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Abstract 
 
Data-sharing scientific communities use storage systems as 
distributed data stores by replicating content. In such highly 
replicated environments, a particular dataset can reside at 
multiple locations and can thus be downloaded from any one 
of them. Since datasets of interest are significantly large in 
size, improving download speeds either by server selection or 
by co-allocation can offer substantial benefits. 
 
In this paper, we present an architecture for co-allocating 
Grid data transfers across multiple connections, enabling the 
parallel download of datasets from multiple servers. We have 
developed several co-allocation strategies comprising of 
simple brute-force, history-based and dynamic load balancing 
techniques as a means both to exploit rate differences among 
the various client-server links and to address dynamic rate 
fluctuations. We evaluate our approaches using the GridFTP 
data movement protocol in a wide-area testbed and present 
our results. 
 
Keywords: Data Grids, Co-allocation, Partial Transfers, 
Scheduling, Peer-to-peer. 
 
1. Introduction 
 
Replicating popular content in the interest of offloading host 
severs is a widely used practice (FTP mirror sites, web caching 
[ZMF98, MLB95, Wang99] etc.). Recently, this trend is being 
put to extensive use in large-scale, data-sharing scientific 
communities where pieces of large datasets are replicated over 
several sites [LIGO02, DataGrid02, HSS00, GriPhyN02, 
SDSS02, MMR+01, NM02]. For example, several high-energy 
physics experiments have agreed on a tiered Data Grid 
architecture [Holtman00, HJS+00] in which all data 
(approximately 20 petabytes by 2006) is located at a single 
Tier 0 site; various (overlapping) subsets of this data are 
located at national Tier 1 sites, each with roughly one-tenth the 
capacity; smaller subsets are cached at smaller Tier 2 regional 
sites; and so on.  Therefore, any particular dataset is likely to 
have replicas located at multiple sites.  
 
Different replica locations are bound to offer varied 
performance rates due to different architectures, system load 
and network connectivity. Thus, downloading large datasets 

(10 MB – 1 GB) from anyone of the replica locations can 
result in a varied end-user experience. 
  
A typical Internet download between a client and a server is 
mired by several bottlenecks (Figure 1a) [Akamai00]. First, the 
bandwidth achievable by the client is limited by the bandwidth 
of the server’s connection to the Internet (First-Mile), 
compounded further by simultaneous client requests. Second, 
the achievable bandwidth is further limited by the congestion 
in the link connecting the server and the client. Third, the 
bottleneck could be in the client’s own connectivity to the 
Internet (Last-Mile). Thus, the download speed is only as fast 
as the slowest link in the aforementioned setup. Sophisticated 
solutions are required to significantly address this issue. 
 
One way to improve download speeds is to employ complex 
server selection techniques to determine the best replica 
location, offering high transfer rates, using a combination of 
server and network load details [Akamai02, VTF01]. In 
practice, however, due to the shared nature of network links 
the load on them can vary unpredictably. Thus, in the face of 
transient network conditions, downloading datasets even from 
the best of servers can often result in ordinary transfer rates. 
 
A promising alternative is to download data from multiple 
locations, establishing multiple connections in parallel (Figure 
1b). With this approach, instead of downloading the entire 
dataset from a single sever, unique partial copies of the dataset 
are fetched from multiple servers in parallel that are later 
reassembled at the client end. 
 
