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The Challenge

Thermochemical Hydrogen Production
Methods Require High Temperatures
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The Sulfur-Cycle Thermochemical
Processes Require High-Temperature Heat
Water + Heat —» Hydrogen + Oxygen
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Peak Temperatures are at the
Limits of Practical Operations

e Three challenges

— High nuclear-reactor temperatures at limits of
materials of construction

— Need for efficient heat transport from the reactor
to thermochemical hydrogen plant

— High temperatures in the thermochemical process

e Three solutions are being examined at ORNL
— The Advanced High-Temperature Reactor
— Molten-salt-heat transport

— Inorganic membranes to drive chemical reactions
to completion at lower temperatures
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Reducing Reactor
Temperatures

Liquid Cooling Minimizes
Reactor Temperatures for Heat
Delivered at a Given Temperature
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The Advanced High-Temperature Reactor
Graphite-Matrix Fuel and Low-Pressure Molten-Salt Coolant
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Liquid Cooling Lowers Peak Reactor
Coolant Temperatures for Heat
Delivered at Any Given Temperature
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Methods are Required to Reduce Heat-
Transport Loses from the Reactor to
the Thermochemical Hydrogen Plant

Molten Salt

Reactor Heat Transfer Hydrogen Facility
Oxygen
Heat ' l# W—l
Exchanger
SEe -
- < Water

Liquids Are Better Than Gases
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Molten Salts Have Superior
Capabilities for Heat Transport
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Number of 1-m-diam. Pipes
Needed to Transport 1000 MW(t)

with 100°C Rise
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Water Sodium

(PWR) (LMR) Helium Molten Salt
Pressure (MPa) 15.5 0.69 7.07 0.69
Outlet Temp (°C) 320 540 1000 1000
Coolant Velocity (m/s) 6 6 75 6
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Molten-Salts have Lower
Temperature Drops than Gases in
Heat Exchangers
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Inorganic

High- Low-
Membranes May Temperature Temperature
Lower Sulfur- Reaction Reactions
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The High-Temperature Step is the
Thermal Decomposition of Sulfuric
Acid

H,50, & 50;+ H,0 < SO,+ H,0 +1/2 0,

e The second decomposition reaction (far right)
requires high-temperatures (850°C)

e Lower temperature operation (e.g. 700°C)
results in limited dissociation of SO, and low
process efficiency
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High Temperatures and Low
Pressures Drive Chemical Reactions
to Completion

(H,SO, < SO; + H,0 < SO, + H,0 +1/20,)
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Complete H,SO, Dissociation is
Possible at Lower Temperatures

e Push the equilibrium high-temperature
reaction to completion by removing the

reaction products
H,SO, & SO; + H,0 & SO, +H,0 +1/2 O,

e Requires membrane separation of O,, H,0,
and SO, from SO,

Potential to reduce peak temperature to
between 650 and 750°C
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Schematic of Membrane Process to

Lower Peak Temperatures to
650-750°C
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Inorganic Membranes have been
Demonstrated for Moderate

Temperatures
* Technology utilizes
expertise from separation
of uranium isotopes by
gaseous diffusion

* Pore diameters of 0.5 nm to
20,000 nm

* 1600 psi burst pressure

» Separation layer applied to
metal or ceramic support
tube

e Layer thickness is 2um or
less yielding high
permeance at low pressure
drop
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Experimental Apparatus to
Measure Membrane Performance

(Before Fully Insulated)
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Preliminary Work Suggests Practical
Separations Membrane can be Developed

e Initial experiments show nanopore diffusion with
permeance increasing with temperature—the desired
behavior for a sulfur thermochemical membrane

e Initial experiments with first-generation membranes
show low-temperature separation of O, and SO,
from SO,

— Separation factor for O,/SO;: 2.3
— Separation factor for SO,/S0O,: 2.2

— These separation factors should significantly
increase with increasing temperature

e Durablility and Performance under Realistic Conditions

Must Still Be Demonstrated
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Conclusions: Three Approaches to
Reduce Peak Temperatures for H,
Production
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Backup
Backup
Backup
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Membrane Gas Transport Mechanisms

Nanopore Diffusion Required for Efficient Sulfur Thermochemical Separations

Mechanism Pore Selectivity | Permeance
Diameter
Viscous flow |A <d, None dp2 P T
Molecular A <dp None
diffusion
Knudsen A >d, m-1/2 m-1/2 de'1’2
diffusion
Surface All d, Variable d, P exp[(H,-E,)/RT]
diffusion
Capillary f(P) Variable
condensation
Nanopore 3d,>d, |Highest m-12d; T2 exp[-E4/RT]
diffusion
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With Nanopore Diffusion, Separation
Factors Increase with Temperature

2. 5; Thermally activated
diffusion, E, = 12 KJ/mol

) i

_Eef %g ‘|

Q ~exp 82 1.5
RT Eg L

< [

Knudsen diffusion

300 350 400 450 500 550
Temperature, K

*Rates of increase of permeance with increasing T for both H,

and He increase with decreasing pore diameter

sImplies that E is a strong function of pore radius

*These behaviors are not fully understood on a physical basis
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Conversion of SO; to SO, as Function
of Reaction Products Removed
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Separation Occurs at the Thin
Separation Layer

Critical Membrane =
Layer «

Pore Size: 0.4-5 nm

Thickness: 0.01-0.5 um

Zirmia .
membrane; &
Primary Layer 04 pm.pore | )

Pore Size: 0.005-0.5 um diameter
Thickness: 1-20 um

it
316L support tube,
42% void, 2 p m
pore diameter

Porous Support
Pore Size: 0.5-50 um
Thickness: >400 um

Jo1Bku
L
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Inorganic Membrane Fabrication
Processes are Versatile

e Choice of pore diameters from
0.5 nm to 20,000 nm

e Support structure and layer
made of variety of metals and
ceramics

e Mechanical, thermal, and
chemical stability

e Membrane layer thickness of
2 um or less yielding a high
permeance at low pressure
drop

e Proven scalability
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Test Facility Developed for Permeance
Measurements at Moderate
Temperatures
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1st Generation Membrane Tests:
S0,/S0; and 0,/SO; Separation Factors
Exceed 2 in Low-Temperature Tests

Permeance Vs. Sigma P
at 130-133C
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1st Generation Membrane Tests: Oxygen
Flow through Membrane Increases with

Temperature: Indicative of Thermally-
Activated Diffusion
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