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Outline
· Oriented semiconducting polymer nanostructures
· Attractive photo-physical properties

- Ensemble oriented dipole emission
- Extreme polarization anisotropy
- Narrow & stable photoemission
- Single-photon source

· Theory/Computational of structure and properties
- Molecular mechanics simulations of molecular configuration
- Electronic structure
- Linear response: Low-lying singlet exciton

· Conclusions
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Polymer-based optoelectronics

Huge literature on macro/meso-
scale  polymer-based optoelectronic
(LEDs, photo-voltaics, etc.)
devices.
     - R. H. Friend, et al. Nature 

347, 539 (1990).

Applications:
- Electronic paper, luminescent
clothing, display technologies, etc.!

“…brighter, thinner,
lighter, faster” What are the issues in

nanoscale applications??
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Semiconducting Polymers ??

• Many different ‘flavors’
• Cheap to produce (many are
commercially available)
• Convenient solution-phase
processing
•Facile electron transport
properties
• Responsive to optical excitation
• Size-scalability down to 1 nm

hwin

hwout ∝ 1/L2L
 Electroluminescence

L
hwout(+)(-)

Vbias

+

-
LUMO

HOMO

No need for external
light pump.



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Semiconducting Polymers:
Photo-physical Limitations in thin-film formats
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The bad news:
• Random, disordered chain structure for thin films;
• Broad emission spectrum, poor photo-stability and charge-transport properties
 nanoscale photonics applications are “short-circuited”!
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Semiconducting Polymers: Probing single-molecule chain
organization and orientation in thin films

• Emission dipoles oriented in the
plane of the substrate.
• Surface interaction/charge states
• Oxidation events

Random coil

Defect-rod

Fluorescence of single MEH-PPV molecules
under 400x magnification
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Oriented nanostructures from single-molecules of
conjugated polymers P. Kumar, et al., JPCB 107, 6252 (2003)

•Microdroplet-based (ink-jet)
production
• Amenable to wide range of
polymers
• Transition moments
oriented perpendicular to
substrate
• Single dipole pattern
suggests high-degree of intra-
molecular  order
• Profoundly modified photo-
physical properties
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Enhanced photo-physical properties of z-oriented polymer
nanoparticles (cyano-substituted PPV)

1 µm

T-H. Lee, P. Kumar, A. Mehta, R. M. Dickson, 
and M. D. Barnes, submitted to Phys. Rev. Lett.
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Stable emission for hours!
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Distribution of Polarization Anisotropy Parameters:
Comparison with thin-film results
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D. Hu, et al.,  Nature 405,1030 (2000).
A. Mehta, et al. Nanoletters  3 (5), 603-607 (2003).

Z-oriented nanoparticles:rod

Defect rod

Coil

Thin film
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Discrete center frequency distribution
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Emission frequencies correlated with discrete confinement (box) lengths
- but not strongly correlated with molecular weight (size)!

Observations:
•Frequency is fixed, (but different
for each particle).
•Frequency correlated not with rod
height but with conjugated
oligomer length.
• Absolute frequencies red shifted
(Possibly due to local LUMO
lowering due to structural order).

P. Kumar, et al., JPCB 107, 6252 (2003)
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Photon statistics from single polymer nanostructures:
Single or multiple emissive sites ?
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Photon correlation statistics from single polymer
molecules in thin-films

C. W. Hollars, S. M. Lane, and T. Huser,
Chem. Phys. Lett. 370, 393 ( 2003).

•Summed
contribution from
over ≈ 1000
molecules

•Relatively poor
contrast (≈ 35% )
-  suggests <N>≈ 3

• Short-lifetimes?
- averaging over
configurations?

R6G Reference

MEH-PPV
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Intensity correlation function from a single z-oriented CN-PPV
nanostructure

g2(0) = 0.08 ± 0.02

•Definitive evidence of
single-site emission!

g2(t) = 1 - (1/N)exp[-| t *(Wp + G)|]

T-H. Lee, P. Kumar, A. Mehta, R. M. Dickson, 
and M. D. Barnes, submitted to Phys. Rev. Lett.
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· Atomic-scale methods (MD & MM) provide information on the
structure, dynamics, and thermodynamics of the system.

· Ab Initio (DFT-MD) methods used to compute electronic and
molecular structure, interaction potentials, etc., as input into MD,
kinetic MC, course grain approaches.

· Linear response methods (TDHF, TDDFT) for electronic spectra,
excited-state configurations, etc.