This co-allocation of data transfers has several relevant 
properties of significant interest to us. First, it obviates the 
need for complex server selection. Second, due to its 
decentralized nature the eventual performance achieved may 
not be adversely affected by degradation in any of the co-
allocated flows while also being resilient to server failures. 
Third, the client download experience can be positively 
amplified with the aggregate bandwidth commensurate to the 
summation of the individual transfer rates of each flow. 
Fourth, it significantly alleviates the first-mile (slow server, 
serving a fast client) and the Internet congestion problem by 
distributing load to multiple servers and different routes 
(Figure 1b). Even in the case of a slow client served by a fast 
server, co-allocation can offer significant benefits due to 
fluctuations in network conditions. 
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Co-allocating data transfers across multiple replica locations 
can have widespread applicability beyond scientific data-
sharing communities. For instance, Internet content 
distribution networks [JCD+00] that manage consistent 
replicas of popular content on surrogate, edge-servers, closer to 
end-users [Akamai00] or peer-to-peer systems that achieve file 
sharing in a decentralized manner [CP02] can significantly 
benefit from parallel downloading. Content distribution 
networks [Akamai02, Speedera02] cater to much of the 
Internet content provider traffic and attempt to improve 
download speeds by employing techniques such as request 
redirection [WPP02, KRR00] to fetch data from less congested 
links; while peer-to-peer downloads siphon much of the 
available Internet bandwidth—up to 60% on any service 
provider network [Sandvine02, SGG02]. Co-allocations in 
such cases can help improve download speeds, reduce load on 
certain parts of the network, alleviate loaded peers, etc.  
 
In this paper we develop a basic architecture for co-allocating 
Grid data transfers and build a few techniques for downloading 
data in parallel, from multiple servers. We develop three 
techniques: (1) brute force co-allocation, (2) history-based co-
allocation of flows and (3) dynamic load balancing. We apply 
these techniques to the GridFTP [AFN+01] data movement 
tool, part of the Globus ToolkitTM [FK98], and evaluate our 
approaches by conducting performance experiments in a wide-
area testbed. Our results indicate a significant increase in 
bandwidth due to distributed downloads and denote that 
dynamic solutions outperform static approaches. 
 
2. Related Work 
 
Developing techniques for parallel downloads of Internet 
documents is of significant interest in the networking 
community and can be broadly classified into stateless and 
stateful approaches. 
 
Stateless approaches to the parallel access problem rely on 
clients subscribing to several mirror sites to restitute the data. 
This approach makes extensive use of erasure codes [Rizzo97] 
to develop an “n” packet encoding of a “k” packet file, with 
the property that the file can be reassembled from any “k” 
packet subset of the encoding [BCM+02, BLM02]. Pros of this 

approach are: obviates the need for maintaining file ranges and 
renegotiations on a per flow basis, fault tolerance and 
scalability; while the cons are: constructing an “n” packet 
encoding is nontrivial, cost of encoding and decoding can be 
significant for large dataset size, and clients and servers are 
required to agree, apriori, on common encoding schemes. 
Other related effort includes Rabin’s [Rabin89] and 
Maxemchuk’s [Maxemchuk75] work on dispersing pieces of 
the file on different nodes in the network for fault tolerance 
and dispersity routing respectively. 
 
On the contrary, stateful techniques divide the file into disjoint 
sets, downloading different ranges from different servers. In 
[RKB00, Gkantsidis02], the authors develop previous history-
based and dynamic solutions, demonstrating their techniques 
for web-based documents of the order of several hundred 
kilobytes. Accurate predictions of range distributions are 
required for several stateful techniques, which are often quite 
difficult to obtain in the face of changing network conditions. 
In [RKB00, Gkantsidis02], the authors rely on simple averages 
of previous transfer rates as an estimate for range calculations 
per flow. Work from Beck et. al., demonstrated the usefulness 
of dynamic distributed downloads in the context of streaming 
applications by fetching multiple copies of file blocks in order 
to address jitter [PAD+02]. 
 
In our work we develop history-based and dynamic solutions 
similar to that of [RKB00, Gkantsidis02, PAD+02], but extend 
it by addressing network fluctuations. Further, we employ 
prediction techniques, deriving from our previous work 
[VSF02] on predicting data transfer rates between sources and 
sinks, for range calculations per flow that can significantly 
improve our performance and reduce renegotiations. The use 
of encoding schemes, and thus the stateless alternative, may 
not be suited for our purposes due to our concentration on 
large datasets, for which encoding and decoding times can be 
quite significant. 
 
