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Objectives

* Sensitivity studies of accident scenarios (early
in the design) can:

— 1) provide estimates of the uncertainties in the
predictions;

— 2) guide further efforts in improving the design as
well as the accuracy of the predictions;

— 3) determine where more (or less) R&D is
appropriate
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The Gas-Turbine Modular Helium
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GT-MHR-Pu Module

Nominal Full-Power Operating Conditions

Reactor power, MW(t) 600
Reactor inlet/outlet temperatures, °C 490/850
Core inlet pressure, MPa 7.07
Helium mass flow rate, kg/s 320
Turbine inlet/outlet pressures, MPa 7.01/264
Recuperator hot side inlet/outlet temps, °C 510/125
Net electrical output, MW(e) 286

Net plant efficiency, % 47
Active core inside/outside diameters, m 2.95/4.83
Active core height, m 7.96
Outer reflector outside diameter, m 5.64
Other operating parameters (GRSAC simulation):

RCCS heat removal, MW 2.7
Active core coolant outlet temperature, °C 915
Maximum vessel temperature, °C 400
Maximum fuel temperature, °C 1060
Coolant bypass fractions for side/central reflectors 0.08/0.05
Core pressure drop, MPa 0.044
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Pebble Bed Modular Reactor
(PBMR) - South African Design
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PBMR Nominal Full-Power Operating Conditions

Reactor power, MW(t) 400
Reactor inlet/outlet Temperatures, °C 500/900
Core inlet pressure, MPa 9.0
Helium mass flow rate, kg/s 193

Net electrical output, MW(e) 165
Net plant efficiency, % 41
Active core inside/outside diameters, m 2.0/3.7
Active core height, m 11
Outer reflector outside diameter, m 5.5

Other operating parameters (GRSAC simulation):

RCCS heat removal, MW 3.1

Core inlet/outlet mean temperatures, °C 495/890
Active core coolant outlet temperature, °C 980
Maximum vessel temperature, °C 410
Maximum fuel temperature, °C 1080
Pebble bed mean void fraction 0.383
Coolant bypass fractions for side/central reflectors 0.13/0.05
Core pressure drop, MPa 0.31
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Accident Types Considered:

e P-LOFC - Pressurized Loss-of-Forced
Circulation (long term)

* D-LOFC - Depressurized LOFC
* Both LOFCs without scram (ATWS)
* D-LOFC with air ingress

* NOT considered here:
— water ingress;
— rod ejections;
— loss of Reactor Cavity Cooling System (RCCS)
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Graphite Reactor Severe Accident
Code (GRSAC)

* GRSAC based on ~30 years of accident code
development, V&V at ORNL for gas reactors

— Sponsored by NRC/DOE (ORECA/MORECA codes)

* Detailed accident modeling for gas-cooled reactor
systems

— 3-D core thermal hydraulics, ~3000 nodes

— Optional neutronics (point kinetics) for ATWS accidents

— Graphite oxidation model options

— Recent adaptations to GT-MHR & PBMR (for NRC)

— PC version runs ~ 8000 X faster than real time (non-ATWS)
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GT-MHR: Response to P-LOFC
Reference case
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GT-MHR P-LOFC: Max Fuel Temp
AXxial Profile - peaks near inlet (top)
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GT-MHR D-LOFC: Max Fuel Temp
peaks after ~ 2 days
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GT-MHR D-LOFC: Max Fuel Temp AXxial
Profile - peaks near vessel beltline
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Observations on LOFC Accidents

* For the Pressurized Loss-of-Forced-Cooling
(P-LOFC) accident, peak fuel temperatures are
not a concern; vessel temperatures ~maybe

* The Depressurized LOFC typically “limits” the
design via predicted peak fuel temperature

* The major factors contributing to peak fuel
temperatures are effective core conductivity
and afterheat curve assumptions.
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GT-MHR P-LOFC + ATWS; Recriticality
after ~1.5 days (=> fuel failure later)
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ATWS Conclusions

* Long-term ATWS cases: much-higher-than 1600°C
peak fuel temperatures occur following recriticality

— However, no fuel failures expected for ~2 days
— Ample time to insert negative reactivity.

