
On-demand Grid Storage using Scavenging

Sudharshan Vazhkudai
Computer Science and Mathematics Division

Oak Ridge National Laboratory
vazhkudaiss@ornl.gov

Abstract

Increasingly scientific discoveries are driven by analyses of
massively distributed bulk data. This has led to the
proliferation of high-end mass storage systems, storage area
clusters and data centers as storage fabric elements for the
Grid, offering excellent price/performance ratio and good
storage speeds, but increasing maintenance and
administrative costs. A promising alternative then, is to
harness the collective storage potential of individual
workstations much as we harness the idle CPU cycles due to
the affordable economics in aggregating commodity storage
and low usage to available space ratio. However, such
aggregated commodity storage is prone to volatility, machine
failures, performance concerns and trust issues. In this paper,
we address several of the aforementioned issues and present
our design on the construction of scalable aggregated
commodity storage through scavenging; providing availability
through aggressive replication; revering user autonomy and
his authority to reclaim space; and enabling Grid access to
such storage.

Keywords: Grid Storage, Serverless Filesystems, Scavenging.

1. Introduction

Grids are often quoted to have grown out of the traditional
supercomputing arena—the Computer Center model—
wherein users, limited by the computing power within a
cluster/domain, needed mechanisms to perform computational
operations on clusters in other domains [FK98, LEGION03].
Numerous solutions have been designed to present a collective
(domain) computing potential to the Grid ranging from those
built for tightly-coupled Beowulf style clusters [Merkey94] to
loosely-coupled, idle workstations. These solutions serve as
excellent fabric elements for the Computational Grid. Thus, a
fundamental change is occurring in the computing landscape.
Proprietary systems are being replaced with commodity
clusters, delivering new levels of performance and availability
at dramatically affordable price point.

Increasingly though, scientific discoveries are driven by
analyses of massively distributed bulk data. This has led to the
proliferation of high-end mass storage systems [CW95,
DPSS03], storage area clusters and data centers (IBM,
Panasas, HP) as storage fabric elements for the Grid. These
systems offer excellent price/performance ratio, good storage

speed and access control, support for intelligent parallel file
systems, optimization for wide-area bulk transfers and reliable
storage. Several of them have been successfully demonstrated
and are in use in major multi-institutional Grid efforts
including the TeraGrid [TeraGrid04] and DOE Science Grid
[DSG03].

However, high-end storage also comes with increasing
deployment/maintenance/administration costs, specialized
software and central points of failure. Further, the cost and
specialized features prohibit their wider acceptability and limit
them to a select few research laboratories and organizations. If
grids are to become prevalent and grow beyond the confines
of a few organizations, exploiting commodity fabric features is
absolutely essential.

A promising alternative then, is to harness the collective
storage potential of individual workstations much as we
harness the idle CPU cycles (Condor [CONDOR04]). The
potential of collective commodity computing has been
demonstrated time and again, outpacing supercomputers in
their ability to deliver sustained high-throughput computing
required by several current applications. Such an approach for
storage is desirable and made feasible due to the following
reasons.

First and foremost, the economics of buying gigabytes of more
storage is increasingly becoming affordable so that even
ordinary user desktop workstations are equipped with tens of
gigabytes. Second, recent studies in corporate LAN settings
indicate that up to 50% of disk space is unused [ABC+02].
This suggests that space usage to available storage ratio is
significantly low thereby justifying the aggregation and use of
individual workstation storage (a storage-equivalent argument
for “most computers are idle for substantial amounts of time
justifying idle cycle stealing”). Finally, these workstations—in
increasing numbers—are online most of the time and,
therefore, even a meager contribution—where Contribution
<< Available—from each workstation could result in
collective staggering aggregate storage.

Yet, there is reluctance (justified) in espousing such an
approach for Grids due to the following reasons. First, desktop
workstations—due to their sheer nature of individual
ownership and lack of central-storage like control—are prone
to the vagaries of volatility. Second and equally important, is
the question of trusting datasets on user desktops which gives
rise to the possibility of data corruption and malicious users.

mailto:vazhkudaiss@ornl.gov

Third and of significance to Grid applications, is the
performance that can be derived out of such aggregate storage.