3. A Co-Allocation Architecture 
 
The Globus Toolkit [FK98] provides a basic template for 
resource management [CFK99], which can be extended to 
support the co-allocation of Grid data transfers. As illustrated 
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Figure 1. (a) Various bottlenecks in the Internet document download – the 
first mile problem, the congestion in the links connecting server and client 
and the last mile problem. (b) Co-Allocated download model minimizes 
the first mile and the link congestion bottlenecks. 



in Figure 2, the architecture comprises of three main 
components: an information service, local storage systems, and 
broker/co-allocator. An application requiring access to data 
presents a description of the data to the broker. The broker, in 
conjunction with information services [CFF+01], identifies 
possible alternatives from where the dataset in question can be 
fetched. This set is then presented to the co-allocation agent, 
which uses a combination of information services and some 
heuristics to map the data transfer request across multiple 
replica locations to download the data in parallel using 
GridFTP. 
 

 

3.1. GridFTP and Support for Partial Copy 
 
GridFTP [AFN+01] is part of the Globus Toolkit™ and is 
widely used as a secure, high-performance data transfer 
protocol in Grids with features such as security, parallel 
streams, partial file transfers, and third party transfers. Of 
particular interest to us is the ability to fetch partial copies of a 
file. Partial copy is part of GridFTP’s extended retrieve 
functionality, which is used to request that a retrieve be done 
with some additional processing on the server. With partial 
copy, a section of the file, defined by the starting offset and 
extent, will be retrieved from the data server. 
 
3.2. Allocation Mechanisms 
 
We now proceed to describe the co-allocation mechanisms that 
we have developed. 
 
3.2.1. Brute-Force Co-Allocation 
 
Brute-force co-allocation works by dividing the file size 
equally among available flows. Thus, if the data to be fetched 
is of size, “S” and there are “n” locations to fetch it from, then 

this technique assigns to each flow a data block of size, “S/n”. 
With this technique, although all the available servers are 
utilized, bandwidth differences among the various client-server 
links are not exploited. 
 
3.2.2. History-based Co-Allocation 
 
To address and exploit transfer rate differences among the 
various co-allocated flows, we develop a history-based 
allocation scheme. With this technique, the block size per flow 
is commensurate to its predicted transfer rate, decided based on 
a previous history of GridFTP transfers. If these predictions 
are not accurate enough, renegotiations of flow sizes might be 
necessary as slower links can get assigned larger portions of 
data, which could weigh heavily on the eventual bandwidth 
achieved. 
 
In order to obtain accurate predictions of transfer rates for the 
various links, we derive from our previous work on forecasting 
GridFTP transfers. Our previous work delved into deriving 
accurate predictions (within 15% error) in the face of network 
and system load fluctuations. For purposes concerning co-
allocations, we use a temporal variation of average predictor 
(moving average over time) [VSF02].  
 
With the history-based approach, the client divides the file into 
“n” disjoint blocks, corresponding to “n” servers. Each server, 
“i”, 1 ≤ i ≤ n, has a predicted transfer rate of “Bi” to the client. 
In theory then, the aggregate bandwidth achievable by the 
client for the entire download is: 

Figure 2. Resource management architecture and the 
role of co-allocation. Co-allocator combines broker 
decisions and information services to map data transfer 
requests onto storage systems using GridFTP and 
Globus Access to Secondary Storage (GASS). 

                                                  i=n 

A = Σ Bi
                                                  i=1 

where “Bi” is the predicted bandwidth per flow and “A” is the 
aggregate bandwidth. Such a speedup can only be achieved 
when all servers are busy at all times during the entire 
download. In practice, however, the achieved bandwidth is 
limited due to network congestion in the various flows 
(resulting in some servers finishing earlier than others) and the 
client’s ability to handle the bandwidth surplus.  
 
Assuming the client is capable of handling the bandwidth 
surplus, range distributions are calculated as follows. For each 
server “i”, and for a replica size, “S”, the block size per flow 
is: 

  Bi
 si =  ______   * S 

 A 
where “si” is the block size per flow. Thus, the block size per 
flow is commensurate to its transfer rate and its ratio of 
contribution to the achievable aggregate bandwidth. Faster 
servers are assigned to deliver bigger portions of the file, while 
slower servers are assigned smaller pieces. In this manner, this 
scheme addresses the transfer rate differences among the 
various co-allocated flows. 
 



