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Catalysis and High-Resolution Imaging
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Need atomic-scale information to understand and

control catalyst properties
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HAADF STEM - Imaging of Real Catalysts
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Z-contrast STEM can detect heavy dopants on light
supports
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Aberration Correction in STEM
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*Non-round lenses

*Resolution and signal-to-
noise ratio are improved

* Routine detection of single
atoms

After
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Stabilization of y-Al,O0; by La Doping

Y-Al, O, is widely used as
catalyst and catalytic support

higher operating -) higher

temperature efficiency
Problem:
7z \ o
y V-ALO, + T ORI UCLLERRTR, N
{ Z /\ additives Solution:
) 74 g a
V-ALO,+ La—1220°C_, o AL0,

La,O; or LaAlO; monolayers ?
How? Bulk substitution of Al by La ?

*Single atoms or clusters on the surface?

Need to determine La distribution
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La Atoms on the Surface?

particle edges surface steps

Samples courtesy of M. Glazoff, Alcoa Technical Center
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Results: Through-Focal Series

probes with nedin ]
different defocus
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S. Wang, A. Borisevich et al., Nature Materials, March 2004
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Uncorrelated distribution oo oz o4 oo os 10
La atoms above and below oxide flake can be distinguished
*Two distinct sites, more common one - above Al-O column
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First-Principles Calculations

* lowest-energy position - above Al-O
column, CN=4

prefers to stay on surface
E(La:bulk) — E(La:surface) = 3-5 eV

*does not cluster

Results confirmed by independent EXAFS study:
T. Yamamoto et al., Chem. Mater. 15 4830 (2003):

La is isolated at low concentrations; in O,- and CO,-free atmosphere
CN ~4
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First-Principles Calculations (cont.)

Clean relaxed

for surface Al
v-Al,0,(100)

La/o-Al,0,(0001)

La on the y-Al, O, surface decreases driving force for transition
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Pt Trimers on the y-Al,0; (110C) Surface

I 2.78 A I
P.D. Nellist, S.J. Pennycook, K. Sohlberg et al., ChemPhysChem, Pt metal
Science 274 413 (1996) accepted (2004)
Can we use STEM/theory to determine properties of the
trimer?
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First-Principles Calculations

Pt-Pt distances in the
trimer are distorted
because of OH-capping
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First-Principles Calculations (cont.)
I mn N | R l_}

* Pt; trimer is
metastable with
Fespect to 3 isolated
adatoms

*Pt,0H structure is
more stable than 3
Isolated adatoms
*OH-capping makes
Pt atoms good Lewis
acid sites

Pt, Pt,OH
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Distinguishing Atoms in Bimetallic
Catalysts

Z-contrast STEM can be
used to distinguish
different types of atoms in
bimetallic catalysts

y-Al, O, supported Pt/Ru catalyst
derived from Pt,Ru,(CO),q;

Z2(Pt)/Z2(Ru)=4:1

8000

Sample courtesy of R.Adams, USC
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3D Imaging in STEM —» lateral x 10

-10 nm——

*Aberration correction in
STEM allows the use of
larger probe-forming
apertures
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*The resulting probes are
smaller, brighter, and have m?croscopme(ﬁ@%ﬁ

high convergence angles
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*Focal depth decreases as S ape ure %ure
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enabling 3D sensitivity: %Zz =2 &%mm

Azzi v

92

LS

>

10RO ——

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY UT-BATTELLE

15




3D Structure of Catalysts from
STEM Focal Series

HAADF: sensitive to metal particles BF: sensitive to substrate structure

Samples (Pt,Au,/TiO,) courtesy of M. Amiridis, USC
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3D Reconstruction

*Both metal and substrate
shapes can be characterized
using the focal series

*Metal particles appear
elongated because of defocus
spread

*Development of new
deconvolution algorithms is
needed for building real 3D
models of the data

Reconstruction by A. Lupini
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Atomic Resolution in 3D

*STEM focal series can be used
for collecting 3D datasets with
resolution down to atomic

*TEM tomography using tilt
series relies on projection
approximation, which is less
valid for high resolution because
of decreasing focal depth

Pt,Ru, on y-Al,O5; sample courtesy of R.Adams, USC
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Towards the 4" Dimension:
Prospects for In Situ Imaging

Pt
Fe Fe
<“— Metal core of the Pt;Fe;(CO),; cluster

Pt Pt

Sample courtesy of R. Adams, USC
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Future: 3" generation
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