In this paper, we present our design and work in progress on:
• Aggregating storage in organizational domains

constructed by “scavenging idle storage space” from
individual workstations, thereby forming Grid Storage
Service Providers (SSP).

• Enabling on-demand Grid access and address issues
involved in data-intensive application requirements posed
to such cumulative commodity storage.

• Minimizing, as much as possible, the differences
perceived by a Grid client in terms of accessing
aggregated commodity storage.

Thus, in order to achieve the aforementioned goals we need to
investigate several of the following issues whose design we
present in detail in the subsequent sections. First, our solution
needs to be scalable to thousands of transient desktop
workstations. Second, we need to address reliability and
availability of data through replication. Third, our approach
has to ensure data correctness and security. Fourth, the
scavenging mechanism needs to be transparent and non-
invasive to the workstation user. Fifth, we need strategies to
address performance issues in data aggregation, replication,
and transport and yet not compromising flexibility. Finally, we
need to support several Grid specific requirements namely
data/storage management activities (distributed space
reservations, distributed pinning abilities, etc.), data transfer
protocol agnostic features and the like.

2. Use Cases

One way to use commodity storage is in the Data Grid
replication process. Data Grids achieve high-availability by
replicating bulk data—several gigabytes and even terabytes—
across storage clusters in the participating domains. For
example, several high-energy physics experiments
[GriPhyN02, LIGO02] have agreed on a tiered Data Grid
architecture in which subsets of data are replicated across the
tiers [DataGrid02]. Therefore, any particular dataset is likely
to have replicas located at multiple sites. Thus, using
aggregated commodity storage alternatives, regular
organizations—not just specialized, select sites—can become
part of this infrastructure and store thousands of replicas
becoming part of the Grid replica cataloguing infrastructure.

Alternatively, commodity storage could also be used to stage
data before they are moved to a costly, high-end storage which
may not have been available. For instance, in Grid systems,
data access and jobs are coordinated with the use of advance
reservations to storage resources, schedulers and the like.
These high-end resources are almost always busy with long
queues of pending requests. The aggregated storage cloud
could be used in such cases to stage datasets—bringing data

closer to the computation from remote locations—which will
eventually be moved onto high performance storage for
processing.

Data referred to above is mostly for computations. There
exists another class which we refer to as “in transit” data.
These are results from computations on-the-way to their final
destinations, often transferred hop-by-hop (Kangaroo
[TBS+01] from Condor) through several intermediate storage
locations due to current unavailability of the end resource.
These datasets—though on the constant move—can also be
substantial in size. In this setting, aggregate commodity
storage can be used to store these ephemeral datasets in Grid
environments, offering an inexpensive alternative to costly
high-end storage.

3. Design Choices and Assumptions

Scalability: The storage resource management environment is
intended to support several hundreds or even thousands of
workstations within an administrative domain, handling data
access requests from hundreds of clients as well.

Commodity Components: Our storage scavenging system is
built from inexpensive, commodity workstations where failure
is the norm and not an exception. The quality (commodity
workstations) and quantity (scalability numbers above)
indicates that our system should have strong support for fault
monitoring, notification and recovery.

User Autonomy: Our system is based on space contribution
from individual users and revolves around the premise that the
user ultimately has the right to reclaim the space. Thus, our
design needs to reflect this guiding principle with support for
dynamic space shrinkage and growth. Both building on
commodity components and respecting user autonomy means
we need mechanisms to support availability.

Connectivity & Security: We assume a well connected
corporate LAN setting but not high-speed communication
environments expected by parallel file systems. Further, we
assume a fairly secure environment and no malicious intent in
the workstation user’s part. This is a luxury which a lot of p2p
storage systems cannot afford due to cross-administrative
collaborations. Yet, we need some basic security in place.

Heterogeneity: User desktop workstations come in all flavors
ranging from operating system diversity to machine
characteristics—CPU speeds, disk speeds, network
bandwidths—to varying temporal loads. Our architecture will
need to accommodate such a diverse mix and exploit the
functional differences therein.

