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1995

Bacteria,
1.6 Mb,

~1600 genes
[Science 269: 496]

1997

Eukaryote,
13 Mb,

~6K genes
[Nature 387: 1]

1998

Animal,
~100 Mb,

~20K genes
[Science 282:
1945]

2000

Human,
~3 Gb,
~30K genes
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Cost per base

Status of Sequencing Data

High-performance computing

has been essential to the Growth of GenBank

high-throughput experimental 16 16000
approach to biology that has o 12000
emerged in the last 10 years.
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What About Annotations?

Although sequencing Mb regions of
DNA has become quite routine, it

@ @ remains a big challenge to characterize
all the segments of DNA sequence with

various biological roles.

Escherichia coli Methanococcus jannaschii

Yeast Human

Results from the completed prokaryotic

genome sequences show that almost 50%
of the predicted coding regions identified

are of unknown biological function.

E.coli M. jannaschii S. cerevisiae H. sapiens

B Characterized experimentally 2046 97 3307 10189
Characterized by similarity 1083 1025 1055 10901
Unknown, conserved 285 211 1007 21723

B Unknown, no similarity 874 411 966 7965
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from Koonin and Galperin, 2003, with modifications



From Genes to Protein Functions

Function assigned Weakness of sequence annotations
based on sequence similarity

to another sequence
with a “guilt-by-association” goes global
function assigned
Ibased on sequence similarity
to another sequence

with a Function assigned
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Relationship of Similarity In
Seqguence to that In Function

Can transfer Can not transfer
Can transfer both Annotation related|Fold or Eunctional
Fold & Functional | Fold but not Annotation
Annotation Function ("Twilight Zone") 100
TN
N - 90
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- 70
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- 50
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/ - 20
- 10
\ \ \ \ 0
701D 79 60 50 40 30 20 10 0

Sequence similarity of pairs of proteins

% Same Function

BILOGICAL BOLUTIONS



Why Function Annotation is Difficult?

e Function exists at many hierarchical levels of description
e |t has temporal and spatial connections that are difficult to manage

e® Functional descriptions do not correspond to well-defined physical models
like biological structures defined by Cartesian coordinates for atoms.
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What 1s After the Genome?

Genome

Proteome

Transcriptome

Physiome

Metabolome

Phenome

Morphome

Interactome

Glycome

Secretome

Ribonome

Orfeome

Regulome

Cellome

Operome

Transportome

Functome

e Genomics projects have led to a fundamental way in which science
is done. Genomics has opened the door to “discovery driven”
studies as contrasted with traditional “hypothesis driven” research.

e A whole series of words have been coined to describe additional
information people would like to have

Transcriptome — what are all the transcribed genes in an
organism

e Gene expression microarrays

Proteome — what are all the expressed proteins
e Two dimensional gel / Mass spectrometry

Interactome — all the protein-protein interactions
e Two hybrid or tagging experiments

Structurome — all three dimensional protein structures
Cardiome — complete electrophysiological model of the heart
Physiome — same for physiology

e Overall goal is to use the genome as a “parts list” and to build
higher order models beginning from this complete list
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A Collection of Parts




Assembly & Maintenance

How many roles
can these play?
How flexible and
adaptable are they
_mechanically?

¢ @
What are the AN
shared parts (bolt, )
nUt1 ’ ’ l ?/;
bearing), unique " Where are
parts ( the parts
)? What are located?
the common parts - Which parts

- types of parts

interact?
(nuts & )? LIFE
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In Silico Integrative Omics
A Precursor to Functional Understanding

= % Data needs to be integrated and
)i \== analysed in order to provide a
rational basis for decisions

i I
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Sequences Structures  Microarrays




Challenge of Data Massiveness
Drinking from the firehose

e Genes for >30,000 proteins

e Up-to 10 variants each
protein

e Up-to 5 genetic variants each
: protein

' @ Over 256 tissues in human
: body

e Each variant can mbf
with 10 prote

||0Iﬁ9 ntﬁ
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Challenge of Breaking the Algorithmic
Complexity Bottleneck

MS Data Rates:
100’sGB=>10’sTB/day(2004)=>1.0’sPB/day(2008)

032%%

T
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| ‘ ) Algorithm Complexity
L f}_L‘l..Ffff@{}.J»numh ) } Data size,
n n nlog(n) n2
Algorithmic Complexity: 1008 | 109sec. | 10%sec. | 10°sec
Calculate means O(n)
10KB 108 sec. 108 sec. 10-4sec.
Calculate FFT O(n log(n))
1MB 106 sec. 10 sec. 1 sec.
Calculate SVD O(r = C)
) _ 100MB 104 sec. 103 sec. 3 hrs
Clustering algorithms O(n?)
10GB 102 sec. 0.1 sec. 3 yrs.