3.2.3. Dynamic Co-Allocation 
 
Although we have addressed the rate differences in the flows 
and exploited it to deliver proportionate pieces of the file per 
flow, we do not address dynamic network variations that can 
cause degradation in transfer rates. Despite careful bandwidth 
estimates per flow, network traffic and system load can cause 
servers, previously determined as fast or slow, to behave 
differently. Thus, an end-user is typically interested in 
dynamic rate adaptation. 
 
One way to address this is to monitor the progress of history-
based co-allocated flows, to perform corrective measures in 
case of performance degradation. For instance, if the 
performance in a particular flow drops below a threshold, the 
transfer can be migrated to an alternate location or remaining 
data can be equally distributed among other existing flows.  
 
Although in theory, these are feasible alternatives, in practice, 
however, such techniques are quite complex to realize for the 
following reasons. First, we need to add additional dynamic 
monitoring capability to our data movement protocol to 
monitor each flow, which can significantly contribute to the 
overhead. Second, we need criteria to determine performance 
degradation, which can be difficult due to changing 
network/system conditions. Third, even if degradation could be 
determined, corrective measures such as transfer migration or 
resizing may require significant renegotiation between clients 
and servers, which can be more costly than the existing 
decrease in performance. 
 
A promising alternative is the use of dynamic co-allocation. 
We develop two variations of dynamic co-allocation: (1) 
Conservative Load Balancing and (2) Aggressive Load 
Balancing. 
 
Conservative Load Balancing: With this approach, the rate, 
and thus how much a server delivers, is decided dynamically 
instead of being based on previous history. The dataset in 
question is divided into “k” disjoint blocks of equal size and 
each one of the available servers is assigned to deliver, in 
parallel, one block initially. Once a server delivers the block, 
another block is requested and so on, until the entire file is 
downloaded. 
 
Faster servers and servers connected to the client through less 
congested or faster links, will deliver quickly, thus serving 
larger portions of the file when compared to their slower 
counterparts. Thus, with this technique, the load on the co-
allocated flows is automatically adjusted so that congested 
links and loaded or slower servers are not further burdened. 
 
With this technique, the number of blocks per download can 
affect the throughput achieved. We could either have a large 
number of small blocks or a small number of large blocks. We 

study the effect of using different block counts and sizes in 
Section 4. 
 
The key to achieving maximum aggregate bandwidth, as stated 
earlier, is to keep all available servers busy at all times. In the 
best case, each server is only idle for duration “t”, where “t” is 
the time elapsed since the server delivered the last block and 
until it receives a request for a new block. Neglecting client 
side processing and multiprogramming at both ends, this is 
roughly equivalent to one round-trip time, which is 
insignificant compared to the entire download time. 
 
One obvious downside to this approach is the eventuality of 
waiting on the slowest server to deliver the final block (same 
as history-based allocation). An alternative is to stop the 
slowest flow or dynamically resize blocks to fetch the 
remaining data from the other servers, although we do not 
employ this technique. 
 
Aggressive Load Balancing: With the previous method, 
although faster servers deliver quickly, we only fetch one-
block size each time around. Similarly, slower servers would 
again be assigned to deliver blocks. To address these issues, 
we add the following functionality to our load balancing 
scheme: (1) progressively increase the amount of data 
requested from faster servers; and (2) reduce the amount of 
data requested from slower servers or stop requesting data 
altogether.  
 
In order to achieve the stated effect, we develop a few 
heuristics. For each block delivered by each flow, we compute 
the rate achieved and compare it against the running maximum 
of all flow rates. If the rate at which a flow delivered the block 
is greater than the running maximum, we double the block size 
for that flow and reset the maximum; if it is less, we maintain 
the one-block size for the flow; and if the rate is significantly 
less than the maximum, we stop using the flow. Thus, using 
these techniques, we address dynamic rate changes in the 
various co-allocated flows. 
 
