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Abstract

Protein-protein interactions are reinforced by a number of
contacting residues between interacting proteins. Although
identification of such interacting residues plays a crucial role
in deciphering many biological phenomena, most attempts
to uncover conditions for a residue to be in a contact
site have achieved limited successes. We conjecture that
currently available data for protein interactions includes
a number of classification structures that do not coincide
with one another, which makes classification task difficult
or even impossible. This paper illustrates that data sets
indeed reveal clearer structure if properly separated into
appropriate subsets. It also shows that proper aggregation of
classifiers built from each subset will suffice to predict some
protein interaction sites with high confidence, and suggests

a potential classification scheme in this direction.

1 Introduction

Protein-protein interactions are fundamental to cellu-
lar processes. They are responsible for phenomena, like
DNA replication/transcription, regulation of metabolic
pathways, immunologic recognition, signal transduc-
tion, etc. The identification of interacting proteins is
therefore an important prerequisite step in understand-
ing their physiological functions.

Studies of protein interactions are understood at
two different levels: protein and residue level. The for-
mer identifies pairs of proteins that interact with each
other. From a bioinformatics’ standpoint, the problem
is to build a model that can predict a possible inter-
action between two proteins given their structural or
sequence information. Various methods using genomics
context or data mining techniques have been designed
to tackle this problem. Genomics-based approaches in-
clude gene fusion events [10, 17], conservation of gene-
order or co-occurrence of genes in potential operons
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[6, 21], and the presence/absence of genes in different
species [23]. In parallel to genomic context based de-
velopments, a number of data mining methods that at-
tempt to “learn” from experimental data of interacting
proteins have been reported in the literature [4, 26, 22].
These approaches, using experimentally verified data
like the Database of Interacting Protein (DIP) [27, 28],
either try to construct Support Vector Machines (SVM),
or extract statistically significant profile pairs in terms
of Pfam [1] InterPro [18] and Blocks [15].

In contrast, studies of protein interactions at residue
level focus on identifying specific residues that interact
with other residue(s) in different proteins. Identification
of such interacting residues will help understand biolog-
ical processes at the molecular level, which in turn will
benefit recognition of interactions at the protein level as
well. In particular, identification of protein interactions
at the residue level also benefits the protein docking
problem, which tries to locate interaction sites between
two proteins, and then construct a model for a protein
complex.

Earlier attempts to decipher protein interactions at
the residue level studied various biological properties
of interaction sites, such as hydrophobicity, propensi-
ties, accessible surface area, planarity, etc. Although
researchers found that each of these properties revealed
some information regarding the interaction, none of
them was indicative enough to be used as a general pur-
pose predictor. For example, Gallet et al. [14] claimed
that the hydrophobicity moment [9] is sufficient to pre-
dict interaction sites. However, the overall sensitivity
and specificity is too low to accept. Thus, the lesson
learned from these studies is that interfaces in different
types of protein complexes (e.g., heterocomplexes and
homodimers) often have different biochemical properties
which are difficult to generalize.

A recent trend in this direction embraces data min-
ing techniques using amino acid sequence or a com-
bination of sequence and spatial structural informa-
tion. Zhou and Shan, and Fariselli et al. independently
[30, 11] applied neural networks to the data set derived



from spatial neighbors of interacting residues. Similar
techniques are deployed to predict interaction sites from
primary sequences only. Ofran and Rost [20] used neu-
ral network, and Yan et al. [29] applied SVM to predict
protein interactions sites from sequences.

Despite many efforts to predict interacting residues,
very limited successes have been reported. To the best
of our knowledge, most approaches perform slightly
better than a random guess in identifying interacting
residues. Is it even then possible to draw any descrip-
tive model for predicting interacting residues? In other
words, is there any systematic knowledge structure in
protein-protein interactions that is reflected in experi-
mental data?

This paper attempts to answer this question by pos-
tulating that currently available data sets include classi-
fication structures that conflict with one another, thus
proper separation of data will unveil much clearer lo-
cally meaningful structures. It particularly suggests a
separation of data based on “easiness” which indicates
the level of consensus within a committee of classifiers.
It then shows superior performance of classifiers con-
structed from each separated subset over the data set
with the same “easiness”, when it is compared to that of
a monolithic classifier (built from the entire data set).
It also suggests that a proper aggregation of individ-
ual classifiers potentially suffices to accurately predict
protein interaction sites in general.

2 Systems and Methods

2.1 Data Set Data sets are chosen from the Pro-
tein Data Bank (PDB) [3]. Among several different
types of protein complexes in the PDB database, we
particularly decide to use protein complexes that ac-
count for transient interactions between non-identical
chains. The data set is originally compiled and pro-
vided in [20, 19]. We further refine the data by filtering
out protein chains in each complex that have more than
33% sequence identity with any other chain in different
complexes. The final data set includes 52,106 residues
from 303 protein complexes.