For illustration chart assumes 1012 sec.
calculation time per data point
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Challenges of Data Heterogeneity

Data Complexity:
* Mass spectrometry
 Gene expression

= Genome sequences
= Protein structures |
= Protein-protein interactions = BE g e h
= Metabolic and regulatory networks LG *‘j??[j,z Ay ]

) ) ‘
400 600 a0
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Challenge of Data Complexity

Multi-scale, heterogeneous, distributed, dynamic,...

—

Protein-Protein

> ?0 Interactions
metabolism
pathways N/
millions receptor-ligand
40 structure
Proteins
sequence
Hundred 20 s?ructure
thousands

30 structure

MPMILGYWDIRGLAHAIRLLLEYTDSSYEEKKYT. ..

DNA sequences
billions | alignments

..atcgaattccaggcgtcacattctcaattcca

millions

billions
~ a2 060 ¢ ﬁﬁn\

y
Polymorphism
and Variants

Physiology
Cellular biolo
Biochemistry
Neurobiology
Endocrinology

genetic variants \ €t

individual patients
epidemiology

ESTS
Expression patterns

Large-scale screensz

Genetics and Maps
Linkage
Cytogenetic
Clone-based
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Challenge of High Dimensionity

6/7 ts

Population

The experiment paradigm is changing to statistically capture the
complexity. We will get maximum value when we explore three or
more dimensions in a single experiment.




The Challenges are Begging for “Smart”
Data Analysis and Modeling Algorithms

Data Repositories

{[vodeling & Simutaion
T

Data Analysis

A Knowledge

Infrastructure

Predictive models

That will be able to “learn the rules”
/755 2 ot o governing the multi-scale functional
mechanisms of molecular machines

Raw data

INn order to provide predictive
functional models




Multi-Scale Functional Characterization

Growing Reliance on Parallel Processing

Protein machine
Interactions

Molecule-based
cell simulation

M \Volecular machine
classical simulation

Cell, pathway, and T

network
simulation =R
Constrained —
rigid \
docking

Community metabolic
regulatory, signaling simulations

Constraint-Based
Flexible Docking

Reliance on Parallel Processing

5. & Comparative
R Genomics

---------
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Paradigm Shift in Parallel Processing:
Increasing Not Only Speed But Prediction Accuracy

e From: Transform alarge problem into a set of small sub-
problems with cumulative computational cost (time, memory,
communication) much less than the aggregate problem

eTo: Transform a large problem into a set of small sub-
problems with cumulative prediction accuracy much higher
than the aggregate problem




Example I. From Genotype to Phenotype

Through Genome-Scale Modeling of Biochemical Pathways

\f‘\o Challenge: Analyze, interpret, and predict
metabolic function and control of a living cell Metabolic maps:
provide a framework for
studying the relationships between
Metabolic Genotype & Phenotype

PROTEINS

uuuuuu

elm,se_> GéP _> SPGA) PG ‘ RRRRR
a~
o :lﬁ'm i
Optimal minimum solutions to the many possible 2/\{,
metabolic pathways are called “Extreme Pathways” g P s
and are important to identify classes of cell Phenotypes e e
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Extreme Pathways (EP)

Defined within the Context of Convex Analysis

Flux Veclor (v)

o

metabolic flux (V,)

Convex Analysis Cellular Biology

Allows the study of Metabolic Genotype-Phenotype relationships

Set of Extreme pathways is a basis for a defined metabolic genotype.

The regulation of these pathways defines all possible phenotypes of
the metabolic system.




Parallel Out-of-Core Extreme Pathways Algorithm
(with Bernhard Pallson, UCSD)

e Strategy

To transform a large problem into a set of small sub-problems with cumulative
computational cost much less than the aggregate problem

To perform these sub-problems almost concurrently with reasonable data transfers,
latency, and synchronization

e Keyidea

Reduce memory requirements:
o Deploying out-of-core strategy
o Using bitmap-based data representation
scheme with a high compression rate

Reduce computational time:
o Performing efficient bitwise logical operations without decompression overheads
o Minimizing search space via maintaining descriptive statistics with cheap updates
o RAM-based storage of all the info required for decision making
o One-time synchronization/global initialization per long-running iteration

Reduce network overheads:
o Partitioning data that minimizes data transfer needs

BIOLOGICAL FOLUTIONS
FOR INENGT CHALLINGES



Performance of EP Algorithm

Previous algorithms could calculate Extreme Pathways
only for small metabolic systems

4To:me MﬂMWQ > An order of magnitude larger systems
ays u—-—-
g - » Memory requirements: reduced by over 90%

---,V‘l T
1.

