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Objectives

•Sensitivity studies of accident scenarios (early
in the design) can:
− 1) provide estimates of the uncertainties in the

predictions;

− 2) guide further efforts in improving the design as
well as the accuracy of the predictions;

− 3) determine where more (or less) R&D is
appropriate
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The Gas-Turbine Modular Helium
Reactor

(GT-MHR)

03-239R

•Electrical output  286
MW(e) per module
•Each module includes:

oPower Conversion
System
oReactor System

600MW(t)
•Annular core - 102 columns;
•Hexagonal prismatic blocks

similar to FSV
•Power Conversion System
includes:

oGenerator, turbine, &

ocompressors on single
shaft –

      surrounded by

recuperator,
      pre-cooler and inter-
cooler
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GT-MHR-Pu Module
Nominal Full-Power Operating Conditions

0.044Core pressure drop, MPa

0.08/0.05Coolant bypass fractions for side/central reflectors

1060Maximum fuel temperature, oC

400Maximum vessel temperature, oC

915Active core coolant outlet temperature, oC

2.7RCCS heat removal, MW

Other operating parameters (GRSAC simulation):

5.64Outer reflector outside diameter, m

7.96Active core height, m

2.95/4.83Active core inside/outside diameters, m

47Net plant efficiency, %

286Net electrical output, MW(e)

510/125Recuperator hot side inlet/outlet temps, oC

7.01/264Turbine inlet/outlet pressures, MPa

320Helium mass flow rate, kg/s

7.07Core inlet pressure, MPa

490/850Reactor inlet/outlet temperatures, oC

600Reactor power, MW(t)
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Pebble Bed Modular ReactorPebble Bed Modular Reactor
(PBMR) (PBMR) –– South African Design South African Design

SPECIFICATIONSPECIFICATION
Total height RPV 30 m
Inside dia. RPV 6.2 m
Coolant Helium
Max. helium pressure             9 MPa
Normal Ops. temp. of RPV     300°C
RPV vessel material SA 508 

Forgings
RPV mass assembled ~1700 t
RPV vessel mass                1000 t (lid 

included)

Small absorber sphere
containers (RSS)

Central reflector

Fueling
tubes

Annular core

Cold gas inlet

Hot gas outlet

Control rod drives (RCS)

Side reflector

De-fueling chute
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PBMR Nominal Full-Power Operating Conditions

0.31Core pressure drop, MPa

0.13/0.05Coolant bypass fractions for side/central reflectors

0.383Pebble bed mean void fraction

1080Maximum fuel temperature, oC

410Maximum vessel temperature, oC

980Active core coolant outlet temperature, oC

495/890Core inlet/outlet mean temperatures, oC

3.1RCCS heat removal, MW

Other operating parameters (GRSAC simulation):

5.5Outer reflector outside diameter, m

11Active core height, m

2.0/3.7Active core inside/outside diameters, m

41Net plant efficiency, %

165Net electrical output, MW(e)

193Helium mass flow rate, kg/s

9.0Core inlet pressure, MPa

500/900Reactor inlet/outlet Temperatures, oC

400Reactor power, MW(t)
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Accident Types Considered:

•P-LOFC – Pressurized Loss-of-Forced
Circulation (long term)

•D-LOFC – Depressurized LOFC

•Both LOFCs without scram (ATWS)

•D-LOFC with air ingress

•NOT considered here:
− water ingress;
− rod ejections;
− loss of Reactor Cavity Cooling System (RCCS)
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GGraphite raphite RReactor eactor SSevere evere AAccidentccident
CCode  ode  (GRSAC)(GRSAC)

• GRSAC based on ~30 years of accident code
development, V&V at ORNL for gas reactors
− Sponsored by NRC/DOE (ORECA/MORECA codes)

• Detailed accident modeling for gas-cooled reactor
systems
− 3-D core thermal hydraulics, ~3000 nodes
− Optional neutronics (point kinetics) for ATWS accidents
− Graphite oxidation model options
− Recent adaptations to GT-MHR & PBMR (for NRC)
− PC version runs ~ 8000 X faster than real time (non-ATWS)
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GT-MHR: Response to P-LOFCGT-MHR: Response to P-LOFC
Reference caseReference case
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GT-MHR P-LOFC: Max Fuel TempGT-MHR P-LOFC: Max Fuel Temp
Axial Profile Axial Profile –– peaks near inlet (top) peaks near inlet (top)
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GT-MHR D-LOFC: Max Fuel TempGT-MHR D-LOFC: Max Fuel Temp
peaks after ~ 2 dayspeaks after ~ 2 days
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GT-MHR D-LOFC: Max Fuel Temp AxialGT-MHR D-LOFC: Max Fuel Temp Axial
Profile Profile –– peaks near vessel beltline peaks near vessel beltline
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Observations on LOFC AccidentsObservations on LOFC Accidents

•For the Pressurized Loss-of-Forced-Cooling
(P-LOFC) accident, peak fuel temperatures are
not a concern; vessel temperatures ~maybe

•The Depressurized LOFC typically “limits” the
design via predicted peak fuel temperature

•The major factors contributing to peak fuel
temperatures are effective core conductivity
and afterheat curve assumptions.
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GT-MHR P-LOFC + ATWS; GT-MHR P-LOFC + ATWS; RecriticalityRecriticality
after ~1.5 days (=> fuel failure later )after ~1.5 days (=> fuel failure later )



         15

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

• Long-term ATWS cases: much-higher-than 1600°C
peak fuel temperatures occur following recriticality
− However, no fuel failures expected for ~2 days

− Ample time to insert negative reactivity.

• SCS restarts during an ATWS:
− counterproductive due to “selective undercooling” effects.

• Rapid reactivity insertions: “no mechanisms” (design)

ATWS Conclusions
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PBMR Air Ingress (single break) hasPBMR Air Ingress (single break) has
delay in start of sustained air flowdelay in start of sustained air flow
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German experiment (KFA) showsGerman experiment (KFA) shows
most oxidation occurs in lower coremost oxidation occurs in lower core
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Air Ingress ConclusionsAir Ingress Conclusions
• Early on (~2 days), oxygen in the entering (fresh) air flow typically

depleted before reaching the active core.  Flow limited by high
core resistance.

• Other considerations, however, such as predicting damage to hot
structures that do encounter the oxygen, may require additional
refinement of the data and further analysis.

• Limiting assumed fresh air supply to initial cavity air is likely to
prevent any serious core damage.

• Typically, coincident vessel breaks in both the top and the bottom
sections would result in both breaks being in the coolant inlet path,
not providing a ready “chimney” for enhanced natural circulation.

• Often overlooked is the fact that vessel-break accidents that could
lead to large-scale oxidation events are extremely unlikely.
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ConclusionsConclusions

• Both MHTGR designs: excellent accident prevention &
mitigation capabilities, even for well-beyond DBAs

• “Disclaimers”:
− Differences in the predicted absolute values of peak temperatures

(for both fuel and vessel) for the two concepts for given accident
scenarios should not be taken as definitive

− Finalized design features (e.g. vessel insulation strategies)
influence peak temperatures and have not been factored into the
simulations.

− Operation-dependent factors (irradiated core thermal
conductivities, temperature-reactivity feedback functions, heat-
sink emissivities,…) must also be considered.
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Conclusions , (contConclusions , (cont’’d)d)

• The design-defining D-LOFC accident results are very
sensitive to core conductivity and afterheat
assumptions

• ATWS cases and air ingress (for D-LOFC) are very-
low-probability variations that can eventually lead to
core damage

• Unlikely air ingress accidents are likely to run out of
oxygen before significant core damage occurs


