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ABSTRACT

The intensity distribution of Laue diffraction is analyzed as a function of local misorientation.
We show how unpaired dislocations alter the white beam Laue patterns for isolated dislocations,
for dislocation walls, and for a combination of both. We consider the effect of different
statistically and geometrically necessary dislocation densities on the intensity distribution along
and perpendicular to the Laue streak. A 3D x-ray crystal microscope is used to analyze the
complicated plastic-elastic field in a grain of a Ni polycrystalline sample during in-situ uniaxial
pulling. A change of dislocation activity with depth is demonstrated. The dislocation slip systems
and their densities are determined at various depths. The model parameters are used to simulate
the whole Laue pattern including details about the contours for specific Laue spots; good
agreement is found between simulated and experimental contours.

INTRODUCTION

The recent developments of strain gradient plasticity represent an effort to bridge the gap
between classical plasticity and dislocation theory1-4. Plastic strain gradients appear either
because of the geometry of loading or because the material is plastically inhomogeneous. Several
length scales are introduced in the framework of strain gradient plasticity. Considering different
models of geometrically necessary dislocations, GNDs, Gao3 et al. related effective strain
gradient η to the density of GNDs, n+. Polychromatic x-ray microdiffraction offers a
fundamentally new approach to the study of mesoscale dynamics in single crystals and
polycrystalline materials5,6. With white-beam microdiffraction it is possible to quantitatively
analyze a sample at different structure levels. In particular, it is now possible to analyze details of
structure corresponding to nano (cells) - and mesoscopic (fragments) levels. Different slip
systems cause distinctly different streaking in their Laue patterns. Examination of streaked
patterns enables the detection of statistically stored dislocations and GNDs, and the quantitative
determination of dislocation patterning parameters. We use a multiscale hierarchical framework
similar to a cell-wall model7-8, o extend the dislocation/disclination description for the length
scales introduced in strain gradient plasticity theory. We show that diffraction experiments give
natural criteria for the aforementioned length scales.

EXPERIMENTAL DETAILS

The 3D x-ray crystal microscope uses a modified Laue diffraction method based on
polychromatic radiation5,6. This approach allows for true 3D mapping of crystalline phase,
orientation, elastic strain and plastic deformation with unprecedented spatial resolution. As the
polychromatic beam penetrates the sample, it produces a Laue pattern in each subgrain that it
intercepts. The overlapping Laue patterns are detected by an x-ray sensitive CCD positioned at
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90° to the incident beam. The origin of each Laue pattern can be decoded with a wire that scans
through the diffracted beams. This decoding technique is called differential aperture microscopy.
In a typical experiment, the sample is mounted on a precision 3-axis rectilinear sample stage with
25 nm bi-directional repeatability. A region of interest is identified using an optical microscope
and the polychromatic x-ray beam is focused onto the sample. Overlapping Laue images from
grains probed by the beam, are recorded by the CCD. The number of grains or subgrains
illuminated by the penetrating x-ray beam is identified, and the orientation of each subgrain is
precisely determined by an automated indexing program. Details on the experimental setting and
data collection can be found elsewhere5,6. Data collection has been carried out using microbeam
Laue diffraction on beamline ID-34E at the APS. In this experiment, rotations of five
neighbouring grains in a polycrystalline Ni tensile sample was determined at 0, 10 and 15%
mesoscopic plastic strain (Fig.1). Dimensions of the beam were 0.46 by 0.55 micron with a
penetration depth of ~ 30 micron. Rotation of grains at depth can be resolved to a resolution of
~1 micron using the differential aperture microscopy6.

Figure. 1 Experimental
setup for in situ uniaxial
pulling (a) and marked
square region with five
neighbouring grains in a
polycrystalline Ni tensile
sample (b).

