Reservoir-based Random Sampling with Replacement from Data Stream

Byung-Hoon Park! George Ostrouchov! Nagiza F. Samatova and Al Geist
Computer Science and Mathematics Division,
Oak Ridge National Laboratory}
P.O Box 2008, Oak Ridge, TN 37831-6367

Abstract

Random sampling is a widely accepted basis for estimation
from large data sets that outstrip available computer mem-
ory. When the data comes as a stream, its total size is po-
tentially infinite and usually only one pass through the data
is possible. Reservoir sampling is a method of maintaining a
fixed size random sample from streaming data. All reservoir
schemes that have been introduced in the past are random
sampling without replacement; no duplicates are allowed in
a sample. This paper introduces a new method for reservoir
sampling with replacement. We first prove that the proposed
method indeed maintains a random sample with replacement
at any given time. Then we introduce a refined version that
significantly speeds up the overall sampling procedure.

keywords: data stream mining, random sampling,
reservoir sampling, probabilistic method

1 Introduction

Sampling is a process of choosing a suitable represen-
tative subset from a population of interest so that it
can be used for estimating population characteristics.
A process produces a random sample when all possible
samples of the same size have the same probability.

A data stream is a sequence of elements that are
ordered by time stamps. More formally, a data stream
is a sequence & = {ey,e2,...,€n,...}, where the sub-
scripts indicate the order in which the elements are ob-
served. Examples of data streams include scientific sim-
ulation data, satellite images, financial data, web-server
logs, feedback from sensor networks, etc. Processing
a data stream is intrinsically different from processing
conventional statically stored databases in several as-
pects. First, the volume of data is ever increasing and
typically unknown a priori when a query is posted. Sec-
ond, immediate or near real-time response is often re-
quired. Third, an element is usually processed once,

Corresponding authors
ostrouchovg@ornl.gov

tOak Ridge National Laboratory is managed by UT-Battelle

for the LLC U.S. D.O.E. under Contract No. DE-ACO05-

000R22725.

parkbh@ornl.gov,

thus any algorithm which requires multiple scans of the
data is not feasible. Inevitably, this necessitates the
maintenance of a small footprint summary (For a nice
overview of data stream processing, refer to [1]).

Random sampling is a basic, but probably the most
widely accepted approach to extracting a representative
synopsis from a big database. It particularly serves
as a standard technique in building histograms for
query optimization [2, 5]. Usage of random sampling
for fast incremental maintenance of histograms based
on the updates to the databases was discussed in [6],
which can be also understood within a context of data
streams. Maintaining a random sample of a fixed size,
when the population size is unknown, first appears in
[3] and better versions are later discussed in [8, 10].
Subsequently more elaborate sampling techniques are
introduced [12, 5, 9]. All of these techniques address
sampling without replacement; each element from data
stream can be chosen only once. Although the difference
between sampling with and without replacement is
negligible with large population size, there are still
situations when sampling with replacement is preferred.
For example, consider a situation when a number of
queries are posted and each query requires bootstrapped
samples from a different time interval.

This paper introduces Reservoir Sampling With
Replacement (RSWR) that dynamically maintains a
sample of fixed size k from a data stream. It guarantees
that each element from a data stream is selected for
any position in the reservoir with equal probability no
matter when it is received. The paper is organized
as follows. In section 2, we first describe reservoir
sampling without replacement. Then we introduce our
new sampling scheme RSWR in its simplest form and
prove that it indeed produces a random sample. Later
sections address how RSWR is improved to speed up the
overall sampling process. Finally, section 4 concludes
the paper.

2 Reservoir Sampling from a Data Stream

There are situations when prior information about
population size is not readily available. Reservoir
sampling was introduced to maintain a random sample
in such cases. The sample (or reservoir) is updated
in such a way that all possible samples have equal
probability of being in the reservoir at any time. Before
we describe reservoir sampling in depth, let us define our
notations first. S, = {e1,ea,...,€,} is a partial data
stream that contains the first n stream elements. R,
denotes the reservoir of size m after e, is received. In

fact, R, is a sample from S,, = {e1,ea,...,e,}. Finally,
TIn = {i1,42,...,4,} are the indices of the elements in
Rn. Now we begin by describing an algorithm that

maintains 7, as a random sample without replacement
from S, for all n.