4. Results and Analysis 
 
We evaluated the performance of our co-allocation schemes on 
data collected over two distinct two-week periods during 
October and December 2002. In the following sections we 
describe the experimental setup, traces and our results. 
 
4.1. Testbed Configuration 
 
Our experiments comprised GridFTP transfers, using our co-
allocation clients, between five sites in our testbed: Argonne 
National Laboratory (ANL), the University of Southern 
California Information Sciences Institute (ISI), Lawrence 
Berkeley National Laboratory (LBL), the University of Florida 
at Gainesville (UFL) and Boston University (BU). All our sites 
comprised of 100 Mb/sec Ethernets with high-end storage. 



 
A prerequisite for downloading data from multiple servers is 
that the various links connecting the client and servers be 
bottleneck disjoint [RKB00, BLM02]. If the client-server links 
share the same bottleneck then there can be little improvement 
due to co-allocation. From Figure 3, it is evident that the 
various client-server links for our setup are bottleneck-disjoint 
(bottleneck bandwidths were determined using iperf [TF01]). 
 
4.2. Experiment Setup 
 
We performed wide-area data transfer experiments using the 
GridFTP data movement tool. Our servers were standard 
GridFTP available from the Globus 2.0 Toolkit, while our 
clients included the various co-allocation schemes. Transfers 
comprised several file sizes ranging from 10 MB to 1 GB. 
These transfers were performed with tuned TCP buffer settings 
(calculated using the bandwidth delay product as in Figure 3) 
and eight parallel streams (per co-allocated flow) to achieve 
enhanced throughput. All our transfers were performed with 
co-allocation clients at either ANL or UFL. We use a mix of 
fast and slow servers to study the effect therein. 
 
4.3. Performance 
 
In this section we discuss the performance of our co-allocation 
clients. We evaluate four co-allocation schemes: (1) Brute-
Force (Brute), (2) History-based (History), (3) Conservative 
Load Balancing (Conservative) and (4) Aggressive Load 
Balancing (Aggressive). For the two load balancing 
techniques, we study the effect of various block counts 
(Conservative-5, Conservative-10, Conservative-15, 
Aggressive-5, Aggrssive-10 and Aggressive-15) on the 
bandwidth achieved. We compare each co-allocation scheme 
against the base case of fetching the entire file from a single 
server and study the bandwidth improvements therein. The 
bandwidth measures are averages based on two-week’s worth 
of transfers (up to 1200 transfers each month). 
 
4.3.1. Impact of Client-Server Configurations 
 
In Figures 4 and 5, we study the effect of slow servers (or 
links) with similar performance, serving a fast client. We see 

that all co-allocation schemes perform better than the base case 
of downloading the entire file from a single server. We observe 
that load balancing schemes perform better than brute-force or 
history-based co-allocation and load balancing offers almost 
double the performance when compared with the base case. In 
the case of slow servers serving fast clients there is usually 
residual bandwidth available that goes unused with typical 
downloads. With a distributed download, this residual 
bandwidth is utilized to achieve enhanced throughput. 
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Figure 3. Network settings for our testbed sites. 
All sites are connected through OC-12 or OC-48 
network links. For each site pair round trip times 
and network bottleneck bandwidths for the link 
between them is shown. 
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Figure 4. Servers are at ISI and UFL with client at 
ANL (Oct’02). First two bars in each file size denote 
downloading the entire file from either ISI or UFL, 
while others denote co-allocated downloads using 
the two servers. Depicts 95% confidence ranges.
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Figure 5. Servers are at ISI and BU with client at UFL 
(Dec’02). Depicts 95% confidence ranges.
n Figures 6, 7 and 8, we use a mix of slow and fast servers to 
tudy its effect on download. We observe that co-allocation 
chemes are either better (gains up to 2 MB/sec) or comparable 
 faster servers in isolation. The figures indicate that the gain 

