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Highlights of 
the Genome 
Projects

Bacteria, 
1.6 Mb, 

~1600 genes 
[Science 269: 496]

Eukaryote, 
13 Mb, 

~6K genes 
[Nature 387: 1]

1995

1997

1998

Animal, 
~100 Mb, 

~20K genes 
[Science 282: 

1945]

Human, 
~3 Gb, 

~30K genes

2000



Status of Sequencing Data

High-performance computing 
has been essential to the 
high-throughput experimental 
approach to biology that has 
emerged in the last 10 years.



What About Annotations?

Although sequencing Mb regions of 
DNA has become quite routine, it 
remains a big challenge to characterize 
all the segments of DNA sequence with 
various biological roles.

Escherichia coli Methanococcus jannaschii

Yeast Human

Results from the completed prokaryotic 
genome sequences show that almost 50%
of the predicted coding regions identified 
are  of unknown biological function.

E. coli M. jannaschii S. cerevisiae H. sapiens
Characterized experimentally   2046                97  3307               10189
Characterized by similarity       1083            1025 1055               10901  
Unknown, conserved 285               211                 1007    2723  
Unknown, no similarity 874               411                  966        7965  

from Koonin and Galperin, 2003, with modifications



From Genes to Protein Functions

function assigned 
based on sequence similarity

to another sequence
with a Function assigned 

based on sequence similarity
to another sequence

with a …...

Function assigned 
based on sequence similarity

to another sequence
with a “guilt-by-association” goes global

• Among some orthologous genes in 
phylogenetically distantly related 
organisms, sequence similarities are no 
longer recognizable 

• No sequence similarity existed at all for 
genes that have resulted from convergent 
evolution

Weakness of sequence annotations



Relationship of Similarity in 
Sequence to that in Function

Can not transfer 
Fold or Functional 

Annotation
("Twilight Zone")

Can transfer 
Annotation related

Fold but not 
Function 

Can transfer both 
Fold & Functional 

Annotation
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Why Function Annotation is Difficult?

Function exists at many hierarchical levels of description

It has temporal and spatial connections that are difficult to manage

Functional descriptions do not correspond to well-defined physical models 
like biological structures defined by Cartesian coordinates for atoms. 



What is After the Genome?
Genomics projects have led to a fundamental way in which science
is done. Genomics has opened the door to “discovery driven”
studies as contrasted with traditional “hypothesis driven” research.

A whole series of words have been coined to describe additional 
information people would like to have

• Transcriptome – what are all the transcribed genes in an 
organism

• Gene expression microarrays

• Proteome – what are all the expressed proteins
• Two dimensional gel / Mass spectrometry

• Interactome – all the protein-protein interactions
• Two hybrid or tagging experiments

• Structurome – all three dimensional protein structures

• Cardiome – complete electrophysiological model of the heart

• Physiome – same for physiology

Overall goal is to use the genome as a “parts list” and to build 
higher order models beginning from this complete list

Genome
Proteome
Transcriptome
Physiome
Metabolome
Phenome
Morphome
Interactome
Glycome
Secretome
Ribonome
Orfeome
Regulome
Cellome
Operome
Transportome
Functome



A Collection of Parts



Assembly & Maintenance

What are the 
shared parts (bolt, 

nut, washer, spring, 
bearing), unique 

parts (cogs, 
levers)? What are 

the common parts -
- types of parts 

(nuts & washers)?

How many roles 
can these play? 
How flexible and 

adaptable are they 
mechanically? 

Where are 
the parts 
located?

Which parts 
interact?



In Silico Integrative Omics 
A Precursor to Functional Understanding

StructuresSequences Microarrays

Smart Integration of Information 

Data needs to be integrated and 
analysed in order to provide a 
rational basis for decisions



Challenge of Data Massiveness
Drinking from the firehose

Genes for >30,000 proteins

Up-to 10 variants each 
protein

Up-to 5 genetic variants each 
protein

Over 256 tissues in human 
body

Each variant can interact 
with 10 proteins



Challenge of Breaking the Algorithmic 
Complexity Bottleneck 

MS Data Rates: 
100’sGB 10’sTB/day(2004) 1.0’sPB/day(2008)