2.1 Reservoir Sampling Without Replacement
A sampling scheme is said to produce a random sam-
ple without replacement of size m when every possible
combination of m distinct elements has the same prob-
ability, 1/(), of being selected, where n is the popula-
tion size [4]. Reservoir Sampling With-Out replacement
(RSWO) exactly guarantees this without prior knowl-
edge of n (population size). The origins of RSWO can
be traced to apparently independent descriptions in [8]
(with attribution to Alan Waterman) and in [10] (who
provide the first rigorous proof that it works). Later,
Vitter [12] provides faster implementations of the algo-
rithm by generating skipping intervals.

Because sampling is without replacement, all items
in the sample are distinct and we can keep track of them
by the ordered set iy < iy < --+ < 4. RSWO first fills
the reservoir, so that 7, = {1,2,...,m}. For n > m,
en is selected with probability * replacing a uniformly
selected unit in the reservoir. Mcleod and Bellhouse [10]
show that this procedure results in equal probabilities,
namely 1/(), for all possible samples of size m at any
point n in the stream. Details of RSWO are described
in Figure 1.

2.2 Reservoir Sampling with Replacement
Sampling with replacement should guarantee that ev-
ery element in the population has a uniform probability
of being chosen for any position in the sample regard-
less of what is in other positions of the sample. Within
the context of sampling from a data stream, this should
be understood as: an element e; € S, can be placed at
any given position of R, with the probability L. This
includes the possibility of an item appearing more than
once in the reservoir. Formally,

1
(2.1) P(Jn = {iry iz, . yim}) = —.

RSWO(R,m,S)

begin

1. for each e, € {e1,e2,...} from S
2. ifn<m

3. insert e, into R,_1

4. else

5. insert e, into R,1 with probability of
and at the same time evict an element from
R, _1 with uniform probability.

6. end if

7. Rn ¢ Rn_1

8. end for

end

Figure 1: Reservoir Sampling With-Out Replacement
(RSWO). R and S denote the reservoir of size m and
data stream source respectively.

where 1 < 4; < nforj = 1,...,m, because there
are n™ different possible samples of size m. Note
that because items are selected with replacement, the
reservoir positions are independent and

(22) Pi;=F) =+

forall1<j<m,1<k<n
is equivalent to the joint statement (2.1). This is in
contrast to sampling without replacement, where the
positions are dependent and once an element is chosen
for a position it cannot be chosen for another position.
RSWR produces a random sample from a popula-
tion when its size is unknown. It is particularly devised
to extract a random sample from a data stream. It re-
sembles RSWO in many aspects; it uses a reservoir R
to maintain a sample, and performs a probability test
to insert a new element into the reservoir. However, it
allows that each e; can be selected k times (0 < k < m)
following the binomial probability distribution. In fact,
for a newly observed element e, from S,, it performs
m independent Bernoulli trials, and evicts k elements
from R,,—1 with uniform probabilities, where k& denotes
the number of successes in m trials. Then k copies of
e, are into R,,_1, which becomes R,,. Lemmas 2.1 and
2.2 prove that each of m copies of e, is inserted into
the jth position of R,, with the probability of 1/n, and
any element e, € S, stays in the jth position of R,
with the probability of 1/n, which shows that RSWR
satisfies (2.1) and (2.2), and therefore provides a ran-
dom sample with replacement. Details of RSWR are
described in Figure 2.

LEMMA 2.1. Let e, be the jth element in Rn—1 (i.e.,

1 € Jn—1 18 r). Then after observing the nth element
en from S,, the probability that e, will stay in R, is

"

Proof: If we let u be the random wvariable that
denotes the number of successes from m Bernoulli trials
for ey, the probability that e, will stay at the jth position
of R, is

P(e, € Rp,ij =rle, € Rp_1,ij =)

= ZP(U = k)P(e, is not evicted|u = k)
k=0

- 26)
= k n m
m—1

- SO0) ()
T = m- k'k'< k)(ﬁ) (n_l)mk
)mk

o~
i
<}

3
L

~
Il
<

I
= 3
sUJL
3
??A
?E
~/~
SHES
~——
ol
/\
S

LEMMA 2.2. After observing e, € S,, the probability
that ey, (1 <k < n) stays in the jth position of R, is L
for any j. Therefore RSWR is a random sampling with
replacement.