A residue is defined to be a contacting residue if its
accessible surface area is reduced by more than 30% on
complexation. From a primary sequence, segments of 11
consecutive residues are replaced with their correspond-
ing HSSP (Homology-derived StructureS of Proteins)
scores [8], which constitute feature vectors. A feature
vector is labeled as “interacting” if the centered residue
(the 6th one from either end) is either a contacting
residue or within 5 angstroms of it. Note that spatial
information about residues is only used to assign labels
that are needed to train a classifier; for classification,
sequence information is sufficient.

2.2 Separation of Data using AdaBoost From
a standpoint of data mining, a data set is difficult
to mine when 1) it contains no systematic knowledge
structure (i.e., randomly structured), or 2) a number
of structures do not coincide with one another. We
conjecture that the data set under consideration belongs
to the second case. More specifically, we postulate that
a knowledge structure is masked off by another one, thus
it would reveal clearer structures if properly separated
into subsets that each contains appropriate data only.

Given: SO = ((-Tl,yl), ('7"27 y2)7 T (':Uﬂuyn))a where

(z4,y:) is the ith feature vector and its class label.

Initialize: Dy(z;) =1/n,i=1,---,n.

Begin

fort=1,---,T

1. Sample m < n data points from S;_; according to
probability distribution Dj.

2. Generate a hypothesis h; from the sample.

3. a; = 3In(1z2t), where g; is the error rate of h;.
4. Update D:
—atyihi(=;) .
Dyy1(z;) = %, where Z; is

a normalization constant chosen so that
D41 is a probability distribution.

End

Output: the final hypothesis

H(z) = sign(L;_, ashy(x))

Figure 1: The algorithm AdaBoost that implements
sub-sampling. It assumes that y; € {1, -1}

We choose to divide the data set into three disjoint
subsets based on “easiness”. We particularly define
a data point (or feature vector) to be easy when a
clear consensus about its class label is observed among
multiple classifiers and at the same time the prediction
is correct. On the other hand, a data point is difficult
when a consensus is drawn from the ensemble with
an incorrect prediction. We argue that a monolithic
classifier is bound to fail if it tries to accommodate both
easy and difficult data points at the same time.

Boosting [24, 12, 13] is an ensemble learning tech-
nique that works by “resampling”. It modifies the dis-
tribution according to which training data is resampled,
while leaving the underlying learning algorithm unal-
tered. The first provably effective boosting algorithm,
AdaBoost, was suggested by Freund and Schapire [12].
It has been extensively studied in a theoretical frame-
work [16, 25, 5] as well as an empirical one [16, 2, 7].
AdaBoost has been proved to decrease the training error



of the data exponentially with the number of classifiers
in the ensemble. Figure 1 shows an implementation of
AdaBoost that is based on sub-sampling.

The data separation procedure utilizes the Boost-
ing distribution updated after the final iteration step.
The Boosting distribution (See Figure 1) gives higher
weights to those instances that are hard to classify and
lower weights to those that are easy to classify. With
some arithmetic, it is not difficult to see that the Boost-
ing distribution after the T'th iteration can be written
as:

T
(21) Dpy=e ¥ iy ache (wi)/n H Z

t=1
where Z; is the normalization constant for Dy, 1 <t <
T.

Let us define the confidence of the ensemble of
classifiers as the degree of consensus, i.e,

T
p= |Z aihy ()]
t=1

, where T denotes the number of classifiers in the
ensemble.
Now we can rewrite equation 2.1 as:

if classification is correct
otherwise

-p

Dryy(z;) = { zp/_;{K
where K = n Hthl Z;. Note K does not depend on the
training data, and can be considered as a constant for
the current discussion. This suggests that the Boosting
distribution is an either exponentially increasing or
decreasing function of the confidence p depending on
the correctness of the prediction. Since p essentially
illustrates the degree of consensus among classifiers in
the ensemble, the final Boosting distribution supposedly
illustrates a degree of easiness of each data point; low
values correspond to data points that are correctly
classified with high consensus, whereas high values
correspond to data points that are incorrectly classified
again with high consensus.

Based on the final Boosting distribution, the data
set is split into three sets, Sg (or E-set), Sy (or M-set)
and Sy (or H-set) based on given cut-off thresholds.
We particularly choose a logodd value to decide the
threshold:

Logodd(x;) = log (DT+1($1)/(%))

Logodd value indicates the relative easiness (or
hardness) compared to what is expected at random.

Proportion of E-set,M-Set,and H-Set

O H-Set
W M-Set
O E-Set

Logodd Cut-off

Figure 2: Distribution of E-set,M-set, and H-set when
they are split at different cut-off values.

Given a pair of threshold values (0g,0n) a data point
z; belongs to:

Sg  if Drii(x;) < dE
Su  if Dryi(x;) > 0m
Sy otherwise.

For the current discussion, we will use dp = —dp-
Figure 2 shows how Sg,Sy and Sy are split with
respect to different threshold values after 500 Boosting
iterations.

3 Results

This section discusses properties of separated data sub-
sets that are observed from some empirical studies.
First, we compare complexity of the classifiers con-
structed from E-set, M-set and H-set, respectively. The
aim is to confirm the assumption that E-set and H-set
contain a clear knowledge structure that can be mod-
eled by simple classifiers, whereas M-set includes more
sophisticated one. Second, cross validation is performed
between E-sets (and likewise between H-sets) from sepa-
rately maintained data sets. This is particularly helpful
to learn whether an E-set (or likewise an H-set) shares
unique knowledge structure with other E-sets. For every
case, we use AdaBoost with linear kernel based Support
Vector Machine (SVM) as the base classifier.