* SCS restarts during an ATWS:

— counterproductive due to “selective undercooling” effects.

* Rapid reactivity insertions: “no mechanisms” (design)
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PBMR Air Ingress (single break) has
delay in start of sustained air flow

(I Plots for Accident Runs
1600 00
I B N T LT+ TFT ]
1280 720? |
" 2o R e e men mewn meER Bih s e nenid woosof 3
2 v F e
- R T W T——— s00[— =
e = =]
] 180— 1|
o N M S S AN P I O = 1| S U O O O N AT S O,
0 &0 120 180 b &0 180 180
TEHP (L3 s TIHE Chrs) PUR (MM} us TIHE thes
KM M-
Plot Category X-SCALE n Y-SCALE [ Y-Min Plat Category X-SCALE n Y-SCALE | ¥-Min
(Temperature) (Autay S Max l_ (Auto) IS I— (Power) (Auto) o Max l— (Auto) VoMax I_
o BHIS v1-AXIS ¥Z-ANIS - XIS Y- ANIS M- BXIS 1= AXIS Y2 AXIS YA-ANIS - XIS
(Hours) (Max Fuel) (Awg Core) (Max Vessel) (Mone) (Hours) (Reactor) (Cavity) (MNone) (Graphite- kW)
BT T T T [T T T T [T T T T [T TTT [ TTT1T I Y O Y T A A Y I Y O
1280 1230~ =
"o s v s —
540} " 5405 E
320} E 320} E
0*\\\|I|||\MH|I|||\ = 0*||HM\||I||HM|||I|H\*
0 40 B0 80 100 0 20 40 B0 a0 100
DYRATE (a/min} ws LENGTH (£} TEMP {0} wa LENGTH 62
H=m =M i
Plot Category X-5CALE " V-SCALE [ Y-Min Plat Category X-SCALE " CALE | Y-Min
(Ox Rate) (Auto) WoMax l— (Auto) V- Max l— (Temperature) (Auto) Yo Max l— (Auto) v Max l—
Ho RIS ¥1-AKIE HoBHIS 1-ARIS :
(Length) (Graphite) (Lengthy (Max Fuel)
Press ALT-p for Accident Screen | Ok I HELP < | CLEAR | RESTORE | PRINT | (URNS i (CLOLh‘SRS TIME: 10080 MIN { 166.0 HR )
Btric; ig|

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY UT-BATTELLE
16




German experiment (KFA) shows
most oxidation occurs in lower core
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Air Ingress Conclusions

* Early on (~2 days), oxygen in the entering (fresh) air flow typically
depleted before reaching the active core. Flow limited by high
core resistance.

* Other considerations, however, such as predicting damage to hot
structures that do encounter the oxygen, may require additional
refinement of the data and further analysis.

* Limiting assumed fresh air supply to initial cavity air is likely to
prevent any serious core damage.

* Typically, coincident vessel breaks in both the top and the bottom
sections would result in both breaks being in the coolant inlet path,
not providing a ready “chimney” for enhanced natural circulation.

* Often overlooked is the fact that vessel-break accidents that could
lead to large-scale oxidation events are extremely unlikely.
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Conclusions

* Both MHTGR designs: excellent accident prevention &
mitigation capabilities, even for well-beyond DBAs

* “Disclaimers”:

— Differences in the predicted absolute values of peak temperatures
(for both fuel and vessel) for the two concepts for given accident
scenarios should not be taken as definitive

— Finalized design features (e.g. vessel insulation strategies)
influence peak temperatures and have not been factored into the
simulations.

— Operation-dependent factors (irradiated core thermal
conductivities, temperature-reactivity feedback functions, heat-
sink emissivities,...) must also be considered.
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Conclusions , (cont’d)

* The design-defining D-LOFC accident results are very
sensitive to core conductivity and afterheat
assumptions

* ATWS cases and air ingress (for D-LOFC) are very-
low-probability variations that can eventually lead to
core damage

* Unlikely air ingress accidents are likely to run out of
oxygen before significant core damage occurs
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