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Abstract.  The generation and use of data covariance matrices are discussed within the context of the analysis of 
neutron-induced cross section data via the R-matrix code SAMMY.  Two complementary approaches are described, the 
first involving mathematical manipulation of Bayes’ Equations and the second utilizing computer simulations.  A new 
procedure for propagating uncertainties on unvaried parameters will allow the effect of all relevant experimental 
uncertainties to be reflected in the analysis results, without placing excessive additional burden on the analyst.  
Implementation of this procedure within SAMMY is described and illustrated via the simulations. 

 
INTRODUCTION 

For analysis of data using either least squares or 
Bayes’ Equations (generalized least squares), it is 
necessary to provide appropriate and accurate 
information regarding the uncertainties for those data.  
If the data are correlated, then covariances must be 
provided to the analysis code and properly 
incorporated into the fitting procedure.  At present, a 
number of competing methods exist both for 
generating such covariance matrices and for making 
use of them.  There is no universal consensus as to 
which methods are correct, nor is there sufficient 
understanding regarding the consequences of the 
choices. 

In this paper, a proposed method for generating and 
using the data covariance matrix (DCM) is described.  
Development of this method begins with a universally 
accepted premise and proceeds (via simple matrix 
algebra techniques) to the following conclusion:  A 
modest change in the current generally-accepted 
definition of the DCM will consistently yield 
reasonable results, free from odd behavior sometimes 
seen with the old definition.   

Hand calculations of simple examples and 
computer simulations of more realistic situations are 
used to demonstrate the applicability of the new 
method.  Calculations and simulations are also used to 
illustrate the erroneous results that can be generated 
using incorrect methods. 

REWRITING THE EQUATIONS 

We begin with the assumption that Bayes’ 
Equations are appropriate for determining those 
parameter values that give the best fit of theory to data.  
[This assumption can, of course, be challenged, as it 
relies on the dual hypotheses that all quantities obey 
Gaussian distributions and that the theory is linear with 
respect to the varied parameters.  Neither hypothesis is 
strictly true.  Nevertheless, both are sufficiently close 
to true that Bayes’ Equations are almost correct.  For 
the remainder of this discussion, these complications 
will be ignored.] 

Bayes’ Equations can be written in the form  
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where P represents all parameters, M the full 
covariance matrix for all parameters, D the measured 
data, T  the corresponding theoretical calculation, G the 
partial derivative of T with respect to P, and V  the 
DCM.  The quantities Y and W are defined by the 
expressions in Eq. (1).  Primes represent updated 
values for P and M.  Superscript t indicates transpose. 

Note that substituting zero in place of M −1 reduces 
Eq. (1) to the more familiar least-squares equations. 

Consider the case of fitting to raw (uncorrelated) 
data, for example, counts per time-channel as 
measured in a time-of-flight experiment.  While it is 
seldom practical to calculate directly the quantities 



measured in an actual time-of-flight experiment, 
nevertheless it is possible to formally express Bayes’ 
Equations in this manner.  Further, because raw data 
are uncorrelated, there is little ambiguity or argument 
regarding the treatment of the diagonal DCM. 

Bayes’ Equations may be written in terms of two 
distinct types of parameters:  Define P as those 
parameters that are related to the theory (e.g., the R-
matrix parameters) and p as those related to the 
measurement conditions (the normalizations, 
backgrounds, and other corrections required in 
converting from raw to reduced data, collectively 
denoted the “data-reduction parameters”).  The prior 
covariance matrices M and m (for P and p 
respectively) are not correlated to each other. 

If d denotes the raw data, v the associated diagonal 
DCM, and t the corresponding theoretical calculation, 
then the components of Eq. (1) may be written in 
terms of these quantities as 
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Here G represents the partial derivatives of t with 
respect to the theory parameters and g the partial 
derivatives of t with respect to the data-related 
parameters. 