Data Properties: The datasets in question are huge,
immutable files (write once read many) ranging from several
hundred megabytes to several gigabytes. These are large by

traditional standards but are the norm for Grid and data-
intensive applications. We intend the system to be used to
store several hundreds of such large files.

Grid Awareness: We assume that our local storage
management solution would be presented for use for the Grid,
receiving numerous requests for data access from multiple
remote clients. Typical Grid applications impose stringent
response time requirements on file accesses and demand high,
sustained data transfer throughput. Further, Grid applications
require support for data staging, space reservations, etc.,
which need to be translated to local storage management
operations.

4. Architecture

Our solution constructs aggregate storage from numerous
commodity workstations to be presented as Data Grid fabric
elements. In designing the architecture we are faced with two
key considerations namely Decentralization and Scalability. In
this section we discuss our solution in the context of these two
issues.

4.1. Soft-State Registration

Our design (Figure 1) comprises of individual workstation
users volunteering to contribute a piece of their storage
space—called Morsel—for certain duration of time using a
Scavenger process to a Scavenge Manager Group. The
scavenger and manager coordinate with each other using a
scalable soft-state registration protocol. Each scavenger
announces its arrival into the environment by registering itself
with a manager and thereafter constantly updating the
manager with keep-alive messages. Such a protocol has the
following advantages in our context. First, our system is
entirely composed of numerous commodity workstations
owned by individual users and is thus prone to failure and
unavailability. A soft-state registration protocol (can be
implemented through either LDAP [HS97], Classified
Advertisements [RLS98] or XML) means that state
information established due to a notification can be discarded
in the absence of continuous subsequent notifications. Thus,
the manager can easily cope with failure. Second, the protocol
provides a simple way for workstations to un-register from the
system providing users with an ease-of-use and sense of
autonomy. Machines can simply choose not to send
notification messages and no explicit method is necessary for
excusing oneself from the system.

4.2. A Note on Morsels

A morsel is storage block of fixed size and is the unit of
contribution. The user as such is unaware of its existence and
it is an internal storage representation. One can also perceive
morsels as containers for the data. The morsel size is of some

significance in our system. A small block size would mean a
lot of morsels per dataset and correspondingly more
bookkeeping and overhead in terms of retrieving, replicating
and relocating; while a large block size means lesser morsels
per dataset and consequently low overhead in terms of access,
but with high probability of internal fragmentation (discussed
in detail below). Thus, careful consideration is required in
choosing morsel size requiring it to be flexible and dynamic
depending on usage. Our target is large datasets and thus a
large morsel size (at least 100 MB) would be in order.

4.3. Scavenge Manager Group and Functionality

In this section, we present the basic functionality of the
manager and highlight some issues involved in its realization.

Configuration: Instead of having a single, central manager
handling all registration, metadata management and individual
scavenger workstations—as in Condor or several other current
Grid implementations (Globus MDS [FK98])—we employ a
group of workstations to collectively take on the responsibility
of managing the system. This group handles scavenger
registrations, Grid client requests and all other management
activities in a deterministic, load-balanced fashion. Although
the central manager approach will drastically simplify our
model—and will perhaps suffice for all practical purposes—it
is prone to obvious scalability concerns. On the other hand,
while the group-based approach provides scalability, it brings
with it a range of issues regarding consistency maintenance
and Byzantine failure.

Registration Management: The manager collects registration
and “Morsel” contribution information from the scavengers
and collates it to publish collective storage availability to the

Scavenger
Registration
(Soft State) Scavenged

Storage Morsel

Scavenge
ManagerLocal

Domain

Grid Data Access

Grid Storage
Management

Figure 1: An architecture for aggregating idle workstation
storage space using scavenging.

Grid. Based on periodic notifications—or lack thereof—from
scavengers, the manager can keep track of all available
morsels and take appropriate measures in case of disappearing
morsels (due to workstation crash, user withdrawal or space
reclaim). Measures include updating available storage,
ensuring availability of morsel contents by way of additional
replication (finding other candidate workstations) and
updating metadata. We discuss, in detail, below some of these
issues.