RESULTS AND DISCUSSION

In traditional white-beam Laue diffraction, a continuum spectrum is diffracted by a single
crystal (or single grain). The crystal scatters the beam into a characteristic Laue pattern that
depends on the crystal space lattice, its orientation and the incident-beam energy distribution.
The incident beam and scattered beam directions defines a line in reciprocal space. The position
along this line is determined by the wavelength of the scattered radiation. For example reciprocal
lattice points (00h), (002h), (003h), (004h) etc are scattered towards the same pixel on a detector
but lie at different positions radially in reciprocal space. To analyze the white beam intensity
distribution from a deformed grain, we introduce unit vectors in each direction of scattering

kkk /ˆ = . We define a special misorientation vector m near a Bragg reflection9,10
hklkkm ˆˆ −= .

The misorientation vector m gives the difference between the unit vectors parallel to a Bragg

reflection (h k l), hklk̂ , and an arbitrary direction in its vicinity, k̂ .

We have analyzed the diffracted Laue images for patterning at several structural levels
involved during plastic deformation. We start with diffraction for the first structural level:
individual randomly spaced statistically stored dislocations and GNDs. During deformation
dislocation motion and the strong interaction between dislocations collect individual dislocations
to create a correlated dislocation arrangement with dislocation walls. Some fraction of the
dislocations may remain randomly distributed, and the rest will form various correlated
dislocations and more organised disclination arrangements. Neighbouring cells are usually
separated by the “so called” incidental dislocation boundaries10 (IDBs). The next structural level
involves fragments. Fragments contain cells with approximately the same crystallographic
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orientation. Geometrically necessary boundaries (GNBs) separate two fragments. For crystals
with unpaired tilt dislocation walls (GNBs or IDBs), X-ray diffraction Laue spots are broadened
in proportion to the number of excess dislocations inside the wall and to the total number of
unpaired walls.

In the mechanism-based strain-gradient plasticity (MSG) framework, plastic deformation is
described1-4 by a strain gradient tensor of the third rank ηlmk with effective strain gradient

kjiijkijkijkjjkiik ccc ηηηηηηη 321 ++= and constants c1,c2,c3. The plain-strain bending of a crystal

of curvature K usually is modeled by a network of randomly distributed GNDs with the density
n+ and Burgers vector b (Fig.2a). The curvature K= n+b coincides with the above effective strain
gradient η. This enables us to write η in terms of the density of GNDs, η=n+b. The average
distance between randomly distributed GNDs at yielding, Ls, is related to the “material length l”
in the MSG theory3,4. We write the strain gradient tensor ηlmk in terms of the anti-symmetric
Levi-Civita tensor of third rank ετlm and a dislocation density tensor of second rank ρik:

)(rbkiiklmkilm δτρηε −=−= ,
ml

k
lmk xx

u
∂∂

∂=
2

η . (1)

Here uk , the k-th component of the displacement field u for any unit cell, is due to all
dislocations in the crystal. We calculate the total displacement of the i-th cell ui from the
equilibrium positions 0

iR corresponding to the undeformed crystal using continuum elastic
theory. This displacement is due to all dislocations and is defined using random numbers ct by
the equation9,10 :
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If there is a dislocation at position t, 1=tc , and for positions without dislocations 0=tc . The

Cartesian reference frame is set such that the x1 axis coincides with the direction of Burgers
vector b and x3 coincides with the direction of dislocation lines of the dislocation net. With this
coordinate system the crystal will be bent in the plane x1x3 due to the net of GNDs. In this
Cartesiain reference frame the only nonzero components of the dislocation density tensor is ρ31

resulting in the nonzero components of the strain gradient tensor: K−=112η and K=211η , with

effective strain gradient bnK +==η .

Plain-strain bending can be modelled by walls of GNDs as well as by randomly distributed
GNDs (Fig.2b). These walls are responsible for the next structural level and are related to the
second intrinsic length scale. Consider the structure with geometrically necessary randomly
distributed tilt dislocation boundaries. We assume pure tilt boundaries formed by equidistant
edge GNDs (so called “thin walls”) with mean distance between the dislocation lines within the
wall equals h (Fig.2b). These boundaries do not produce long-range elastic strain but generate
subgrain rotations. Each wall provides a rotation between two neighboring mosaic blocks with
rotation angle Θ. To characterize this model quantitatively we define the average distance D
between GNBs and write the number of GNBs per unit length as D/1 . This distance corresponds
to the second intrinsic length scale in the MSG approach. The total density of GNDs grouped in
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the GNBs is denoted by Dhn /1=+ . The effective strain gradient in this model can be written as
D/Θ=η .