3 yrs.0.1 sec.10-2 sec.10GB

3 hrs10-3 sec.10-4 sec.100MB

1 sec.10-5 sec.10-6 sec.1MB

10-4sec.10-8 sec.10-8 sec.10KB

10-8 sec.10-10 sec.10-10sec.100B

n2nlog(n)n

Algorithm Complexity
Data size, 

n

Algorithmic Complexity:
Calculate means O(n)

Calculate FFT O(n log(n))

Calculate SVD O(r • c)

Clustering algorithms O(n2)

For illustration chart assumes 10-12 sec. 
calculation time per data point



Challenges of Data Heterogeneity

Data Complexity:
• Mass spectrometry
• Gene expression
• Genome sequences
• Protein structures
• Protein-protein interactions
• Metabolic and regulatory networks 



Challenge of Data Complexity        
Multi-scale, heterogeneous, distributed, dynamic,…

...atcgaattccaggcgtcacattctcaattcca...
billions

DNA sequences
alignments

MPMILGYWDIRGLAHAIRLLLEYTDSSYEEKKYT...

Proteins
sequence

2º structure
3º structure

Hundred
thousands

Protein-Protein
Interactions

metabolism
pathways
receptor-ligand
4º structure

millions

billions

Polymorphism
and Variants
genetic variants
individual patients
epidemiology

Physiology
Cellular biology
Biochemistry
Neurobiology
Endocrinology
etc.

millions

millions

ESTs 
Expression patterns
Large-scale screens

Genetics and Maps
Linkage
Cytogenetic 
Clone-based



Challenge of High Dimensionity

Cells & Tissues

Time 

Genetics
Environments

Genetic Manipulations
Phenotyp

es
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The experiment paradigm is changing to statistically capture the
complexity. We will get maximum value when we explore three or 
more dimensions in a single experiment.

(From G. Michaels, PNNL)



The Challenges are Begging for “Smart”
Data Analysis and Modeling Algorithms

Predictive models

Data Archives & LIMSData Archives & LIMS

Data AnalysisData Analysis

Modeling & SimulationModeling & Simulation

Data RepositoriesData Repositories
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That will be able to “learn the rules”
governing the multi-scale functional 
mechanisms of molecular machines

In order to provide predictive 
functional models
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Multi-Scale Functional Characterization
Growing Reliance on Parallel Processing

Constraint-Based
Flexible Docking

Data Complexity

Comparative
Genomics

Constrained
rigid

docking

Genome-scale
protein threading

Community metabolic
regulatory, signaling simulations

Molecular machine
classical simulation

Protein machine
Interactions

Cell, pathway, and 
network 

simulation

Molecule-based
cell simulation
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Paradigm Shift in Parallel Processing: 
Increasing Not Only Speed But Prediction Accuracy

From: Transform a large problem into a set of small sub-
problems with cumulative computational cost (time, memory, 
communication) much less than the aggregate problem

To: Transform a large problem into a set of small sub-
problems with cumulative prediction accuracy much higher
than the aggregate problem



Example I. From Genotype to Phenotype
Through Genome-Scale Modeling of Biochemical Pathways

Challenge: Analyze, interpret, and predict 
metabolic function and control of a living cell

Genomes

Gene 
Products

Pathways & Physiology

Metabolic maps:
provide a  framework for 

studying the relationships between
Metabolic Genotype & Phenotype

Structure & 
Function

Optimal minimum solutions to the many possible
metabolic pathways are called “Extreme Pathways”
and are important to identify classes of cell Phenotypes



Extreme Pathways (EP)
Defined within the Context of Convex Analysis

Allows the study of Metabolic Genotype-Phenotype relationships
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Convex AnalysisConvex Analysis Cellular BiologyCellular Biology

Unique Generating
Vectors

Independent
Extreme Pathways

Flux Vector Positive Combination 
of Extreme Pathways

Convex Hull Capabilities of  a 
Metabolic Genotype

Particular Solution Metabolic 
Phenotype

Set of Extreme pathways is a basis for a defined metabolic genotype. 
The regulation of these pathways defines all possible phenotypes of 
the metabolic system.