File Management: Grid clients request the manager to store
bulk datasets as part of their replication process based on the
manager’s advertisement of its available storage. In response,
the manager stores the datasets piece-by-piece using all
available workstations enabling parallel access (Figure 2). To
implement the piece-by-piece approach, the manager breaks
down the file in terms of morsels, finds suitable locations for
each morsel and delegates control and maintenance of the
morsel to the individual workstation. To start with, locating
suitable workstations for morsels can be done in a random
fashion based on scavenger registration information held by
the manager group. Subsequently, once each scavenger
workstation builds some “reputation” of service history—
which can be maintained as metadata—the manager can make
more informed decisions regarding morsel placement and
retrieval. The piece-by-piece model requires bookkeeping in
terms of the locations of the various morsels. Further, since
the various pieces can reside in several workstations there is
the likelihood of more management overhead due to failure or
space reclaim in anyone of the individual workstations.

Metadata Management: The manager group maintains the
following kinds of metadata. First, we need to maintain
registration information indicating workstations’ space
availability so it can be efficiently regulated, proportioned and
published to the Grid. This information is obtained through
periodic scavenger updates to the manager. Second, there is
the need to maintain directory metadata concerning the
datasets stored by the Grid in our scavenging system by
providing a namespace for identifying, accessing and
retrieving them. Third, information regarding the mapping
between datasets and morsels stored in the individual
workstations is required for retrieving the dataset. Fourth, a
system built on commodity storage almost always needs to
address availability with some form of redundancy in place.
Finally, with our desire to support Grid based storage
management operations—discussed in detail subsequently—
we are faced with the need to maintain information on
reservation and pinning details.

4.4. Scavenger

The scavenger coordinates the workstations’ contribution and
involvement in the aggregation environment and its
responsibilities can be classified as follows. First, the
scavenger describes workstation characteristics and its

contribution to the manager using a specification language—
Classified Advertisements or XML for instance. Second, all
operations—after global decision making at the manager—
eventually trickle down to the scavenger which is ultimately
responsible for its execution. These include, creating/deleting
files, moving data to other scavengers and Grid clients,
responding to space reclaim by the user, managing morsels,
monitoring the usage of morsels to aid in eviction policies,
reserving space, etc. Third, the scavenger orchestrates a
graceful exit in case of user withdrawal from the system while
also ensuring the availability of workstation data.

4.5. Space Reclaim, Relocation and Eviction Policies

One of our key design goals is to revere user autonomy,
control and his ultimate authority to withdraw or reclaim space
in part or in its entirety (say, due to excessive I/O load,
network bandwidth consumption, etc.). One way to address
autonomy and non-invasiveness is to have the user allocate a
certain amount of space as contribution to the scavenging
system and the scavenger performs strictly within those
confines—Passive Scavenging. This is the approach followed
by several flavors of currently available p2p systems. Such a
system is relatively easy to construct and the user has a
definite sense of control. Space reclaim in such a system can
occur due to one of the following reasons.
• Storage morsels have to be relinquished in response to

user application needs.
• User expresses a desire to withdraw from the system.
• Manager performs garbage collection to release morsels

corresponding to deleted files.

The manager responds to individual scavenger distress signals
indicating space shrinkage or user’s desire to exit the system
by performing several global data management operations
followed by data movement based on certain eviction policies.
The manager decides which morsels to move where in an
educated fashion. One way to approach this is to randomly
select morsels and their destinations. In practice, however, this
does not always result in optimal utilization of available
resources. Alternatively, we could factor in attributes such as
morsel usage and workstation characteristics in deciding
which morsels to select/evict and where to relocate them.
Some strategies for morsels to relocate include the following.
• While attempting to create space in a scavenger

workstation in response to space reclaim, we could decide
to move the least recently used set of morsels to a
workstation determined by the manager.

• Alternatively, if space reclaim occurred often in a
particular workstation, we could decide to relocate most
recently used morsels elsewhere to improve access rates
and avoid overhead due to constant relocation.