Proof: By the definition of RSWR, e, is inserted
into jth position of R, if the jth Bernoulli trial is a
success, and its probability is % For any earlier element

» (1 < r < n), the probability that e, is in the jth
position of R, is,

P(er € Rp,ij=r)
= P(er € Rmij = T)P(er € RT‘+1a7:j = ’f‘|€r € Rra

ij=r)--Ple, € Rp,ij =rler € Rp_1,ij =7)
1 r r+1 n—1
= X X X -
r r+1 r+2 n
1
= — N
n

RSWR(R,m,S)

begin

1. for each e, € {e1,e2,...} from S

2. k < the number of successes from m independent
Bernoulli trials

3. Evict k elements from R,,_; with uniform
probability.

4. Insert k copies of e, into R,,_1

5. Ry — Rn_1

6. end

end

Figure 2: Reservoir Sampling With Replacement

(RSWR). R and S denote the reservoir of size m and
data stream source respectively. In Step 2, the success
probability of each Bernoulli trial is 1/n.

3 Faster Sampling By Skipping Elements

Given the nth element e,, RSWR inserts on average
m/n copies of it into the reservoir R,. As n becomes
large, e, will be dropped (i.e. inserted zero times)
with high probability. This observation suggests that
we can further refine RSWR by deriving a probability
distribution of skipping intervals, i.e. the number
of consecutive elements to be dropped. This section
introduces RSWR_SKIP, a variation of RSWR that
significantly speeds up the sampling process by skipping
elements in a data stream by generating such skipping
intervals.

3.1 Generating Skipping Interval Distribution
By P(s = k), let us denote the probability of skipping
(rejecting) the next k elements, epi1,...,enptx after
processing e,,. In other words, it is the probability that
from mk Bernoulli trials for e, 1, ..., €4k, DO SUCCESS
is observed.

P(s=k
= [H _1P(Reject eny;)| P(Accept €nyki1)

)] P
- e (-a5) 1= () |
() |- () |
(m) () (55)
() b () |

Il

- (nikyn[(_n+2+1>q
- () [()]
- () - Gsisn)

= Kn+k> _<n+k+1>]

It is not difficult to see that P(s = k) is indeed a

probability distribution

$ re—
k=0
= > [(3e) - () |

) ())

Now consider how to select the number of elements
to skip with a simple random experiment. The cumula-
tive distribution function method [7] can be used. The
cumulative distribution P(s < t) is written as,

Given ¢ € (0,1), a random number from the
uniform distribution, the number of elements to skip,

t is given by solving
m
"
(n +t+ 1)

m
n pa—
(n+t+1)

n+t+1
n+t+1l =
n
t = — 1,

and taking the next greater integer. That is, we can
skip [#\/Tq —n — 1] elements given a random number
q, where [] is the ceiling operator that returns the next
greater integer.

SKIP(n,m)

begin

1. q « generate a random number in (0,1)
2.t | = 1]

3. return ¢

end

RSWR_SKIP(R,m,S)
begin
1. n<0

2. while the stream flows in
3. t+ SKIP(n,m)

4. ift>0

5. skip the next ¢ elements (€41, €n+2,---;€ntt)
6. end if

7. g+ generate a random number in (;—i57,1)
8. k«+ CHOOSE(n+t+1,q)

9. evict k elements from R with uniform probability
10. insert k copies of e, 4¢4+1 into R

11. n+n+t+1

12.end while

end

Figure 3: Efficient Reservoir Sampling With Replace-
ment (Skipping version). R and S denote the reser-
voir of size m and data stream source respectively.
CHOOSE(p,q) is a function that implements either
binary or sequential search method described in Sec-
tion 3.2, where p denotes a success probability of a
Bernoulli trial and ¢ is a random number that deter-
mines the number of successes from the m trials. Note
that ¢ is generated in a way that the chance of zero
success is excluded (See step 7).

3.2 Search With Cumulative Binomial Prob-
ability Distribution Although RSWR_SKIP signif-

icantly speeds up sampling process, performing m
Bernoulli trials for every accepted element can still be
improved. If v denotes the number of successes from
m independent Bernoulli trials, then P(u > k) can be
expressed as:

63 Pu>n= > (7)ra-pm

i=k+1

where p is the success probability of each trial.