Set of Extreme pathways is a basis for a defined metabolic genotype. 
The regulation of these pathways defines all possible phenotypes of 
the metabolic system.



Parallel Out-of-Core Extreme Pathways Algorithm
(with Bernhard Pallson, UCSD)

Strategy 
To transform a large problem into a set of small sub-problems with cumulative 
computational cost much less than the aggregate problem

To perform these sub-problems almost concurrently with reasonable data transfers, 
latency, and synchronization

Key idea 
Reduce memory requirements:

Deploying out-of-core strategy
Using bitmap-based data representation 
scheme with a high compression rate

Reduce computational time:
Performing efficient bitwise logical operations without decompression overheads
Minimizing search space via maintaining descriptive statistics with cheap updates
RAM-based storage of all the info required for decision making
One-time synchronization/global initialization per long-running iteration

Reduce network overheads: 
Partitioning data that minimizes data transfer needs



Performance of EP Algorithm

Previous algorithms could calculate Extreme Pathways 
only for small metabolic systems

Previous algorithms could calculate Extreme Pathways 
only for small metabolic systems

An order of magnitude larger systems
Memory requirements: reduced by over 90%
Computational time: reduced from days to hours
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Example II: Functional Discrimination of 
Homologous Sequences

Results of InterPro Analysis of four ADH Function Groups
Function  Gene_id Pfam PROSITE Tigr-Fam 

ADH1_TRIRP 
PF00107 

adh_zinc

PS00059 

ADH_ZINC 

tdh: L-threonine 3-

dehydrogenase  EC1.1.1.1 
ADH3_SOLTU same same same 

FADH_CANM same same same 
EC1.2.1.1 

FADH_PICPA same same same 

CADH_EUCGL same same same 
EC1.1.1.195 

CAD1_ARACO same same same 

MTD1_ARATH same same same 
EC1.1.1.255 

MTDH_ARATH same same same 
 

1196 ORFs (out of 2522 ORFs) in Syn. 81902 that are conserved 
hypothetical or hypothetical (Brian Palenik)

The current tools (e.g., BLOCKS, Pfam, PROSITE), while containing a 
wealth of information for characterization and identification of proteins, are 
unable to discriminate and classify closely related homologous sequences



Our Approach – SVMMER
A tool for functional differentiation of highly 
homologous protein function groups

Protein 
Sequence

ADHRibosome Membrane

Blocks 
Pfam, Blast

HMMs

ADH-1 ADH-2 ADH-3 … ADH-n
Function group level

Superfamily level

Approach:

• Using a priori knowledge, partition 
proteins into a hierarchy of classes.

• Extract features specific to each 
layer of the hierarchy

• Train a classifier on multi-layered 
hierarchy of classes

There is no “universal hammer” when dealing with such a complex concept as protein function

(In collaboration with Natalia Maltsev, ANL)



Performance Comparison
Linear Kernel 

SVM C4.5 RIPPER Superfamily 
Sp Sn CC Sp Sn CC Sp Sn CC 

Aldehyde 
dehydrogenase 0.93 0.92 0.88 0.64 0.63 0.34 0.67 0.67 0.44

Phycobilisome 0.93 0.93 0.91 0.92 0.92 0.89 0.84 0.77 0.64
Cys/Met metabolism 0.94 0.94 0.87 0.61 0.56 0.16 0.55 0.56 0.03
Alpha-amylase 
signature 0.94 0.94 0.81 0.96 0.96 0.88 0.95 0.95 0.84

GMP synthase C 
terminal domain 1.0 1.0 1.0 0.95 0.95 0.89 0.95 0.95 0.89

AMP-dependent 
synthetase 0.88 0.84 0.84 0.89 0.87 0.85 0.79 0.73 0.72

NAD dependent 
epimerase 0.97 0.97 0.95 0.93 0.92 0.88 0.71 0.77 0.58

Polyprenyl 
synthetase 0.94 0.93 0.91 0.85 0.79 0.73 0.66 0.66 0.52

Zinc-containing 
ADH 0.94 0.94 0.93 0.83 0.87 0.79 0.77 0.73 0.66

Aminolevulinic acid  
synthase 1.0 1.0 1.0 0.96 0.96 0.94 0.86 0.83 0.74

Average 0.95 0.94 0.91 0.85 0.64 0.74 0.78 0.76 0.61
 Sp: Specificity; Sn: Sensitivity; CC: Correlation coefficient