• If a subset of morsels is heavily used contributing
significantly to the load on the workstation, part of it
could be relocated to ensure load balancing.

• Relocate morsels that currently do not satisfy the
minimum required replication count (discussed in detail
below).

• Relocate morsels corresponding to active files and not
deleted ones.

• Relocate morsels serving current client requests to ensure
continuity in client access.

Strategies for deciding a destination include the following.
• Perform relocation in a load balanced fashion ensuring

that no one scavenger workstation is under utilized or
over burdened.

• Minimize the number of recent creations in a scavenger
workstation as creations are often followed by bulk data
movement.

• Relocate to a workstation with good service and low
reclaim or failure history.

Above selection metrics involve significant bookkeeping—at
both scavengers and managers—in terms of maintaining
“current” metadata regarding not just files, and morsels but
their usage access patterns, updating metadata and
synchronizing it. Thus, using aggregate data the manager
makes decisions on a global scale while relegating local
decisions to the scavenger. For instance, the scavenger uses
local information to decide which files to evict or which ones
need further replication while the manager decides where to
relocate them.

4.6. Availability

We address the quality of commodity storage by exploiting the
abundance in quantity by eagerly and aggressively replicating
morsels of datasets across numerous scavenger workstations

(Figure 2). With this approach, anyone particular file has
pieces of it replicated across multiple workstations ensuring
high availability through redundancy. Such aggressive
replication is necessary to handle workstation failure, delayed
notifications, transient inaccessibility of machines due to
network partitions, user withdrawal or space shrinkage. Since
our datasets are write-once-read-many, we need not concern
ourselves with consistency and synchronization issues. In our
system, we are concerned about the availability of two kinds
of data namely, manager metadata and file data. Below are a
few replication strategies.
• Metadata is proactively replicated and synchronized

among manager group members to ensure consistent
global decision making. The manager group is at the most
a handful of machines and thus consistency of metadata
can be maintained and tamed.

• A minimum replication factor for each file is maintained
to ensure availability—i.e., each morsel in a file is at the
very least replicated “so many times” across different
workstations.

• When a file is initially created by the manager, it follows
some of the replication policies outlined in Section 3.2.5
to decide upon destinations. The manager also maintains
metadata concerning the morsel replica locations.

• Once minimum replication factor is guaranteed, morsels
can be replicated further depending on temporal access
patterns and popularity.

• With replication comes the question of which replica to
choose for any given morsel. The manager metadata
maintains—from periodic updates from scavengers over a
period of time—morsel characteristics which include
access rates, load, service history and popularity (as a
measure of clients requesting data from that particular
workstation). A function of some of the aforementioned
attributes can be used to decide which workstation to
access the morsel from.

4.7. Grid Awareness

Our solution is intended for use as a Grid storage fabric to
store and access large datasets at high sustained rates. To
achieve this goal we address the following features.

Information: The ability to discover properties about the
scavenging system in the context of a Grid Information
Service is highly desired. Apart from the local information
management at the scavenger workstations and the managers,
we would require support for Grid information providers
collating information about the several scavengers, storage
space available, transfer protocols supported, etc., and
notifying state information to directory services (say, Globus
MDS).

Protocol Agnostic: The Grid is replete with several high-
speed bulk transfer protocols with varied benefits (GridFTP

File 1: 1 2 3

File n: 1a 2a 3a 4a

1 2 3 2 1 3a

1a 2a 3a 4a 1a 2a

Figure 2: File/Morsel management using the piece-by-piece
strategy and availability through morsel replication.

[FK98], SRB [RWM02], IBP [PBE+99], NFS [Niwicki89]
and HTTP). Thus, our local storage solution should be
agnostic enough to support transfers through anyone of the
aforementioned tools. NeST [CONDOR04] provides similar
protocol agnostic behavior but for a standard file system based
storage. Our position is complicated due to the induction of
numerous individual workstations. Our approach is to expose
the transfer protocols supported by the aggregate commodity
storage to the information service through local information
providers so they can be discovered by clients. Clients can
then choose the appropriate protocol to initiate the transfer.
Locally at the aggregate site, however, we will need a
virtualization layer so these requests can be translated to the
individual workstations.