Dislocations change the diffraction conditions and enlarge the region of high intensity around
each Bragg position. The intensity distribution I (q) of x-ray (or neutron) scattering due to
defects can be computed from the expression:

∑
−•=

ji

Ti
eefI ij

,

2)( Rqq ( )
∑

−•−=
t

i jtitenST
uuQ (1 (3)

Here fi is the scattering factor from an individual atom i, with relaxed co-ordinates
Ri= ii uR +0 due to the presence of defects; S is the area of one dislocation in a transverse
plane; n is the total dislocation density, and nS is a dimensionless quantity that indicates
the fraction of lattice sites covered with dislocations. Following the approach described in
the reference10 the difference between displacements of two scattering lattice cells i and j
can be written

itijitijjtit uRuRuu 2)(
2

1
)( ∇+∇=− , (4)

where
iR∇≡∇ . The correlation function T differs for different dislocation arrangements and

depends on the density of GNDs and effective strain gradient parameter10. In general for an
arbitrary distribution of statistically stored dislocations and GNDs T has both real and imaginary
parts, T=T2+iT1, where

))((1 ithklij
ti

icT uGR ∇=∑ ; [ ][ ]∑ ∇−−= ))((cos12 ithklijicT uGR . (5)

With substitution of Eq. 2 and 4 into 5, we find that for unpaired dislocation walls density
in system λ of +

λn

[ ]( )λ
λ

λ τR*QbR
λi ijniCT ∑ •−= + )(11 ; λ

λ
λϕ∑= nLQbCT ln)( 2

22 . (6)

Here C1, C2 are the orientation and radial contrast factors, λ is the number of the activated

Figure. 2 Scheme of the randomly distributed geometrically necessary dislocations (a) and
their polygonization into cell-walls (b) corresponding to the plain strain bending of a crystal in
the x1x2 plane with curvature K relatively neutral plane OO1; K= n+b for random distribution (a)
and K D/Θ= for dislocation groupings in the walls (b).

1/K 1/K

D

n+ Θ GNB
GNDs

WallsRandom

a b

h
Ls

O O1

W6.6.4



dislocation slip system, L is the size of the subgrain (or the cut-off radius), and ϕλ is the
orientation factor for each dislocation system. The first term T1 is imaginary, linear with respect
to the density of unpaired dislocations n+ and goes to zero when n+ =0. The real part of the
correlation function T2 is independent of whether dislocations are paired or unpaired. From the
structure of this equation it follows that dislocations parallel to the diffraction vector do not
contribute to the function T1 and do not influence the intensity of scattering (contrast factor C1

for these dislocations is zero). T2 describes the influence of mean distortions due to randomly
distributed individual GNDs.

For an equal number of random “+b” and “-b” dislocations the broadening of the
diffuse scattering is induced by random local fluctuations in the unit cell orientations and
d spacing that tend to cancel out over long length scales. Due to the character of the
displacement field around edge GNDs, displacements occur only in planes perpendicular
to the direction of dislocation lines τ. As a result, coherence is not changed along the
direction τ, and the diffracted intensity in this direction is the same as for crystals without
dislocations. Perpendicular to τ, the intensity distribution is roughly symmetric with a
characteristic full width at half maximum (FWHM) dependent on the total dislocation
density n: nFWHM ∝ . For unpaired dislocations or dislocation walls the Laue intensity
distribution relates the distortion tensor, ωij, due to GNDs, n+, to the unpaired dislocation
density and system (direction τ, and Burgers vector b).

