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Design and evaluation of future
computing architectures

How is R&D in future technologies and architectures informed
by the needs of the scientific applications communities

-~ R. Scott Studham
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ORNL has a history of platform evaluations

X/PS-150 1995

1991
Intel Paragon XP/S-35
1992

Intel Paragon MP
SRC Prototype
1999

GSN Switch
2000

Intel I/PSC-2
1988

IBM S80

1999
Intel I/PSC-860
1990

KSR-1
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Evaluation Methodology
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| only have time to answer one of these questions.

e  What are the new and exciting future technologies for microprocessors,
interconnects, memory subsystems, storage, languages?

e  What information do you need from the %opligatipn-science communities
to improve the effectiveness of your R&D activities?

e  How should research in future computing architectures collaborate with
capability-computing vendors, application scientists, and computer
science and applied mathematics communities?

e  What is the typical elapsed time between your “value added” in
documenting and evaluating the performance of new architectures and
our positive impact on scientific aPpllc_at_lons? How should this “time-
o-market” inform R&D investment decisions in future technologies?

e How can the nation’s S&T agenda best affect the long-term actions and
plans of the vendor community?

e How do the requirements of the leadership-class applications impact the
R&D agenda in future technologies?

e How do we acknowledge and prepare for potentially revolutionary and
disruptive computing technologies, (e.g., optical processors, reversible
logic, or quantum computing)?
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Predicting the future depends on your

, broadband
underStandlng Of the present' My Home Internet Connection Speed Spi
1000
In the mid-90’s if you were to ask
me what my internet connection 100 -
speed was going to be in 2004 |
would have said 56kpbs because
that is the physical limit of the
phone line. ' T e e
1980 1985 1990 1995 2000 2005
Moore's Law (1959f1 5, Sources: Intel, IBM, TI, Polsson)
Many people have prediCtEd ! 1 MHz 10 MHz 100MHz | 16z un;:z:;z;j; %
the end of Moore’s law In .
2010-2020. s o
é-,- 1e+08 | qu o -
gmm Alumiriun// VLW MWQISL&WEEES% i
1) Ignore the speed limit when Pra iy
telling us what you want. ©Ter v | aws
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The challenge is to understand domain needs and think
of new technologies that will bring them to reality.

When asked, “What would you do with a 100TF
supercomputer” the computational climate community
answered:

Ensembles with increased resolution and physics scates repor

When asked, “What are the scientific challenges for
the climate community over the next 10-20 years” the
climate community answered:

High resolution global cloud models with coupled carbon

CyCIe |mpaCtS [Report on the CCSM Atmosphere Model Working Group Meeting]
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Near uture Far Future
(2005-2020) (2020+)
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2) Think big. Tell us what you really want to do. Drive the
computer folks to react to your needs, rather than visa versa.
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Pictures by: Hiroaki Wliura and Masahide Kimoto Center for Climate System Research, University of Tokyo
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Future systems need to be driven off of real

requirements

Memory footprint per node during FY04 on 11.4TF HPCS2 system at PNNL
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3) Be realistic with your requirements
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Most jobs use
<50% of available
memory (max avail
IS 6-8G)

Large jobs use
more memory.
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27 metrics are collected on all nodes once per minute
eHardware Performance Counters including: Flops,
Memory Bytes/Cycle, Total Stalls

eLocal Scratch Usage (obtained via fstat() )
*Memory swapped out (total), swap blocks in and
out

*Memory free, used, and used as system buffers
*Block I/O in, and out

*Kernel Scheduler CPU allocation to user, kernel,
and idle time

*Processes running, and blocked

eInterrupts, and Context Switches per second.

eLustre I/0O (Shared global Filesystem)

All-to-all 256 CPU (12K runs licbench)
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Finding Problem Jobs

--------------------

Found by running: g RNy
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High kernel space versus user probably could do much better
space CPU — usually indicative of

floating point assists (non normalized

floating point operations)
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Aggregate Results
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A mix of usage patterns for the same computer

By analyzing the computer we discovered some disturbing trends:
— Most jobs use <50% of available memory (max avail is 6-8G)
— 10% of the >256CPU jobs have the CPUs scheduled for idle
>50% of the time.
— The mean sustained performance for jobs over 256CPU’s is <56%
efficiency.

However, the high impact science results all used the majority of the
system:
— CCSD(t) of Cetane sustained >5TF and used over 5TB of RAM
— MP2 of H2020 sustained 61GB/s of 10 and 6TB of RAM

The highly efficient use by a few seasoned users typifies the
need for user coaching and better vetting before allowing
access to HPC resources.
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Summary

e \WWhat information do you need from the application-
science communities to improve the effectiveness of
your R&D activities?

e Ignore the speed limit when telling us what you want.

e Think big. Tell us what you really want to do. Drive the
computer folks to react to your needs, rather than visa versa.

 Be realistic with your requirements.

 Evaluation of utilization patters of existing platforms
leads to as many new insights as the evaluation of

emerging technologies.
* The general community can benefit from coaching on how
best to use the new systems
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YOU'LL CELEBRATE YOUR
BIRTHDAY SOMETIME DURING
THE NEXT 12 MONTHS...

| couldn’t resist rubbing the crystal ball

Question #1: What are the new and exciting future
technologies for:

Microprocessors — Sockets will each have many CPU’s resulting
In clusters with O(100K) CPU’s.

Interconnects — Commodity channel 10 (user space
communications for Ethernet).

Memory subsystems — Compilers that can support logic in the
DIMM (FBD)

Storage - Scalable 10 that is addressable from multiple hosts as if
local.
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