Classification 
Algorithm

SVM performance is superior compared to the other classification methods 
based on results from leave-one-out cross validation 



Example III. Prediction of Protein-
Protein Interactions

Genomic context-based methods:
Gene fusion events (Marcotte et.al., 1999; Enright et.al., 1999)

Conservation of gene-order or co-occurrence of genes in potential 
operons (Tamames et.al.,1997; Dandekar et.al.,1998; Overbeek et.al., 1999)

Presence/absence of genes in different species (phylogenetic profiles) 
(Pelligrini et.al., 1999)

Similarity of phylogenetic trees (Pazos and Valencia, 2001)

Classification-based methods:
SVM-based (Bock and Gough, 2001)

Statistical methods:
PICUPP



Genomic context-based methods

Phylogenetic Profiles Conservation of gene-order Gene fusion

Protein A B C D

Org1 1 1 1 1

Org2 0 1 0 1

Org3 1 0 1 0

Org4 1 0 1 1

Org1

Org2

Org3

Org4

- A

- B

- C

Org1

Org2

A ↔ B A ↔ BA ↔ C
Idea:If two proteins form a part 
of a single protein in other orgs. 

Idea: Pairs of proteins w/ 
similar phylogenetic profiles

Idea: Proteins whose genes are 
co-located in multiple genomes

Advantages: Allow to identify functionally associated genes

Disadvantages: Provide a small coverage of direct physical interactions 
(~30%, Huynen et.al., 2000)

Coverage Statistics: 37%: Gene order; 6%: Gene fusion; 11%: 
Phylogenetic profiles (M.genitalium, Huynen et.al., 2000)



Classification-based methods

Prediction StageTraining Stage

unknown protein pairs

training
data

decision rule:
separating hyperplane (SVM)

positive (interacting protein pairs)
negative (“non-interacting” protein pairs)
– generated by shuffling AA residues

Limitations:

• Only positive data is available for protein interactions

• Ill-defined negative set: Shuffled protein may not belong to protein space

• Asymmetry: AB or BA protein pairs correspond to different points in space



Our Approach – PICCUP 

Given a set of positive interactions only, statistical 
approach is a natural candidate. 

PICCUP:
Seeks to find statistically unusual protein profile pairs defined by 
Blocks, InterPro, Pfam, or Prosite.

Given protein interaction data, it estimates unusualness of profile 
pairs using statistical simulation (via bootstrapping).

It computes how apart a profile pair is from what is expected at
random. The degree of separation is essentially a statistical 
confidence.



Learning by Statistical Simulation

Pfam pair: PF0400:PF01423
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Sensitivity To Positive Pairs (Pfam)

DIP (PFAM)
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Sensitivity To Random Pairs (Pfam)

DIP (PFAM)
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Example IV: Prediction of Protein 
Docking Interfaces
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Interacting Residues
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A classifier from the data 
performs slightly better than 
a coin tossing.



Is there something in the Data then?

The complexity of interaction sites makes it extremely 
challenging to predict them computationally.

Interaction sites are diverse in:
• hydrophobicity
• electrostatics
• accessible surface area
• propensity
• degrees of planarity.

The diversity gives rise to the specificity

However, none of these was found to 
dominate. 

In other words, no single reliable prediction 
rule can be inferred using these factors.



Data Separation with AdaBoost
• Noise Filtering (here “noise” can include “too complex pattern 
to capture”)

Apply Boosting framework to identify problematic feature vectors.
• Construct a classifier that predicts with confidences.

Weights
Sample based 
on weights

Weight Distribution

E-set H-set
Build a Classifier

Update weights



Cross Validation of Classifer Built from E-sets
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Performance Results



The future -In Silico omics

Convergence of omic data/informatics 

Critical mass offers opportunities for 
data mining and smart algorithms

This leads to in silico prediction of 
protein functionality and interactions

In silico functional omics increasingly 
depends on parallel processing

Paradigm change in parallel processing: 
increasing not only speed but  prediction 
accuracy
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