact of NWPerf monitoring rate
on performance of all-to-all (top) and all-
reduce (bottom) communications for 128
nodes with 256 processors

monitoring on performance of collective
communications, we used a subset of the LLCbench
benchmark suite [26, 27], specifically the all-to-all and
all-reduce benchmarks from the MPI Bench subset of
the suite. We ran each benchmark across 128 nodes
using 256 CPUs with no monitoring, with the normal
one collection cycle per minute monitoring and with
ten times normal monitoring doing one collection
cycle every six seconds. Each benchmark was run at
least seven times and the lowest three numbers were
used. This was done to reduce the effects of other
system noise (e.g., LSF daemons), which as we have
demonstrated above is significant and to attempt to
isolate the noise to just that caused by NWPerf.

 Unfortunately, we were not able to remove the
other sources of noise altogether as the major causes
are critical system components required for jobs to run.
The all-to-all benchmark was run for 12,000 iterations
of the benchmark, and since the benchmark performs
tests at 16 different packet sizes for each iteration, that
yields 192,000 all-to-all operations.

The all-reduce benchmark was run for 20,000
iterations of the benchmark, and since the benchmark
performs tests at 16 different message sizes for each
iteration that yields 320,000 total all-reduce operations.
Figure 5 shows the effects of NWPerf on the
performance of the two communication benchmarks;
all-to-all and all-reduce. For normal rate (1X)
monitoring the other noise on the system obscures the
effects of NWPerf effectively making its impact
immeasurably small, at 10 times (10X) the normal
monitoring rate we see an increase of approximately
27% for the all-to-all and 9.46% for all-reduce in mean
time to benchmark completion. We found a bug with
the LLCbench all-to-all benchmark after having
obtained the data from our test runs, which restricted
the useful byte range to only be from 1 to 64 bytes.

5. Experience with NWPerf

5.1 System-Wide Performance Analysis

With the introduction of the Earth Simulator [28]
and its ability to sustain a large fraction of peak
performance, many funding agencies and
supercomputer center management are interested in
measuring the efficiency of computational resources.
This raises the question of what exactly efficiency
means. The most commonly used metric is percent of
peak flops achieved. For example, the LINPACK
benchmark measures peak flops and is used to place
systems on a list of the top 500 supercomputing sites.

However, many have questioned the practicality of
flops as a measure of useful work and point out the
importance of measuring other aspects of computer
performance [29]. In order to address both audiences
we attempt to collect a representative sample of
several different types of metrics so that the combined
information can be used to provide several different
views of system performance and utilization. It is not
practical to perform a detailed analysis of, and tune,
every application run. However, we can collect
detailed metrics that we can use to examine how
effectively jobs are, as a whole, using the various
components of the machine.

To present a fair view of system performance, we
excluded from the results presented here some jobs run
on the system. We attempted to remove most
benchmark and development applications by
restricting this analysis to jobs of eight CPUs or more
that ran for over 10 minutes in the normal user job
queues. This excluded about 9,360 jobs or 45% of the
total jobs run on the system. Just over 5,600 of the
excluded jobs ran in development queues, and over
7,200 ran for less than 10 minutes. We excluded these
jobs because development and benchmark jobs often
exercise only specific components of the machine or
under-perform due to debugging activities. Obviously,
some test and development runs submitted to the
normal queues are still included in the results;
however, there is no practical way to exclude them,
and we expect the number to be relatively small. With
these restrictions, we are showing data on
approximately 11,557 jobs run from October 23 2003
through April 12 2004. Due to site queue policies
only 35 jobs that used more than 1024 processors met
our selection criteria. That portion of the data is not
statistically meaningful and is included here only for
completeness and interest. When we examined the
data, we found that numerous pieces did not follow a
normal distribution. Because of this, we have
generally avoided using statistical functions that
assume a normal distribution (such as standard
deviation) for most of the analysis. For performing
most of the statistical analysis, we used the perl
Statistics::Descriptive [30] module since some of the
desired statistics functions were lacking in the
database. Where possible, we cross verified the perl
modules results with the results from the
corresponding database functions to ensure that the
results were consistent.