Distributed Space Reservation and Pinning: Grid data
transfers are usually preceded by requests for space
reservations followed by bulk transfers. Tools such as GARA
[FK98] and NeST or SRM provide middleware for co-
allocated reservations across multiple domains and
reservations on single local storage system respectively. The
challenge for us is to enable, support and guarantee distributed
space reservation operations across numerous commodity
scavenger workstations and several types of space guarantees
required by the Grid (volatile, persistent).

Yet another commonly required Grid operation is the ability to
“pin” datasets to their locations (workstations) which
guarantees their availability at a future point in time. SRM
supports several pinning strategies for a hierarchical storage
environment. Our challenge is to translate such mechanisms to
the scavenging environment which poses new questions. We
need to address pinning multiple morsels belonging to a file
that may reside at different workstations, maintain pin
integrity in the face of constant data relocation due to space
reclaim, etc. Both distributed pinning and space reservations
warrant the need for a two-phase commit protocol.

Security: In terms of Grid security, there are questions
regarding clients authenticating to the manager and individual
workstations. We could, for instance, draw analogies from
Condor-G [CONDOR04] that accepts Grid client requests to
submit jobs to a Condor pool. This is similar to our case of
Grid clients requesting data from the scavenging pool. Once
authenticated by the manager, clients should be able to
transparently fetch morsels from any scavenger workstation if
necessary. In terms of data integrity itself, morsel encryptions
and checksums would be in order.

Transparent Access: The system should provide transparent
interface to clients in terms of data discovery, access and
transport. Clients should be able to access files stored using
standard file system syntax often provided by typical high-end
storage systems. We address this by providing a namespace as
an external visible interface for all the datasets stored, while
internally maintaining associations between namespace

entries, scavenger workstations and morsels. A namespace
also provides the manager a convenient way to organize
numerous workstations, hundreds and thousands of files and
multitudes of morsels.

5. Related Work

At this time we review related work in distributed file systems
research and point out differences from our effort.

Networked and Distributed File Systems: Tens of
networked and distributed file systems have been built since
the eighties addressing issues such as performance (NFS
[Nowicki89]), transparency (LOCUS [PW85]) and availability
(CODA [CODA87]). These approaches either use centralized
servers (like in NFS) or distributed replicated file servers (as
in CODA or Zebra [HO93]) to support numerous clients
demanding remote file access. Such techniques, while apt for
their respective design choices, still require high maintenance
in terms of administering the file servers.

Parallel File Systems: A parallel file system offers a high-
performance alternative to distributed file systems, comprising
of a set of computers providing uniform name space to a
cluster. It provides high-performance, high-availability and
reliability but requires high-speed communication capabilities
and does not translate well to loosely connected environments.
Such systems are popular in the supercomputing and Grid
environments (PVFS [CLR+00] and Lustre [LUSTRE01]).

Serverless File Systems: Serverless file systems address
performance and scalability by removing the server bottleneck
in the aforementioned systems. Prominent examples in this
category are GFS [GGL03] and FARSITE [ABC+02] that
attempt to build a unified file system name space using a
network of workstations in a loosely connected environment.
They are similar to our proposed approach in addressing
loosely connected workstations and serverless behavior but
differ in their lack of local autonomy, desire to provide unified
name space (very costly in a networked workstation
environment) and concentration on typical file usage patterns
(with the exception of GFS which addresses data intensive
needs).

Peer-to-Peer Storage: Peer-to-peer [CP02] storage
techniques thrive on the premise that individual workstations
contribute storage to the pool in return for access from the
pool. Several Internet-scale p2p storage systems—PAST
[DR01] and OceanStore [KBC+00]—are being constructed to
provide a persistent, scalable, highly available, decentralized
storage infrastructure. In theory, such a system could perhaps
be used to harness idle storage in workstations within a
domain for use by the Grid. In practice however, much of p2p
storage research is motivated by design choices concerned
with wide-area environments as opposed to a corporate LAN
setting. With our design setting and assumptions involving

sharing within a domain, we can optimize in terms of
performance, administration, security and availability. Further,
Grid access to bulk data requires specialized storage
management operations and sustained delivery performance
which p2p storage techniques do not provide.