ue to co-allocation is inversely proportional to the 
erformance gap between the servers. In Figure 6, a faster 
erver saturates a client quickly, leaving available little 
esidual bandwidth and no gain due to co-allocation. In Figures 
 and 8, as the performance gap between the servers is low, we 
bserve gains due to co-allocation.  
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Figure 8. Servers are at ANL, ISI and BU with client 
at UFL (Dec’02). Depicts 95% confidence ranges for 
Figure 6. Servers are at LBL and UFL with client at 
ANL (Oct’02). Depicts 95% confidence ranges.
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.3.2. Sensitivity of Schemes towards Parameters 

e analyzed the effect of file sizes, number of flows and block 
ounts on the download performance – i.e., threshold values 
eyond which co-allocation offered gains or saturated. Figures 
 through 8 show that all our co-allocation schemes offer 
ignificant performance improvements (when compared with 
he base case) as the file size increases. For smaller file sizes 
e see no improvements in using co-allocation using our data 
ovement tool. A low value for the performance ratio, R, 
here R is: 

R = Co-allocation Cost / Total Time to Download, 
esults in gains due to co-allocation. The cost of co-allocation 
nvolves connection establishment, negotiations, reassembly, 
esizing, etc. For smaller files, this co-allocation cost is high 
ompared to the total download time. 

n increasing the number of co-allocated flows (Figures 7 and 
) we observed that for our testbed and client-server 
onfigurations, download performance reached saturation at 
bout 3 or 4 flows. While this is subjective to client-server 

configurations, choosing an appropriate number of flows is 
vital to the performance achieved. 

bandwidth. 

 
For our various load balancing techniques, we studied the 
effect of using different block counts (5, 10 and 15). Figure 9 
compares the variations of conservative and aggressive load 
balancing techniques. From the figure we can infer that for 
smaller file sizes the load balancing schemes perform better 
with less number of blocks, while for larger file sizes more 
blocks result in better performance. For our experiments and 
our block counts we saw performance improvements of up to 
1-2 MB/sec. With small files more blocks will result in more 
overhead in terms of connection establishment, reassembly, 
etc., when compared to the total download time; while with 
large files less blocks can mean slower servers delivering 
bigger portions of the file. 

Figure 7. Servers are at ANL and ISI with client at 
UFL (Dec’02). Depicts 95% confidence ranges. 

 
4.3.3. Waiting on Slow Servers 
 
For the load balancing schemes, we analyzed the effect of 
faster servers waiting on slow servers to deliver the last block. 
From Figure 10 we can observe that with conservative load 
balancing (out of the times when slower servers finished last), 
faster servers are idle for up to 17% of the total download time 
waiting for slower servers to finish delivering the last block. 
While aggressive balancing is not altogether devoid of this 
trend, we observe almost up to 40% reduction in wait times 
due to a progressive increase in the amount of data fetched 
from faster servers. The figure also implies that using less 
number of blocks with larger files results in slower servers 
having to deliver larger pieces of data, thereby increasing the 
idle time of faster servers.  
 
5. Conclusion 
 
In this paper we have described the significance of co-
allocating Grid data transfer requests across multiple servers, 
thus enabling parallel downloads. We have developed an 
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architecture for downloading data from multiple servers, 
exploiting the partial copy feature of the GridFTP data 
movement tool. We have further developed several co-
allocation strategies comprising of simple brute-force, history-
based and dynamic load balancing techniques. We developed 
several techniques both as a means to address rate differences 
between the various flows and to address dynamic rate 
adaptation. 
 
We analyzed our approaches in a wide-area testbed with a mix 
of fast and slow servers and observed that our techniques 
offered significant benefits when compared to downloading the 
entire file from a single server. Our results indicated an 
increase in performance regardless of the speed of servers and 
up to 2 x speedup for our testbed sites. We observed that our 
techniques performed better for larger file sizes and that 
dynamic approaches performed better than static ones. For  
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dynamic techniques, lesser blocks worked well for smaller 
files and vice-versa for large files. Further, we observed that by 
progressively increasing the amount of data fetched from faster 
servers, we could reduce the waiting on slower servers to 
finish. Future work includes analyzing dynamic block sizing to 
address performance degradation. 
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