Figure 6 shows a scatter plot of sustained flops
across all of the jobs analyzed, with the median and
the 25th and 75th percentiles indicated across the
scatter plot. Peaks flops are represented as a
percentage of the 6 gigaflops theoretical peak that the
Itanium II processors used for the MPP2 cluster are
capable. This type of data is interesting because it
assists in the spotting of trends and identifying outliers
from the average jobs of a particular class. For
example, there is an apparent anomaly at 256 CPU
size jobs where an unusually a large number of jobs
fall above the 75th percentile, indicating that
something unusual is likely happening. Further
investigation of jobs using 256 CPU’s shows that
essentially all of the jobs performing substantially
above the norm can be attributed to two particular
users working on grand challenge projects. Given the
nature of the projects, we can assume that the
developers paid more attention to optimizing the code
than usual and thus we see the higher performance.
When we excluded these two users, the mean peak
flops for jobs using 256 CPUs fell almost by half from
6.7 to 3.4, almost exactly mirroring the median of 3.46
and the 75th percentile also fell accordingly validating
our assumption that we had identified some unusual
behavior. We could invert this type of analysis and
use the base data to easily find all jobs performing
below an expected point (i.e. the 25th percentile) and
determine if they belong to certain users who may
require more assistance with their application.

Another simple metric that is useful for
determining how effectively applications are using the
system is the amount of time the applications are
actually in run state. To collect this information, we
measured the amount of time the system scheduler had
user and system space processes in the run queue.
User space is where the bulk of the applications run

time should be, kernel time is consumed for activities
such as block I/O, floating-point assists, raid driver
overhead, and other kernel tasks. These data are the
same as that reported as user time from the UNIX
utility vmstat and indicates the amount of time the
system was not in idle state. The anomaly for
extremely large jobs in the 1024 and over CPU count
is attributable to a single user who has a well-tuned
application specifically designed to utilize large
numbers of nodes. Although we collect the metrics
individually Figure 7 presents a view with them added
together. This view is useful since it shows how many
jobs ran with virtually idle CPUs for some substantial
part of their run.

Another factor that can affect system performance
is memory use and usage patterns. We show in Figure
8 how often the CPU transferred data to or from main
memory averaged by job. The Itanium-2 processors
present this information via two performance counters,
one for memory transfers equal to 128bytes
(mem_eq_128) and one for memory transfers less than
128 bytes (mem_lt_128). We use this information to
calculate an estimate of memory bandwidth utilization
with the following formula (mem_eq_128 * 128 +

Figure 6 Percent of peak flops by job size

Figure 7 Operating system system+user
time by job size

Figure 8 Estimated memory bytes per cycle
by job

mem_lt_128 * 64) / (CPU cycles per interval). This
has the side effect that if there are many small-
granularity memory accesses we may see an
artificially inflated memory usage.

Since we were able to deploy our data-gathering
system near the beginning of the life span of the
computing system, we have the opportunity to observe
how system usage patterns change over time. To
examine this type of change, we examined efficiency
as measured by percent of peak flops as a function of
time averaged by month. As shown in Figure 9, there
is an upward trend from October of 2003 to March of
2004 with the mean of 6.73 increasing to 9.98 and the
median from 5.50 to 7.50. This is especially
significant since during the same time the mean job
size increased 12% during the same interval.

Figure 9 Percent of peak flops by month

5.2 Monitoring and Analysis of individual job
performance

In addition to reporting system wide performance,
NWPerf allows the examination of the details data
gathered for individual jobs. For example, this can be
used to identify anomalies for individual jobs and to
correlate the effects of interactions between the
various metrics observed. This also helps us identify
job signatures that can be fed into the summary
generation process to enable identification of specific
performance problems.

Examining the effects that the utilization of one
portion of the system has on the rest of the system
provides two points of interest. First, it allows system
designers who wish to tune their system for specific
job classes to have a better understanding of where
key bottlenecks lie. It also gives users insights into
where they may have opportunities to optimize how
they use the systems resources, or where their code
may be exhibiting problematic behavior

Understanding the tradeoffs of using different
components of the systems is one of the key factors in
optimizing performance as a function of time to
solution. For example, disk I/O is generally expensive
relative to the cost of computation and memory access.
However, the tradeoff may be worth the cost if the
time saved is more than the cost of the alternative
methods of calculating or recalculating the same value.
While we cannot determine the user’s intent without
knowing the intended result and methodology used by
the application, we can observe interactions that are
evident in the data from the job run. From these
observations, we can make some general statements
about which areas of the job may benefit from a more
detailed analysis to determine if the application is
performing as expected.

A simple example of a correlation that is visible in
some jobs is an inverse correlation between peak flops
(compared to the job average) and block I/O.
Unfortunately, without a detailed understanding of the
application we cannot tell if this matches the expected
behavior. To find anomalies we can invert the
expected correlations and look for behaviors that
usually occur in proximity with another type of event
where the matching event is missing. An example of
this type of behavior is that block I/O usually has a
high correlation to high kernel utilization. If we find
applications with high kernel utilization that do not
have a corresponding level of block I/O then we
should look for another factor that is causing the high
kernel utilization.

