
On-demand Grid Storage using Scavenging 
 

Sudharshan Vazhkudai 
Computer Science and Mathematics Division 

Oak Ridge National Laboratory 
vazhkudaiss@ornl.gov

 
Abstract 

 
Increasingly scientific discoveries are driven by analyses of 
massively distributed bulk data. This has led to the 
proliferation of high-end mass storage systems, storage area 
clusters and data centers as storage fabric elements for the 
Grid, offering excellent price/performance ratio and good 
storage speeds, but increasing maintenance and 
administrative costs. A promising alternative then, is to 
harness the collective storage potential of individual 
workstations much as we harness the idle CPU cycles due to 
the affordable economics in aggregating commodity storage 
and low usage to available space ratio. However, such 
aggregated commodity storage is prone to volatility, machine 
failures, performance concerns and trust issues. In this paper, 
we address several of the aforementioned issues and present 
our design on the construction of scalable aggregated 
commodity storage through scavenging; providing availability 
through aggressive replication; revering user autonomy and 
his authority to reclaim space; and enabling Grid access to 
such storage. 
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1. Introduction 
 
Grids are often quoted to have grown out of the traditional 
supercomputing arena—the Computer Center model—
wherein users, limited by the computing power within a 
cluster/domain, needed mechanisms to perform computational 
operations on clusters in other domains [FK98, LEGION03]. 
Numerous solutions have been designed to present a collective 
(domain) computing potential to the Grid ranging from those 
built for tightly-coupled Beowulf style clusters [Merkey94] to 
loosely-coupled, idle workstations. These solutions serve as 
excellent fabric elements for the Computational Grid. Thus, a 
fundamental change is occurring in the computing landscape. 
Proprietary systems are being replaced with commodity 
clusters, delivering new levels of performance and availability 
at dramatically affordable price point.  
 
Increasingly though, scientific discoveries are driven by 
analyses of massively distributed bulk data. This has led to the 
proliferation of high-end mass storage systems [CW95, 
DPSS03], storage area clusters and data centers (IBM, 
Panasas, HP) as storage fabric elements for the Grid. These 
systems offer excellent price/performance ratio, good storage 

speed and access control, support for intelligent parallel file 
systems, optimization for wide-area bulk transfers and reliable 
storage. Several of them have been successfully demonstrated 
and are in use in major multi-institutional Grid efforts 
including the TeraGrid [TeraGrid04] and DOE Science Grid 
[DSG03].  
 
However, high-end storage also comes with increasing 
deployment/maintenance/administration costs, specialized 
software and central points of failure. Further, the cost and 
specialized features prohibit their wider acceptability and limit 
them to a select few research laboratories and organizations. If 
grids are to become prevalent and grow beyond the confines 
of a few organizations, exploiting commodity fabric features is 
absolutely essential.  
 
A promising alternative then, is to harness the collective 
storage potential of individual workstations much as we 
harness the idle CPU cycles (Condor [CONDOR04]). The 
potential of collective commodity computing has been 
demonstrated time and again, outpacing supercomputers in 
their ability to deliver sustained high-throughput computing 
required by several current applications. Such an approach for 
storage is desirable and made feasible due to the following 
reasons.  
 
First and foremost, the economics of buying gigabytes of more 
storage is increasingly becoming affordable so that even 
ordinary user desktop workstations are equipped with tens of 
gigabytes. Second, recent studies in corporate LAN settings 
indicate that up to 50% of disk space is unused [ABC+02]. 
This suggests that space usage to available storage ratio is 
significantly low thereby justifying the aggregation and use of 
individual workstation storage (a storage-equivalent argument 
for “most computers are idle for substantial amounts of time 
justifying idle cycle stealing”). Finally, these workstations—in 
increasing numbers—are online most of the time and, 
therefore, even a meager contribution—where Contribution 
<< Available—from each workstation could result in 
collective staggering aggregate storage. 
 
Yet, there is reluctance (justified) in espousing such an 
approach for Grids due to the following reasons. First, desktop 
workstations—due to their sheer nature of individual 
ownership and lack of central-storage like control—are prone 
to the vagaries of volatility. Second and equally important, is 
the question of trusting datasets on user desktops which gives 
rise to the possibility of data corruption and malicious users. 
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Third and of significance to Grid applications, is the 
performance that can be derived out of such aggregate storage.  
 
In this paper, we present our design and work in progress on: 
• Aggregating storage in organizational domains 

constructed by “scavenging idle storage space” from 
individual workstations, thereby forming Grid Storage 
Service Providers (SSP). 

• Enabling on-demand Grid access and address issues 
involved in data-intensive application requirements posed 
to such cumulative commodity storage. 

• Minimizing, as much as possible, the differences 
perceived by a Grid client in terms of accessing 
aggregated commodity storage. 

 
Thus, in order to achieve the aforementioned goals we need to 
investigate several of the following issues whose design we 
present in detail in the subsequent sections. First, our solution 
needs to be scalable to thousands of transient desktop 
workstations. Second, we need to address reliability and 
availability of data through replication. Third, our approach 
has to ensure data correctness and security. Fourth, the 
scavenging mechanism needs to be transparent and non-
invasive to the workstation user. Fifth, we need strategies to 
address performance issues in data aggregation, replication, 
and transport and yet not compromising flexibility. Finally, we 
need to support several Grid specific requirements namely 
data/storage management activities (distributed space 
reservations, distributed pinning abilities, etc.), data transfer 
protocol agnostic features and the like. 
 