Experimentalists transform the raw data d into 
reduced data d~  by a series of operations involving the 
data-reduction parameters p.  This transformation, 
which we shall call T, also takes the theory t into t~  
and (applied twice) v into v~ (which is not the 
covariance matrix for the reduced data, but instead 
represents only the diagonal “statistical” portion 
thereof).   Similarly G~  and g~  indicate partial 
derivatives of t~  with respect to P and p respectively.  
The quantity T T −1 = 1 may be inserted as needed into 
Eq. (2), with the goal that Bayes’ Equations be 
expressed entirely in terms of reduced data rather than 
raw data.  After many pages of algebra (available from 

the author on request), the transformed equations 
reduce to the form 
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where V (the entire, off-diagonal, covariance matrix 
for the reduced data) is given by  

 .~~~ tg m gv V +=  (4) 

Equations (3 and 4) represent only those portions 
of the transformed equations that apply to the theory 
parameters P.  (Similar equations are found for the 
data-reduction parameters p; equations for the 
covariance matrix elements connecting P and p are 
also found.  These, however, will not be discussed 
further here.) 

Use of the equations in Eq. (3) produces results for 
P’ and M’ (updated parameter and covariance matrix) 
exactly equivalent to those that would be produced if 
one could fit directly to the raw data.  This assertion 
has been verified by studies of simple cases and by 
computer simulations, as described later in this report. 

Examination of Eqs. (3 and 4) shows that those 
equations are identical to the equations in general use 
for analyzing reduced (correlated) data, with one 
notable exception:  The definition of g~ in Eq. (4) is 
different.  The usual definition involves the derivative 
of the reduced data, not of the theory, with respect to 
the parameters p.  This is a subtle distinction, often 
unnoticeable with high-quality data.  However, when 
data discrepancies exist, this small difference can lead 
to seemingly paradoxical results.  One well-known 
example is Peelle’s Pertinent Puzzle. 

Peelle’s Pertinent Puzzle 

In 1987, Peelle [1] postulated a simple situation 
wherein the usual approach led to seemingly 
paradoxical results.  Two “measurements” were made 
of the same quantity, and those measurements were 
correlated.  A subsequent averaging of those two 
measurements resulted in a value that did not lie 
between the two measured values – a clearly 
unreasonable result. 

This puzzle has been examined and properly 
interpreted by several authors (see, for example, [2,3]).  
Nevertheless, it is worth revisiting because only 
recently have the correct techniques been introduced 



into practical applications; hence those techniques are 
not widely understood.  (Implementation in the 
SAMMY code [4, 5] is discussed in the next section of 
this report; see [6] for a discussion of use of this 
technique in the GMA code.) 

Peelle postulated two data points D1 and D2 with 
values 1.5 and 1.0.  Both had statistical uncertainties of 
10 % and normalization uncertainty of 0.2.  Hence, the 
[original] DCM was 
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Applying Bayes’ Equations (3) with one parameter 
and two data points, assuming M−1 = 0 and G = 1, 
gives the solution P’ = 15/17 ≈ 0.88 and ∆ P’ ≈ 0.22, 
an unacceptable result.  However, if one uses the 
appropriate version of Eq. (4), 
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rather than Eq. (5) for the DCM, then the solution 
becomes P’ = 15/13 ≈ 1.15 with ∆P’ ≈ 0.25, a far more 
reasonable result.  This is also the identical result that 
would be obtained if the normalization were included 
as a fitting parameter (which is equivalent to “fitting 
the raw data”). 

IMPLEMENTATION IN SAMMY 

The form of Bayes’ Equations found in Eq. (3) has 
been implemented in the multilevel multi-channel R-
matrix code SAMMY [4, 5] and is available for use 
with any parameter for which SAMMY is able to 
calculate partial derivatives.  That is, any parameter 
previously permitted to be varied (treated as a search 
parameter) may now be used in the calculation of the 
data covariance matrix.  Parameters used in this 
fashion are designated “propagated uncertainty 
parameters” (PUPs). 

The PUP option is useful when the analyst has 
reason to believe that the input value of the parameter 
is the “best” and therefore should not be modified by 
the analysis of the current data set; nevertheless, there 
is uncertainty associated with the parameter value.  
Designating this parameter as a PUP allows its 

uncertainty to be propagated through the analysis 
process so that it can be reflected in the final results. 