3.1 Complexities of E-set, M-set and H-set We
choose to measure ratios of support vectors in classifiers



100

90 1

80 —

70 B

60 - B

Percentage (%)

50 - B

40 T ,

30 \\r\ B
20 L +

Logodd cut-off value

Figure 3: The ratios of support vectors in each SVM
constructed from E-set, M-set, and H-set, respectively.
E-sets/H-sets are generated at cut-off values of £0.1,
+0.2, 0.3, £0.4 and +0.5.

(SVM) constructed from E-set, M-set, and H-set to
compare their complexities. By definition, support
vectors are data points that lie on the decision boundary
of a SVM. In essence they are most difficult instances
to classify. Thus the proportion of support vectors is
a good measure of a machine complexity. Figure 3
illustrates ratios of support vectors to the size of the
training set that constitute SVMs for E-set, M-set, and
H-set, and shows how those ratios change over data sets
that are generated around different cut-off threshold
values. The figure demonstrates that complexities of
E-set and H-set are clearly lower than that of M-set.
Furthermore, regardless of threshold values (or, data
sizes), the ratio of M-set is pretty much invariant,
whereas the higher the ratio is (more precisely, the
higher the absolute value of threshold), the lower the
complexity is observed for both E-set and H-set.

3.2 Cross Validation between E-sets, and be-
tween H-sets To verify whether the data is split into
E-set, M-set, and H-set by chance or by some biologi-
cal properties, we split the entire data into three disjoint
subsets, and compare classification performances among
E-sets, and among H-sets, respectively. More specifi-
cally, the entire set of 303 heterocomplexes is split ran-
domly into 3 disjoint subsets; i.e. each subset includes
101 complexes. From each subset, E-set, M-set and H-
set are found, and AdaBoost is applied to construct two
ensemble classifiers for the E-set and the H-set, respec-
tively. The ensemble for E-set is cross-validated with
the other E-sets. Likewise, the ensemble for H-set is
also cross-validated. This process is repeated for the re-
maining two subsets (3-fold validation), and the overall
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Figure 4: Cross validation results of classifiers con-
structed from E-set (Top) and H-set (Bottom), respec-
tively. E-set(s) are split at -0.1 and -0.5, and the result-
ing classifiers are tested against other E-sets and H-sets.
Likewise, H-sets are split at 0.1 and 0.5 and the resulting
classifiers are tested over other E-sets and H-sets.

accuracies are measured with respect to different con-
fidence levels. Note that confidence is the degree of
agreement among different classifiers in an ensemble.
Figure 4 (Top) illustrates that classifiers con-
structed from an E-set perform significantly better over
E-sets than H-sets (note these validation E-sets and H-
sets are left out during the learning process). Likewise,
Figure 4 (Bottom) a similar trend for classifiers con-
structed from H-sets. Furthermore, between E-sets and
E-sets (and between H-sets and H-sets) classification ac-
curacy is higher when predictions are made with higher
confidences. In contrast, classification accuracy is lower
with higher confidence if predictions are made between
distinct sets: between E-set and H-set or vice versa.
This clearly demonstrates that E-set and H-set contain
classification structures that disagree with each other.
The entire cross validation procedure is repeated
with the same data set but with random classification
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Figure 5: Cross validation results of classifiers con-
structed from E-set and H-set that are extracted from
randomly labeled data set. Here E-set and H-set are
split around logodd value of 0.1 and -0.1, respectively.

structures where labels Y are assigned randomly. It
intends to verify that if the currently available data
set has no systematic classification structures in it,
the separation into E-set, M-set and H-set would not
reveal any classification structures. Figure 5 essentially
illustrates this, where the analogous cross validation
results are shown with respect to different confidence
levels and both E-set and H-set are split at logodd value
0.1. The figure confirms that there exist no common
classification structures between E-sets and between H-
sets.

4 Conclusion

Identification of residues in one protein sequence that
are in contact with another protein sequence on com-
plexation is important to elucidate a number of bio-
logical processes. However, the construction of such a
predictor from protein sequences has been intractable so
far; accuracies are slightly better than from a random
guess. This paper suggests that clearer classification
structures can be found by a proper separation of the
data, which essentially shows that protein interaction
sites are indeed governed by some biological patterns,
not by randomness.

Our study will eventually help produce a more ac-
curate classifier. Although we need a systematic way of
segregating residues, which are previously unobserved,
into proper sets (whether E-set or H-set), the empiri-
cal study suggests that proper aggregation of classifiers
constructed from E-set, and H-set will suffice to predict
some interaction sites with high accuracy.

Our study can also help identify additional features
that may help predict protein interaction sites. It is

particularly interesting to study biological properties
of residues in either tail of the Boosting distribution.
In fact, we are currently investigating those protein
complexes that are abundant with residues in either tail
to sift descriptive biological properties that can serve as
discriminating features.
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