· Correlated many-electron methods (MP2, CCSD)
· All codes are implemented in parallel and run on ORNL/CCS

resources

Computational Methods

Use open source, 
community codes:
NWChem, GAMESS
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Connection between orientation and particle structure?
 MM simulations of polymer folding & collapse

· Proceeds initially through
solvent-solute interactions
- “Good solvent”  No

folding
- “Bad solvent”  Rapid

folding

· 3D confinement in droplet
- High-pressure environment

from surface tension

1
P

R
!


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MM

QM
optimization

d=3.4Å

· Surface charge and inter-chain dispersive forces further
compacts and orders the nanorod
- Final 10% reduction in inter-chain distances

Hybrid QM/MM Multi-Scale Modeling
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Discrete center frequency distribution

8
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Emission frequencies correlated with discrete confinement (box) lengths
- but not strongly correlated with molecular weight (size)!

Observations:
•Frequency is fixed, (but different
for each particle).
•Frequency correlated not with rod
height but with conjugated
oligomer length.
• Absolute frequencies red shifted
(Possibly due to local LUMO
lowering due to structural order).

P. Kumar, et al., JPCB 107, 6252 (2003)
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Observed center frequencies vs. exciton model
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Exciton Model
Chang’s to Yu et al.’s
PPV Model fit of MEH-
PPV

Exciton Model:
R. Chang, et al., Chem Phys. Lett. 317, 142 (2000).
J. Yu, et al., Syn. Met. 66, 143 (1994).
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Individual PV Oligimers: Lowest Singlet Excitation
Compare experiment with model and semi-empirical predictions
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 Exp: Schenk, Adv. Mat. 3, 492 (1991)
 Exp: Woo, Syn. Met.  59, 13 (1993), Fig. 4
 Exp: Woo, Syn. Met.  59, 13 (1993), Fig. 7 (solid)
 Exp: Woo, Syn. Met.  59, 13 (1993), Fig. 7 (solution)
 Exciton Model, Yu, Syn. Met.  66, 143 (1994)
 Sumpter's INDO/S (48 + 48)
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Excitation of PV Oligimers:
Comparison of Exciton Model, INDO/S, TDHF & TDDFT
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First Singlet Excitation Length Dependence · TDHF:
- Known to over predict

excitations
· TDDFT (LDA):

- “Method of choice” for
large molecules.

- OK for smallest oligimers
- Errors grow with system

size.
· Coupled-clusters linear

response (EOM-CCSD) is
too expensive.

· Exact exchange required for
excitations in p -conjugated
systems
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Electron density distribution for a folded PPV
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TDDFT:
Dominant vertical excitation vs. # of folding

• Collectively, spectrum
red-shifts, consistent
with larger box size.

• Transitions with
dominate oscillator
strength blue shift.
―Persistent feature

irrespectively of the
oligomer length
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?? Classical antenna in dielectric medium ??

· Classical antenna in dielectric experiences a red shift in
frequency.

· Nanorods experience a large red shift from “self solvation”
· TDHF and TDDFT predicts a blue shift for dominate

excitation.

Partial answers:
· Hybrid SE-QM/MM simulations of geometry relaxation (“self-

solvation”) gives a red shift of ~23 nm. for vertical excitation.
· Excited state relaxation may contribute.
· Dielectric nanoparticle size << l .
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Summary
· Modified photo-physical properties of single polymer

chains isolated by ink-jet printing!
· Photostability and spectral bandwidth superior to inorganic

quantum dots under ambient conditions!
· First definitive evidence of single-site emission in

conjugated polymer system
· Highly ordered nanorod structure confirmed by molecular

modeling.
· Frontier, challenge system for theory and computation

- Multiscale/multiphysics phenomena
- Many electron methods with more accurate descriptions of

exchange and correlation.
- Time-dependent response of very large molecular systems.
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New directions in macromolecular photo-
physics and nanoscale optoelectronics

• ‘Designer’ oligomer and polymer synthesis?
 - well-defined architecture
 - water-soluble variants
 - connection with electronic-structure theorists
- designer light sources!

• Single-nanoparticle electroluminescence?
-charge-transport properties
-photovoltaic structures

• Photonic quantum information processing?
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Experiment
· Mike Barnes (ORNL/Chemistry)

- Pradeep Kumar (UT/Chemistry,
Student)

- Adosh Mehta (ORNL/LSD,
Postdoc)

· Rob Dickson(GA Tech/Chemistry)
-  Tae-Hee Lee, Kewei Xu

Theory/Computation
· Predrag Krstić, (ORNL/Physics)
· Bobby Sumpter, Jack Wells

(ORNL/CSMD)