The procedure for using this option in SAMMY is 
to replace the flag “0” (meaning “hold this value 
fixed”) or “1” (meaning “this parameter is to be 
varied”) with “3” (meaning “this parameter is a PUP”).  
In the output file SAMMY.LPT, varied parameters are 
designated by ordinal numbers in (rounded) 
parentheses; PUP’d parameters are designated by 
ordinal numbers in <pointed> parentheses.  

USING THE DCM 

It is possible to generate V directly from Eq. (4) 
and then invert it for use in Eq. (3).  However, that 
method is both costly (in terms of computer time and 
memory) and inefficient.  Instead, the matrix V can be 
inverted by matrix manipulation of its components,  
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in which tildes have been dropped for simplicity, and Z 
is defined as 

.
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Even V −1 need never be stored.  Instead, Eq. (7) can be 
inserted directly into the final two equations of Eq. (3), 
giving 
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Although the equations look more complex in this 
form, and indeed they are more difficult to program, 
the substantial savings in computer time and memory 
make the effort well worth while.  Detailed examples 
illustrating these savings are available from the author. 

In SAMMY, both PUPs and user-supplied DCM 
are treated in this fashion, which is denoted the 
implicit data covariance (IDC) method. 



While it remains possible to provide an explicit 
DCM for SAMMY runs, use of explicit DCMs is 
strongly discouraged.  In addition to requiring orders 
of magnitude more computer time and memory, 
explicit DCMs are prone to accuracy problems caused 
by the inability to transmit sufficient significant digits.  
The IDC method does not suffer from that 
shortcoming. 

COMPUTATIONAL STUDIES 

During the implementation process for PUPs in 
SAMMY, the author made a series of tests to be 
certain that both the implementation and the theory 
were correct.  For these tests, the parameter being 
studied (which we will denote as X) was treated in six 
different methods: 

1. Create the DCM V from Eq. 4, using X as a data-
reduction parameter.  Use SAMMY’s explicit 
DCM option to find values and covariance matrix 
for resonance parameters. 

2. Generate the pieces v, g, and m of the DCM of Eq. 
(4), again using X as a data-reduction parameter.  
Analyze via SAMMY’s user-supplied IDC option. 

3. Include X as one of the parameters to be fitted 
during the analysis process. 

4. Treat X as a PUP. 
5. If X is a normalization or background parameter, 

use SAMMY’s original IDC option. 
6. Ignore the uncertainty on X. 

For each parameter tested, Methods 1 and 2 gave 
nearly identical results (so long as care was taken to 
include sufficient significant digits for the explicit 
DCM).  Methods 3 and 4 gave exactly identical results 
for the first iteration.  (Iterations are required to 
overcome the effects of non-linearity; after the first 
iteration, Methods 3 and 4 will necessarily differ, since 
the value of X will be modified in Method 3 but not in 
4.)  When Method 5 was possible, Methods 4 and 5 
gave exactly identical results. 

The first five methods give nearly identical results 
for the first iteration.  This would not, of course, be 
true in the case of severely discrepant but correlated 
data, for which Methods 1 and 2 would not be 
appropriate.  Method 6, in general, gave different 
results from all the other methods, and also produced 
smaller uncertainties for most parameters. 

(In the previous paragraphs, the word “results” 
refers to values and covariance matrix for all 
parameters other than X.) 

SUMMARY 

In order to analyze reduced (and therefore 
correlated) data and obtain results equivalent to those 
obtained from fitting raw data, the data covariance 
matrix (DCM) should be generated using theoretical 
rather than experimental values. 

Using the implicit data covariance (IDC) method 
for storing and inverting the DCM will decrease the 
run time and increase the accuracy of the calculation. 

Both of these techniques are implemented in 
SAMMY for propagated-uncertainty parameters.  
Extensive testing has demonstrated that equivalent 
results are obtained using any valid method. 
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