“ » Computational time: reduced from days to hours
4

Reduction 300X Memory Utilization
(Fluxes=118 Metabolites=66)
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Example 11: Functional Discrimination of
Homologous Sequences

Results of InterPro Analysis of four ADH Function Groups

Function Gene_id Pfam | PROSITE Tigr-Fam
PF00107 | PS00059 tdh: L-threonine 3-
ADH1 TRIRP _
EC1.1.1.1 adh_zinc | ADH_ZINC | dehydrogenase
ADH3_SOLTU same same same
FADH _CANM same same same
EC1.2.1.1 _
FADH_PICPA same same same
CADH_EUCGL same same same
EC1.1.1.195 _
CAD1 ARACO same same same
MTD1 ARATH same same same
EC1.1.1.255 _
MTDH_ARATH same same same

1196 ORFs (out of 2522 ORFs) in Syn. 81902 that are conserved

hypothetical or hypothetical (Brian Palenik)

The current tools (e.g., BLOCKS, Pfam, PROSITE), while containing a
wealth of information for characterization and identification of proteins, are
unable to discriminate and classify closely related homologous sequences

uuuuuuuuuuuuuuuuuuu
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Our Approach — SVMMER

A tool for functional differentiation of highly
homologous protein function groups

Protein %ﬁ)

s
R

Sequence

: Blocks Approach:
/ I Wm, Blast | Using a priori knowledge, partition

] proteins into a hierarchy of classes.
Ribosome ADH Membrane

Superfamily level  Extract features specific to each
‘///\\ HMMs  layer of the hierarchy

 Train a classifier on multi-layered

ADH-1 ADH-2 ADH-3 ... ADH-n hierarchy of classes
Function group level

There is no “universal hammer” when dealing with such a complex concept as protein function

(In collaboration with Natalia Maltsev, ANL)




Performance Comparison

Linear Kernel Classification
Superfamily SVM 4.5 RIPPER  FAlgorithm
Sp | Sn |CC| Sp | Sn | CC | Sp | Sn | CC
Aldehyde 0.93]0.92|0.88|0.64|0.63|0.34|0.67|0.67|0.44
dehydrogenase

Phycobilisome 0931093091 /092|092|0.89|0.84|0.77|0.64

Cys/Met metabolism | 0.94 | 0.94 | 0.87 | 0.61 | 0.56 | 0.16 | 0.55 | 0.56 | 0.03
Alpha-amylase 0.94 | 0.94 | 0.81 | 0.96 | 0.96 | 0.88 | 0.95 | 0.95 | 0.84
signature

GMP synthase C
terminal domain
AMP-dependent

10 10| 10 |095|0.95(0.89|0.95|0.95]|0.89

0.8810.84|0.840.89|087(0.85|{0.79|0.73|0.72

synthetase
NAD dependent 0.97 | 0.97 | 0.95| 093|092 |0.88|0.71|0.77 | 0.58
epimerase
Polypreny| 0.94 093|091 |0.85|0.79|0.73|0.66 | 0.66 | 0.52
synthetase
i‘g‘;coma'”'”g 0.94 | 0.94 | 0.93 | 0.83 | 0.87 | 0.79 | 0.77 | 0.73 | 0.66
Aminolevulinicacid | 4 | 14 | 10 | 096096094086/ 083 0.74
synthase
Average 095|094 |091|085|064|074|078|0.76 | 0.61

Sp: Specificity; Sn: Sensitivity; CC: Correlation coefficient

...................
FOR ENENGTY CHALLINGES

SVM performance is superior compared to the other classification methods g Q
based on results from leave-one-out cross validation e




Example I11. Prediction of Protein-
Protein Interactions

e Genomic context-based methods:
Gene fusion events (Marcotte et.al., 1999; Enright et.al., 1999)

Conservation of gene-order or co-occurrence of genes in potential
operons (Tamames et.al.,1997; Dandekar et.al.,1998; Overbeek et.al., 1999)

Presence/absence of genes in different species (phylogenetic profiles)
(Pelligrini et.al., 1999)

Similarity of phylogenetic trees (Pazos and Valencia, 2001)

e Classification-based methods:
SVM-based (Bock and Gough, 2001)

e Statistical methods:
PICUPP



Genomic context-based methods

Phylogenetic Profiles  Conservation of gene-order Gene fusion
Protein [A|B|C|D Oorgl ---- i—-
g —{Hl (] 1-A
Orgl |1]1j171 Org2 ----{i il - Orgl ----{fF—— }--
Org2 0O|l1]|0(1 0-B
0 Org3 ----—I - Org2 ---- E —--
Org3 1/o0|1/o0 i-C
Org4 ----IH—#---
Org4 1]10f1|1
Ao C Ao B Ao B
Idea: Pairs of proteins w/  Idea: Proteins whose genes are ldea:lf two proteins form a part

similar phylogenetic profiles co-located in multiple genomes  Of a single protein in other orgs.