Near a Laue reflection, we can define11 two natural axes ξ and ν in the plane perpendicular to
the momentum transfer unit vector g. With this co-ordinate system, the diffuse scattering is
strongly elongated in the ξ direction, and the full width at half maximum in the ξ direction
FWHMξ for randomly distributed GNDs depends on their density, n+, mutual orientation
between the active dislocation system, the momentum transfer unit vector g, and the length of the
coherently scattering region L. In the narrow direction, ν, the FWHMν depends on the average
distance between statistically stored dislocations Ls and on the mutual orientation between τ to g.
For groupings of GNDs in the walls the FWHMξ depends on the average distance D between
GNBs, their mutual orientation to the momentum transfer G, the type of GNB (tilt or twist), and
the incident x-ray beam direction.

)ˆˆ( hklGLfFWHM •∝ τη ξξ ; )ˆˆ(1
hkls GfbLFWHM •∝ − τνν (6)

Here )ˆˆ( hklGf •τξ and )ˆˆ( hklGf •τν are contrast factors along and perpendicular to the streak. The

predominant slip systems and direction of the strain gradient can be identified because of their
distinctly different contributions to streaking of the Laue patterns. We emphasize that in white
beam diffraction the FWHM is a function of misorientation vector m between unit vectors (rather
than reciprocal space momentum transfer vector).

The microbeam-Laue technique was applied to a complicated dislocation structure arising
from the in situ uniaxial pulling in a Ni polycrystalline sample. The microbeam-Laue diffraction
reveals pronounced streaking of Laue images after 15% of strain. The plastic response of the
material in each grain can be described by formation of GNDs in the material to relax the stress
field induced during pulling. In FCC crystals, typical edge dislocation lines are parallel to the
directions of <112> with Burgers vectors being parallel to the directions <110> and
corresponding glide planes {111}. Laue images were taken at different depth of a grain labeled
A in the Ni polycrystalline sample. The orientation of the grain surface normal after deformation
was almost parallel to ]332[ with loading direction approximately in ]211[ direction.
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Figure. 3 Experimental Laue images from the grain A of a polycrystalline Ni sample after 15% of strain:
a)Laue pattern from the total depth of 30µm (a) and depth resolved patterns obtained from the depth of
5µm (b); 15µm (c); 28µm (d).

Experimental Laue patterns from a depth of 30 µm and depth resolved images with 1µm
resolution obtained with differential aperture microscopy6 are shown in Fig.3. Distinct streaking
of the Laue spots is observed up to 25µm below the sample surface. The total Laue pattern
obtained from 30µm consists of two sets of streaks (Fig.3a). It is an indication that at least two
regions with different slip systems and different strain gradient direction are present in the
irradiated volume. Differential aperture microscopy demonstrated that in the near-surface region
only one set of very-long streaks is present (Fig.3b).

To understand the shape of the experimental Laue images and to check the sensitivity of the
Laue image to different possible orientations of GNDs, we have simulated Laue patterns with
different GND slip systems with the same density of GNDs. Some of them are shown at the Fig.4.
Simulations were performed for cell-wall structure of GNDs. Geometrically necessary boundaries
(GNBs) were formed by dislocations with Burgers vector b= ||[110] and dislocation lines in

]211[ and ]211[ directions.
Using the aforementioned analysis we determined the direction of the activated slip system in

the near-surface region and simulated Laue pattern corresponding to the best fit slip system
parameters (Fig.5). At 15 µm depth we observe a change in the slip system direction. At a depth
of 25µm the Laue pattern consists of relatively well shaped spots. However comparison of the
sample orientation matrix at increasing depth shows that it continues to rotate. Our analysis of the
orientation of the activated dislocation slip systems shows that the slip systems with dislocation
lines inclined approximately 45 degrees to the loading direction are activated first.

While the general features of uniaxial plastic deformation have been considered in the
literature11-15, a direct quantitative analysis of the geometrically necessary dislocations formation
within several length scales within each grain and comparison with strain-gradient plasticity
parameters is presented here for the first time.

Figure.4 Laue patterns simulated with different orientation of GNDs of the same density, (orientation of
the crystal is chosen to coincide with Fig.3d):a) b [0-11] ξ [-211];b) b [1-10] ξ [112]; c)b [110] ξ [1-12] +ξ
[1-1-2];d) b [0-11] ξ [211].
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Figure.5 Experimental (left) and simulated (right) Laue pattern at the depth 5µm beneath the surface.
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