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Cermet Cask Description
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Cermets Combine the Best Properties of 
Ceramics (Shielding, Hardness, etc.) and 

Metals (Strength, Ductility, etc.)

04-070

Main Battle 
Tank Armor

Cutting Tools

Brake Shoes

Cask Body

Clean 
Steel

Metal Matrix

Ceramics 

- Strength
- Thermal 

Conductivity

- Armor (Al2O3, 
SiC)

- Neutron Shielding 
(DUO2, Gd2O3)

- Gamma Shielding 
(DUO2)

Cermets Are 
Used for 

Demanding 
Applications

Cermet Body Cross Section
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Cermets are the Enabling Technology 
for a SNF Super Cask

(Ceramics in Metal Matrix to Obtain Advantages of Both)

04-100

• Radiation Shielding
− Gamma: High-Density DUO2/Other
− Neutron Moderation/Absorption

•Oxygen in DUO2
•Carbon in SiC/Other

• Assault Protection: Traditional Armor
− Ceramic (Al2O3, Other)
− Metal

• Safeguards and Theft
− Large Mass
− Cermet

• Decay Heat Removal
− High-Conductivity Steel Matrix

• Geological Disposal
− Criticality (DUO2)
− Chemistry: Enhanced Eh and pH

(Fe, Other)

SNF Assembly 
Slot

Steel (Continuous 
Phase)

Depleted Uranium 
Oxide

Cermet

Clean Steel

Al2O3, Other CeramicsCermet 
Cask

Armor 

Hard Ceramic 
Breaks up 
Projectile

Ductile Metal 
Absorbs 
Energy

Projectile



Design
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Studies are Underway to Define 
Optimum Cask Design

• Cask design dependent upon application: 
storage, transport, and/or disposal

• Key questions: What is the optimum cermet for:
− Minimum cask weight?
− Minimum cask dimensions?
− Maximum physical protection?
− Maximum repository performance?

• Cermets (ceramics in metals) create performance 
possibilities that have not been previously 
explored



Manufacturing
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Low-Cost Manufacturing is the Key 
Economic Requirement

• Two options being examined
− Casting (Russia)
− Powder metallurgy (United States)

• Optimum cask may have different parts 
made by different processes

• In the U.S, manufacturing studies are 
underway to understand the economics

• Initial results in several months
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New Cermet Cask Production Method
(United States:  Patent Application Filed)

02-090R3

Add Steel/DUO
Particulate Fill

to Annular
Preform

2

Seal Preform
and Degas

Heat
Preform

Steel/DUO2
Particulate Fill

Steel Shells

Future Cask
Lid Mating

Surface

Powder Mix

Weld and
Vacuum
Degas

Consolidate Particulates to Cermet

Forge or Roll

Weld Bottom
onto Package
(Steel-to-Steel Weld)

Machine Cask Lid
Mating Surfaces

Drive
Roller

Idle
Roller

Cermet
Preform

Axial
Rollers
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Step 1:  Manufacture of Cask Preform

03-105

• Preform dimensions are 
slightly larger than the 
final cask

• Preform becomes the 
final inner and outer 
surfaces of the cask
• Wall thickness: 1-3 cm
• Flange

• Thickness: 10-20 cm
• Face for lid

Future Top Flange

Outer Surface of
Final CaskInner Surface

Void
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Step 2:  Empty Preform is Mounted Upside 
Down on Turntable and Filled with Cermet 

Particulate Mixture

02-119R

Feed System

Preform

Advanced Option
Integrated Cermet

Cask Bottom

Different Cermet
Particle Mixes

Particulate
Mix

Future Top
Flange

Inside
Bottom
of Cask

Particulate
Fill Line

Rotating
Platform

Tamping
Arm

Hydraulic
Lift

Materials
Feeder

Cask Preform
(Near Final
Dimensions)
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Step 3:  Loaded Preform is 
Sealed and Degassed

03-107

• Weld annular ring to 
seal preform

• Degas
− Heat
− Vacuum

• Send sealed package 
to forging operations

Future Top Flange

Outer Surface of
Final Cask

Inner Surface

Particle Mix
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Step 4:  Cermet Consolidation by Hot 
Forging (Several Forging Options)

02-116

Anvil

Cermet
Preform
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Step 5:  Cask Finishing Operations

03-104

• All finishing operations 
involve steel preform 
(No contact with cermet)

• Cask bottom is welded 
to the cask body
− Option for integrated 

cask bottom
− Option requires 

complex forging 
operation

• Cask machining
− Machine lid surface and 

bolt holes
− Cask surfaces



Cask Decay Heat Removal

The Other Constraint in Cask Design
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U.S. Utilities want High-Capacity 
Casks for Short-Cooled Spent Nuclear 

Fuel (SNF)

• Cermets increase cask capacity for a given 
weight constraint

• With improved cask, SNF decay heat then 
limits cask capacity and incentives for cermet 
casks

• Limited studies undertaken on how to improve 
cask SNF heat removal
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High-Performance Heat Removal 
Requires Efficient Heat Transport 

Across Three Barriers
(Improved Heat Transport For Two Barriers)

• Heat transport from 
SNF to cask wall
− Enhanced Gas 

Convection

• Conduction 
through cask wall
− Metal matrix

• Heat transport from 
cask wall to air
− Liquid cooling
− High surface area
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Cask Cooling Improved by Liquid-
Cooled Fins and Special Gas-Mixtures 

in Basket
04-099
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Repository Behavior
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Significant Uncertainties in U.S. 
Repository Program

• U.S. Federal courts have asked for redefinition 
of repository performance goals
− Licensing may require demonstration of repository 

performance for longer periods of time

• Current repository design emphasizes 
corrosion-resistant waste package

• If repository licensing period is extended, 
there are greater incentives to consider 
geochemical barriers such as DUO2 to 
demonstrate repository performance
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Conclusions

• Continued interest in cermet casks

• Increasing interest in casks for storage 
and transport

• Two methods identified for cask 
manufacture

• Repository performance goals uncertain; 
increased incentives for provable methods 
to improve repository performance
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Cermet Cask Description
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Basis for Cermet SNF Cask 
Performance

04-071

Assault Resistance
(Traditional cermet application)
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Because of Their Material Properties, 
Cermet SNF Cask Performance 
Exceeds That of Other Casks

04-070

Main Battle 
Tank Armor

Cutting Tools

Brake Shoes

Cask Body

Clean 
Steel

Metal Matrix

Ceramics 

- Strength
- Thermal 

Conductivity

- Armor (Al2O3, 
SiC)

- Neutron Shielding 
(DUO2, Gd2O3)

- Gamma Shielding 
(DUO2)

Cermets Are 
Used for 

Demanding 
Applications

Cermet Body Cross Section

New cermet manufacturing method 
for low-cost production



Cask Decay Heat Removal

The Other Constraint in Cask Design
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01-028A

Decay Heat Controls the Design of 
SNF Cask Systems for Large Casks 

and Short-Cooled SNF
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Convective Heat Transport is Maximized 
with a High Thermal Conductivity for 

Heat Transfer (e.g. He) and a High 
Density for Convection (e.g. Xe) Gas

04-002
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Decay Heat Removal can be Increased 
by Using Fins with Natural Circulation 

of Liquids

02-091R
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Heat Rejection from Solid and Water-
Filled Fins Versus Temperature and 

Fin Depth

02-093
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