An example of uncorrelated behavior is shown in
Figure 10 and 11 where a tandem mass spectroscopy
code averaged 74% of the time in kernel (system)
space but only averaged about 11KB/s to disk. The
high system time left only 26% of the processor time
for the application code to run. A developer initially
brought this code to our attention because it had
recently shown a dramatic decrease in performance.
The problem was determined to be due to an
aggressive pre-fetch optimization the compiler made
inside variable length loops causing it to operate on
un-initialized data. The data referenced may contain
NaNs (Not-a-Number) and thus generate a floating-
point assist. Each floating-point assist causes a
context switch and a kernel call. The aggregate affect
of millions of floating-point assists accounted for
substantially all of the system time in this job. The
developer had made a minor change to their code,
which caused the problem inside the performance
critical section of the code. We worked with the
developer and created an interim solution to resolve

the problem by padding their arrays with extra doubles
pre-initialized to NUL while waiting for a resolution
from the compiler developers. This solution resulted
in increasing the application performance by 40,000
percent.

Using the performance profile of this application as
a template, we were then able to identify other
applications with the same problem. Because floating-
point assists may have other causes than the compiler
bug (i.e., under- and overflows), depending on the
applications precision requirements they can
sometimes be optimized away with compiler flags (i.e.
flush to zero). We proactively informed other users

whose jobs fit the profile and explained ways in which
they might easily increase their performance. Using
our feedback a user of a biogeochemistry code was
able to obtain over a 50% performance gain by only
changing two compiler flags. As our analysis tools
mature, we expect to be able to perform correlations
on more complex interactions and to provide
automated feedback for jobs that meet the criteria for a
known problem.

Providing detailed job analysis data has proven
valuable for analyzing system performance and

interactions as well as pinpointing problems within
individual applications. By analyzing in detail the
components of the system that individual jobs use we
can provide better analysis of future system needs.
Detailed job performance data has also proven
valuable in solving a variety of application problems,
of which we have provided a highlight.

5. Conclusions and Future Work

The paper described NWPerf, a lightweight system

wide performance monitoring tool, discussed
methodology for collecting performance data and
experience with collecting some samples of the types
of data on a large high performance cluster. The
experimental results show that NWPerf provides a
scalable and efficient collection system. NWPerf was
used to identify trends and variations from those trends
to highlight jobs with interesting performance
characteristics. Our experience indicates that NWPerf
can be effective in identifying application problems
and can be used to collect information for diagnosing
and improving application performance. The NWPerf
architecture has proven to be a stable and scalable
platform for gathering performance data on a large
1954-CPU production cluster at PNNL. Our future
work will be directed toward further validation of the
tool design in its everyday operation and optimizing its
implementation. We also plan testing and validation
on other clusters and with different application profiles.
We will extend the analysis functionality to include
automated anomaly detection and automated hints for
users for various predefined anomalies. Finally, we
will work with application developers to provide them
with information on their application performance and
use their feedback on type of measurements that
NWPerf should provide to make performance
debugging less challenging than it is today.

Acknowledgements

This research described in this manuscript was
performed using the Molecular Science Computing
Facility (MSCF) in the William R. Wiley
Environmental Molecular Sciences Laboratory, a
national scientific user facility sponsored by the U.S.
Department of Energy’s Office of Biological and
Environmental Research and located at the Pacific
Northwest National Laboratory. PNNL is operated for
the Department of Energy by Battelle.

