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The Challenge
Thermochemical Hydrogen Production 
Methods Require High Temperatures 
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The Sulfur-Cycle Thermochemical 
Processes Require High-Temperature Heat

Water + Heat → Hydrogen + Oxygen
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Peak Temperatures are at the 
Limits of Practical Operations

• Three challenges
− High nuclear-reactor temperatures at limits of 

materials of construction
− Need for efficient heat transport from the reactor 

to thermochemical hydrogen plant
− High temperatures in the thermochemical process

• Three solutions are being examined at ORNL
− The Advanced High-Temperature Reactor
− Molten-salt-heat transport
− Inorganic membranes to drive chemical reactions 

to completion at lower temperatures



Reducing Reactor 
Temperatures

Liquid Cooling Minimizes 
Reactor Temperatures for Heat 

Delivered at a Given Temperature
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The Advanced High-Temperature Reactor
Graphite-Matrix Fuel and Low-Pressure Molten-Salt Coolant
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Liquid Cooling Lowers Peak Reactor 
Coolant Temperatures for Heat 

Delivered at Any Given Temperature
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Methods are Required to Reduce Heat-
Transport Loses from the Reactor to 
the Thermochemical Hydrogen Plant

Reactor Hydrogen Facility
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Molten Salts Have Superior 
Capabilities for Heat Transport
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Molten-Salts have Lower 
Temperature Drops than Gases in 

Heat Exchangers
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Inorganic 
Membranes May 

Lower Sulfur-
Cycle Peak 

Temperatures

Goal:  Lower peak 
temperatures by 

100 to 200ºC
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The High-Temperature Step is the 
Thermal Decomposition of Sulfuric 

Acid

H2SO4 ⇔ SO3 + H2O ⇔ SO2 + H2O + 1/2 O2

• The second decomposition reaction (far right) 
requires high-temperatures (850ºC)

• Lower temperature operation (e.g. 700ºC) 
results in limited dissociation of SO3 and low 
process efficiency
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High Temperatures and Low 
Pressures Drive Chemical Reactions 

to Completion
(H2SO4 ⇔ SO3 + H2O ⇔ SO2 + H2O + 1/2 O2)
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Complete H2SO4 Dissociation is 
Possible at Lower Temperatures

• Push the equilibrium high-temperature 
reaction to completion by removing the
reaction products

H2SO4 ⇔ SO3 + H2O ⇔ SO2 + H2O + 1/2 O2

• Requires membrane separation of O2, H2O, 
and SO2 from SO3

Potential to reduce peak temperature to 
between 650 and 750°C
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Schematic of Membrane Process to 
Lower Peak Temperatures to        

650-750ºC
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• Technology utilizes 
expertise from separation 
of uranium isotopes by 
gaseous diffusion

• Pore diameters of 0.5 nm to 
20,000 nm

• 1600 psi burst pressure
• Separation layer applied to 
metal or ceramic support 
tube

• Layer thickness is 2µm or 
less yielding high 
permeance at low pressure 
drop

Inorganic Membranes have been 
Demonstrated for Moderate 

Temperatures
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Experimental Apparatus to 
Measure Membrane Performance 

(Before Fully Insulated)
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Preliminary Work Suggests Practical 
Separations Membrane can be Developed

• Initial experiments show nanopore diffusion with 
permeance increasing with temperature—the desired 
behavior for a sulfur thermochemical membrane

• Initial experiments with first-generation membranes 
show low-temperature separation of O2 and SO2
from SO3

− Separation factor for O2/SO3: 2.3
− Separation factor for SO2/SO3: 2.2
− These separation factors should significantly 

increase with increasing temperature
• Durability and Performance under Realistic Conditions 

Must Still Be Demonstrated
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Conclusions:  Three Approaches to 
Reduce  Peak Temperatures for H2

Production

←Advanced High-Temperature Reactor

←Inorganic membranes

Molten Salt Heat Transport→
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Membrane Gas Transport Mechanisms
Nanopore Diffusion Required for Efficient Sulfur Thermochemical Separations
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With Nanopore Diffusion, Separation 
Factors Increase with Temperature
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Conversion of SO3 to SO2 as Function 
of Reaction Products Removed

Calculated Conversion of SO3 to SO2 at 10 atm
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Separation Occurs at the Thin
Separation Layer

Zirconia 
membrane, 
0.1 µm pore 
diameter 316L support tube, 

42% void, 2 µ m 
pore diameter
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Inorganic Membrane Fabrication 
Processes are Versatile

• Choice of pore diameters from       
0.5 nm to 20,000 nm 

• Support structure and layer 
made of variety of metals and 
ceramics

• Mechanical, thermal, and 
chemical stability

• Membrane layer thickness of  
2 µm or less yielding a high 
permeance at low pressure 
drop

• Proven scalability
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Test Facility Developed for Permeance 
Measurements at Moderate 

Temperatures

03-185R
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1st Generation Membrane Tests:  
SO2/SO3 and O2/SO3 Separation Factors 

Exceed 2 in Low-Temperature Tests
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1st Generation Membrane Tests:  Oxygen 
Flow through Membrane Increases with 
Temperature: Indicative of Thermally-

Activated Diffusion
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