Advantages: Allow to identify functionally associated genes

Disadvantages: Provide a small coverage of direct physical interactions
(~30%, Huynen et.al., 2000)

Coverage Statistics: 37%: Gene order; 6%: Gene fusion; 11%:
Phylogenetic profiles (M.genitalium, Huynen et.al., 2000)




Classification-based methods

Training Stage Prediction Stage

™, | _— training
F data

decision rule;
separating hyperplane (SVM)

O positive (interacting protein pairs)
@® negative (“non-interacting” protein pairs) unknown protein pairs
— generated by shuffling AA residues

Limitations:

» Only positive data is available for protein interactions
* lll-defined negative set: Shuffled protein may not belong to protein space

« Asymmetry: AB or BA protein pairs correspond to different points in space

FOR ENENGTY CHALLINGES




Our Approach — PICCUP

e Given a set of positive interactions only, statistical
approach is a natural candidate.

e PICCUP:

Seeks to find statistically unusual protein profile pairs defined by
Blocks, InterPro, Pfam, or Prosite.

Given protein interaction data, it estimates unusualness of profile
pairs using statistical simulation (via bootstrapping).

It computes how apart a profile pair is from what is expected at
random. The degree of separation is essentially a statistical
confidence.

BIOLOGICAL FOLUTIONS
FOR INENGT CHALLINGES



Learning by Statistical Simulation

e Find statistically unusual protein
profile pairs. ke I

e Estimate unusualness using g

statistical simulation. —%t Protein __% Blocks,

- : Profiles Pfam, or
e Compute statistical confldenfe. InterPro
A

s &
—

AOF & OO0

¥~ Occurrence of
profile pair in DB of
interacting proteins

®—
o
_ I

Pfam pair: PFO400:PF01423

180

/

O

Random

Interacting

Profile Pairs Correlated for
Protein Interaction
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Sensitivity To Positive Pairs (Pfam)

DIP (Pfam)

100
90
80 o
70
~
Q 60 ——0.5(P)
< —m—0.6(P)
0.7(P)
3\ %0 ——0.8(P)
© —%—0.9(P)
(&)
QO 30
<
20

10

1 2 3 5 8 10 20 30 50 80 100 200 300 400 500 600 700 800 900 1000
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Sensitivity To Random Pairs (Pfam)

DIP (Pfam)

25

20

—~ 15 ——0.5(R)
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—
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1 2 3 5 8 10 20 30 50 80 100 200 300 400 500 600 700 800 900 1000
Simulation Step

Simulation Step
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Example 1V: Prediction of Protein
Docking Interfaces

_Sen Sen Spe Spe Acc
t O & 6

A classifier from the data
performs slightly better than
a coin tossing.

Al
MGYPPFTRRL ... GODKKRYHYSN
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Is there something in the Data then?

The complexity of interaction sites makes it extremely
challenging to predict them computationally.

Interaction sites are diverse in:
 hydrophobicity

o electrostatics

e accessible surface area

* propensity

» degrees of planarity.

The diversity gives rise to the specificity

However, none of these was found to
dominate.

B chapedskechans B Manchain aloms

In other words, no single reliable prediction 3 ot sscrars = o e s

I Hydrophobic sklechans + Crystallographic waler

rule can be inferred using these factors. S




Data Separation with AdaBoost

- Noise Filtering (here “noise” can include “too complex pattern
to capture”)

Apply Boosting framework to identify problematic feature vectors.
» Construct a classifier that predicts with confidences.

P Weights

Sample based
on weights

Build a Classme\

A

v

Update weights Weight Distribution

.
® O




Performance Results

3-fold Cross Validation results
show that E-set and H-set are
really in conflict.

]
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Cross Validation of Classifer Built from E-sets

1
0.9 R 3 b a—
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& 047 - e-E-H(05)
03 oo -9
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Cross Validation of Classifier Built from H-sets
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The future -In Silico omics

Convergence of omic data/informatics

Critical mass offers opportunities for
data mining and smart algorithms

This leads to in silico prediction of
protein functionality and interactions

In silico functional omics increasingly
depends on parallel processing

Paradigm change in parallel processing:
Increasing not only speed but prediction
accuracy

uuuuuuuuuuuuuuuuuuu
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