Figure 10: Percentage of time in System
(kernel) by time

Figure 11: Block I/O (KB) by time

30 minute example job on 512 processors

References

[1]. P. Petrini, D. J. Kerbyson, S. Pakin, “The Case of the
Missing Supercomputer Performance: Achieving Optimal
Performance on the 8,192 Processors of ASCI Q”,
Proceedings of SC2003, Phoenix, AZ, USA, 2003
[2] E. Codd , “A Data Base Sublanguage Founded on the
Relational Calculus”, Proceedings of the 1971 ACM-
SIGFIDET Workshop on Data Description, Access and
Control, ACM Press, San Diego, CA, USA, 1971
[3] D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P.P
Griffths, R. A. Lorie, J. W. Mehl, P. Reisner and B. W.
Wade, “SEQUEL 2 A Unified Approach to Data Definition,
Manipulation, and Control”, IBM Journal of Research and
Development 20, 6, San Jose, CA, USA, 1976, pp 560-575
[4] B. Momjian, “PostgreSQL performance tuning”, Linux
Journal, n 88, SSC Inc, Seattle, WA, USA, 2001
[5] http://www.postgresql.org/
[6] F.D. Sacerdoti, M.J. Katz, M.L. Massie, D.E. Culler,
“Wide area cluster monitoring with Ganglia”, Cluster
Computing, 2003. Proceedings. 2003 IEEE International
Conference on, Vol., Iss., 1-4, Hong Kong, China, 2003, pp
289-298
[7] T. Oetiker, ‘RRDtool Round Robin Database Tool’,
http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/
[8] T. Oetiker, “MRTG: The multi router traffic grapher”,
USENIX Lisa Conference, USENIX Association, Boston,
MA, USA, USENIX Association, 1998, pp 141-147
[9] M. Sottile, R. Minnich , “Supermon: A high speed cluster
monitoring system”, Proceedings 2002 IEEE International
Conference on Cluster Computing, Chicago, IL, USA 2002,
pp 39-46
[10] E. Anderson, D. Patterson, “Extensible, Scalable
Monitoring for Clusters of Computers”, Proceedings of the
11th Systems Administration Conference, USENIX
Association, San Diego, CA, USA, 1997, pp 9-16
[11] R. Buyya. “PARMON: a portable and scalable
monitoring system for clusters”, Software - Practice and
Experience, John Wiley and Sons Ltd, Chichester, England,
2000, pp 723-739
[12] S. Agarwala,.C. Poellabauer,.K. Jiantao, K. Schwan,
M. Wolf, “Resource-aware stream management with the
customizable dproc distributed monitoring mechanisms”,
Proceedings 12th IEEE International Symposium on High
Performance Distributed Computing, Seattle, WA, USA,
IEEE Comput. Soc, 2003, pp 250-259
[13] J. Fullopm, “Clumon - The cluster monitoring system”,
http://clumon.ncsa.uiuc.edu/
[14] M. Atkins, R. Subramaniam, “PC software performance
tuning”, Computer Vol 29 Issue 8, IEEE, Piscataway, NJ,
1996, pp 47-54
[15] C. Jansen, S. Cranford, ‘The Visual Profiler”,
http://sourceforge.net/projects/vprof/

[16] R. J. Kufrin Perfsuite,
http://www.ncsa.uiuc.edu/~rkufrin/presentations/PerfSuite-
SC03/PerfSuite-SC03_files/frame.htm, 2003.
[17] J. Fenlason, S. Stallman, ‘GNU gprof’
http://www.gnu.org/software/binutils/manual/gprof/2.9.1/gpr
of.html
[18] J.K. Hollingsworth, B.P. Miller, “Parallel program
performance metrics: a comparison and validation”,
Proceedings. Supercomputing ’92, IEEE Comput. Soc. Press,
Los Alamitos, CA, USA, 1992, pp 4-13
[19] M.J. Serrano, W. YouFeng, “Memory performance
analysis of SPEC2000C for the Intel® Itanium™ processor”,
Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization, IEEE, Austin, TX,
USA, 2001, p 184-92
[20] HP Labs, “perfmon project home”,
http://www.hpl.hp.com/research/linux/perfmon/
[21] A. Calahan, “procps – the /proc file system utilities”,
http://procps.sourceforge.net/
[22] Platform Computing, “Platform LSF HPC”,
http://www.platform.com/products/HPC/
[23] M. Q. Xu, “Effective metacomputing using LSF
Multicluster”, Proceedings First IEEE/ACM International
Symposium on Cluster Computing and the Grid, IEEE
Comput. Soc, Brisbane, Qld., Australia, 2001, p 100-105
[24] L. Zhang, Z. Liu, “Clock synchronization algorithms for
network measurement”, Proceedings IEEE INFOCOM 2002
Conference on Computer Communications. Twenty-First
Annual Joint Conference of the IEEE Computer and
Communications Societies, IEEE, New York, NY, USA,
2002, pp 160-169
[25] S. Pakin, “whatelse – Report what else is running on a
computer”, http://www.c3.lanl.gov/~pakin/software/
[26] P.J. Mucci, “LLCbench - Low Level Architectural
Characterization Benchmark Suite“,
http://icl.cs.utk.edu/projects/llcbench/
[27] A. Calderon, F. Garcia, J. Carretero, J. Fernandez, O.
Perez, “New techniques for collective communications in
clusters: a case study with MPI”, Proceedings International
Conference on Parallel Processing, IEEE Comput. Soc,
Valencia, Spain, 2001, pp 185-192
[28] L. Chen, I. Fujishiro, K. Nakajami, “Optimizing parallel
performance of unstructured volume rendering for the Earth
Simulator”, Parallel Computing, v 29, n 3, Elsevier,
Netherlands, 2003, pp 355-371
[29] J. L. Gustafson, “Forgotten Aspects of Computer
Performance”, 6th International IEEE Symposium on High
Performance Distributed Computing Techniques and
Applications, Las Vegas, NV, USA, 1997
[30] C. Kuskie “Statistics::Descriptive - Module of basic
descriptive statistical functions”,
http://search.cpan.org/~colink/Statistics-Descriptive-
2.6/Descriptive.pm