Grid Storage Services: Systems such as LegionFS
[LEGION03], SRM [SSG02] and IBP [PBE+99] provide both
local storage management and Grid scheduling middleware.
For instance, LegionFS provides a location transparent wide-
area file system using an object based system; SRM is a
storage resource manager—similar to compute resource
manager—providing middleware components for space and
file management on storage resources for the Grid; IBP is an
Internet scale middleware designed to provide a global shared
storage service, implemented as part of the network fabric.
Much as how a peer-to-peer storage system can be used to
build a local scavenging environment, IBP depots can also be
used in a similar context. However, given the design of both
p2p and IBP-like systems, each node would behave as a router
which can be quite expensive in a local scavenging realm.
SRB [RWM02] and GASS [FK98] both provide middleware
for uniform access to heterogeneous storage resources in the
Grid environment.

6. Conclusions

In this paper, we have presented our initial design on the
construction of a distributed storage infrastructure through the
aggregation of commodity user workstations and scavenging
space from them. Some of our guiding principles have been to
address the “quality” of workstations by aggressive replication
and encryption; exploit their “quantity” to aggregate
staggering storage; revere user autonomy through space
reclaims and morsel evictions; provide scalability through
soft-state registration, separation of concerns between
scavengers and the manager group, etc.; and provide a
transparent interface for Grid clients. Subsequent to the
realization of the architecture described in this paper, more
sophisticated strategies and issues—including performance
optimizations through I/O bandwidth aggregation, proactive
scavenging of space to emulate CPU cycle stealing and
constructing a hierarchy of storage services between high-
speed, aggregated and archival storage based on data aging—
can be addressed and built atop.

Acknowledgments

This research was supported by the U.S. Department of
Energy under contract No. DE-AC05-00OR22725 with UT-
Battelle, LLC. We further thank all the system administrators
of our testbed sites for their valuable assistance.

References

[ABC+02] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken,
G. Cermak, J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer,
R. P. Wattenhofer, FARSITE: Federated, Available, and
Reliable Storage for an Incompletely Trusted Environment, in
Proc. 5th OSDI, Dec 2002.
[BVL+02] J. Bent, V. Venkataramani, N. Leroy, A. Roy,
J. Stanley, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and
M. Livny, Flexibility, Manageability, and Performance in a
Grid Storage Appliance, in Proc. of IEEE HPDC-11,
July 2002.
[CLR+00] P. Carns, W. Ligon III, R. Ross, and R. Thakur,
PVFS: A Parallel File System For Linux Clusters, in Proc. of
the 4th Annual Linux Showcase and Conference, pp 317-327,
2000.
[CODA87] CODA File System, http://www.coda.cs.cmu.edu/,
1987.
[CONDOR04] Condor, http://www.cs.wisc.edu/condor, 2004.
[CP02] J. Crowcroft, and I. Pratt. Peer to Peer: peering into
the future. in Networks 2002. 2002.
[CW95] R.A. Coyne and R.W. Watson. The Parallel I/O
Architecture of the High-Performance Storage System
(HPSS). In IEEE MSS Symposium. IEEE Computer Society
Press, 1995.
[DataGrid02] The Data Grid Project, http://www.eu-
datagrid.org, 2002.
[DPSS03] Distributed Parallel Storage System, http://www-
didc.lbl.gov/DPSS/, 2003.
[DR01] P. Druschel and A. Rowstron, PAST: A large-scale,
persistent peer-to-peer storage utility, in Proc. of HOTOS
Conf., 2001.
[DSG03] DOE Science Grid, http://www.doesciencegrid.org/,
2003.
[FK98] I. Foster and C. Kesselman. The Globus Project: A
Status Report. in IPPS/SPDP '98 Heterogeneous Computing
Workshop. 1998.
[GGL03] S. Ghemawat, H. Gobioff, S. Leung, The Google file
system, in Proc SOSP 2003.
[GriPhyN02] The GriPhyN Project, http://www.griphyn.org,
2002.
[HO93] J. Hartman and J. Ousterhout. The Zebra Striped
Network File System, Proc. 14th Symposium on Operating
Systems Principles, pp. 29-43, December 1993.
[HS97] T.A. Howes and M.C. Smith. LDAP Programming
Directory Enabled Application with Lightweight Directory
Access Protocol. Technology Series. MacMillan, 1997.
[KBC+00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C Wells, B. Zhao, OceanStore: An Architecture
for Global-Scale Persistent Storage. In Proc. ASPLOS,
December 2000.
[Kerberos03] Kerberos: The Network Authentication Protocol,
http://web.mit.edu/kerberos/www/, 2003.
[LEGION03] Legion: Worldwide Virtual Computer,
http://www.cs.virginia.edu/~legion/, 2003.