Now with a random number ¢ € [0,1], we can choose
k (the number of successes) if P(u > k+1) < ¢ < P(u >
k). Using binary search, we can find k£ in O(logm)
steps. However, note that the expected value of k for
en is 2. Therefore, in practice, as n (the number of
elements observed) becomes sufficiently large, even for
a relatively small k, P(u > k) will be close to zero.
Thus, it will be sufficient to check P(u > k) for the
first few £k = 0,1,.... Note that probability (3.3) can
be computed much faster using the incomplete beta
function [11] if m is larger than a dozen.

4 Conclusion

A novel method, called RSWR, that dynamically main-
tains a random sample from an ever-growing data
stream is proposed in this paper. RSWR particularly
addresses sampling with replacement. We provide a
formal proof that RSWR indeed maintains a random
sample with replacement. Subsequently, we propose an
extended version RSWR_SKIP that speeds up the sam-
pling process significantly by skipping a number of con-
secutive elements. We also show that such an interval
is easily generated by a simple random experiment. To
the best of our knowledge, RSWR is the first sampling
scheme that addresses sampling with replacement from
a population of unknown size.

RSWR will find immediate application in query pro-
cessing from data streams. Consider, for example, the
case when multiple random samples drawn from differ-
ent time intervals are desired. This corresponds to the
case when multiple queries are handled simultaneously.
It will be particularly useful if RSWR can be used under
a moving window strategy, where a sample is selected
from the last k¥ elements. In such a case, the removal
of expired elements from the reservoir needs to be re-

solved. We are currently investigating an extension of
RSWR in this direction.

Acknowledgments

Research sponsored by the Laboratory Directed Re-
search and Development Program of Oak Ridge Na-
tional Laboratory (ORNL). This work was partially
funded by the SciDAC program in the DOE Office of

Advanced Scientific Computing Research. This research
used resources of the Center for Computational Sciences
at Oak Ridge National Laboratory.

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. of the 2002 ACM Symp. on Principles of
Database Systems (PODS 2002), June 2002.

[2] Surajit Chaudhuri, Rajeev Motwani, and Vivek
Narasayya. Random sampling for histogram construc-
tion: how much is enough? In ACM SIGMOD, pages
436-447, 1998.

[3] C.T. Fan, M.E. Muller, and I. Rezucha. Development
of sampling plans by using sequential (item by item)
selection techniques and digital computers. Journal of
the American Statistical Association, 57:387-402, June
1962.

[4] W. Feller. An Introduction to Probability Theory and
Its Application, volume 1. Wiley, New York, 3 edition,
1968.

[5] Phillip B. Gibbons and Yossi Matias. New sampling-
based summary statistics for improving approximate
query answers. In ACM SIGMOD, pages 331-342,
Seattle, WA, June 1998.

[6] Phillip B. Gibbons, Yossi Matias, and Viswanath Poos-
ala. Fast incremental maintenance of approximate
histograms. In Matthias Jarke, Michael J. Carey,
Klaus R. Dittrich, Frederick H. Lochovsky, Pericles
Loucopoulos, and Manfred A. Jeusfeld, editors, Proc.
23rd Int. Conf. Very Large Data Bases, VLDB, pages
466-475. Morgan Kaufmann, 25-27 1997.

[7] William J. Kennedy, Jr. and James E. Gentle. Statis-
tical Computing. Marcel Dekker, New York, 1980.

[8] D. E. Knuth. Seminumerical Algorithms, volume 2 of
The Art of Computer Programming. Addison-Wesley,
1981.

[9] G. Manku and R. Motwani. Approximate frequency

counts over data streams. In The 28th International

Conference on Very Large Data Bases, Hong Kong,

China, August 2002.

A.I. McLeod and D.R. Bellhouse. A convenient algo-

rithm for drawing a simple random sample. Applied

Statistics, 32(2):182-184, 1983.

William H. Press, Brian P. Flannery, Saul A. Teukol-

sky, and William T. Vetterling. Numerical Recipes in

C. Cambridge University Press, 2nd edition, January

1993.

J.S. Vitter. Random sampling with reservoir. ACM

Transactions on Mathematical Software, 11:37-57,

March 1985.

[10]

[11]

[12]