http://www.cs.wisc.edu/condor
http://www.eu-datagrid.org/
http://www.eu-datagrid.org/
http://www-didc.lbl.gov/DPSS/
http://www-didc.lbl.gov/DPSS/
http://www.doesciencegrid.org/
http://www.griphyn.org/
http://web.mit.edu/kerberos/www/
http://www.cs.virginia.edu/~legion/

[LSZ+02] H. Lamehamedi, B. Szymanski, S. Zujun, and
E. Deelman, Data Replication Strategies in Grid
Environments, in 5th International Conference on Algorithms
and Architecture for Parallel Processing, ICA3PP'2002,
Bejing, China, pp. 378-383, October 2002.
[LIGO02] The LIGO Experiment,
http://www.ligo.caltech.edu/, 2002.
[LUSTRE01] Lustre Technical Project Summary, Technical
Report, Cluster File Systems, Intel Labs, June 2001.
[Merkey94] P. Merkey, Beowulf Project at CESDIS,
http://beowulf.gsfc.nasa.gov/, 1994.
[MMR+01] D. Malon, E. May, S. Resconi, J. Shank,
A. Vaniachine, T. Wenaus, and S. Youssef. Grid-enabled
Data Access in the ATLAS Athena Framework in Computing
and High Energy Physics 2001 (CHEP'01) Conference. 2001.
[Nowicki89] Nowicki, B., NFS: Network File System Protocol
Specification, Network Working Group RFC1094,
March 1989.
[PBE+99] J. S. Plank, M. Beck, W. Elwasif, T. Moore,
M. Swany, and R. Wolski. The Internet Backplane Protocol:
Storage in the network. In Proc. NetStore '99: Network
Storage Symposium. Internet2, October 1999.
[PW85] G.J. Popek and B. J. Walker, eds., The LOCUS
Distributed System Architecture, MIT Press, Cambridge, MA,
1985.
[RLS98] R. Raman, M. Livny, and M. Solomon,
Matchmaking: Distributed Resource Management for High
Throughput Computing, In Proc. 7th IEEE Symp. on High
Performance Distributed Computing. IEEE Computer Society
Press, 1998.
[RWM02] A. Rajasekar, M. Wan, and R. Moore, MySRB &
SRB – Components of a Data Grid, In Proc. 11 th
International Symposium on High Performance Distributed
Computing (HPDC-11), Edinburgh, Scotland, 2002.
[SSG02] A. Shoshani, A. Sim, and J. Gu. Storage Resource
Managers: Middleware Components for Grid Storage. In
Proc. Nineteenth IEEE Symposium on Mass Storage Systems
(MSS '02), 2002.
[TBS+01] Douglas Thain, Jim Basney, Se-Chang Son, and
Miron Livny, The Kangaroo approach to data movement on
the grid, In Proc. of the Tenth IEEE Symposium on High
Performance Distributed Computing, San Francisco,
California, August 2001.
[TeraGrid04] TeraGrid: http://www.teragrid.org, 2004.

http://www.ligo.caltech.edu/
http://www.teragrid.org/