2. Use Cases 
 
One way to use commodity storage is in the Data Grid 
replication process. Data Grids achieve high-availability by 
replicating bulk data—several gigabytes and even terabytes—
across storage clusters in the participating domains. For 
example, several high-energy physics experiments 
[GriPhyN02, LIGO02] have agreed on a tiered Data Grid 
architecture in which subsets of data are replicated across the 
tiers [DataGrid02].  Therefore, any particular dataset is likely 
to have replicas located at multiple sites. Thus, using 
aggregated commodity storage alternatives, regular 
organizations—not just specialized, select sites—can become 
part of this infrastructure and store thousands of replicas 
becoming part of the Grid replica cataloguing infrastructure. 
 
Alternatively, commodity storage could also be used to stage 
data before they are moved to a costly, high-end storage which 
may not have been available. For instance, in Grid systems, 
data access and jobs are coordinated with the use of advance 
reservations to storage resources, schedulers and the like. 
These high-end resources are almost always busy with long 
queues of pending requests. The aggregated storage cloud 
could be used in such cases to stage datasets—bringing data 

closer to the computation from remote locations—which will 
eventually be moved onto high performance storage for 
processing. 
 
Data referred to above is mostly for computations. There 
exists another class which we refer to as “in transit” data. 
These are results from computations on-the-way to their final 
destinations, often transferred hop-by-hop (Kangaroo 
[TBS+01] from Condor) through several intermediate storage 
locations due to current unavailability of the end resource. 
These datasets—though on the constant move—can also be 
substantial in size. In this setting, aggregate commodity 
storage can be used to store these ephemeral datasets in Grid 
environments, offering an inexpensive alternative to costly 
high-end storage.  
 
3. Design Choices and Assumptions 
 
Scalability: The storage resource management environment is 
intended to support several hundreds or even thousands of 
workstations within an administrative domain, handling data 
access requests from hundreds of clients as well. 
 
Commodity Components: Our storage scavenging system is 
built from inexpensive, commodity workstations where failure 
is the norm and not an exception. The quality (commodity 
workstations) and quantity (scalability numbers above) 
indicates that our system should have strong support for fault 
monitoring, notification and recovery.  
 
User Autonomy: Our system is based on space contribution 
from individual users and revolves around the premise that the 
user ultimately has the right to reclaim the space. Thus, our 
design needs to reflect this guiding principle with support for 
dynamic space shrinkage and growth. Both building on 
commodity components and respecting user autonomy means 
we need mechanisms to support availability. 
 
Connectivity & Security: We assume a well connected 
corporate LAN setting but not high-speed communication 
environments expected by parallel file systems. Further, we 
assume a fairly secure environment and no malicious intent in 
the workstation user’s part. This is a luxury which a lot of p2p 
storage systems cannot afford due to cross-administrative 
collaborations. Yet, we need some basic security in place. 
 
Heterogeneity: User desktop workstations come in all flavors 
ranging from operating system diversity to machine 
characteristics—CPU speeds, disk speeds, network 
bandwidths—to varying temporal loads. Our architecture will 
need to accommodate such a diverse mix and exploit the 
functional differences therein.  
 
Data Properties: The datasets in question are huge, 
immutable files (write once read many) ranging from several 
hundred megabytes to several gigabytes. These are large by 



traditional standards but are the norm for Grid and data-
intensive applications. We intend the system to be used to 
store several hundreds of such large files. 
 
Grid Awareness: We assume that our local storage 
management solution would be presented for use for the Grid, 
receiving numerous requests for data access from multiple 
remote clients. Typical Grid applications impose stringent 
response time requirements on file accesses and demand high, 
sustained data transfer throughput. Further, Grid applications 
require support for data staging, space reservations, etc., 
which need to be translated to local storage management 
operations. 
 
4. Architecture 
 
Our solution constructs aggregate storage from numerous 
commodity workstations to be presented as Data Grid fabric 
elements. In designing the architecture we are faced with two 
key considerations namely Decentralization and Scalability. In 
this section we discuss our solution in the context of these two 
issues. 
 
4.1. Soft-State Registration 
 
Our design (Figure 1) comprises of individual workstation 
users volunteering to contribute a piece of their storage 
space—called Morsel—for certain duration of time using a 
Scavenger process to a Scavenge Manager Group. The 
scavenger and manager coordinate with each other using a 
scalable soft-state registration protocol. Each scavenger 
announces its arrival into the environment by registering itself 
with a manager and thereafter constantly updating the 
manager with keep-alive messages. Such a protocol has the 
following advantages in our context. First, our system is 
entirely composed of numerous commodity workstations 
owned by individual users and is thus prone to failure and 
unavailability. A soft-state registration protocol (can be 
implemented through either LDAP [HS97], Classified 
Advertisements [RLS98] or XML) means that state 
information established due to a notification can be discarded 
in the absence of continuous subsequent notifications. Thus, 
the manager can easily cope with failure. Second, the protocol 
provides a simple way for workstations to un-register from the 
system providing users with an ease-of-use and sense of 
autonomy. Machines can simply choose not to send 
notification messages and no explicit method is necessary for 
excusing oneself from the system. 
 
4.2. A Note on Morsels 
 
A morsel is storage block of fixed size and is the unit of 
contribution. The user as such is unaware of its existence and 
it is an internal storage representation.  One can also perceive 
morsels as containers for the data. The morsel size is of some 

significance in our system. A small block size would mean a 
lot of morsels per dataset and correspondingly more 
bookkeeping and overhead in terms of retrieving, replicating 
and relocating; while a large block size means lesser morsels 
per dataset and consequently low overhead in terms of access, 
but with high probability of internal fragmentation (discussed 
in detail below). Thus, careful consideration is required in 
choosing morsel size requiring it to be flexible and dynamic 
depending on usage. Our target is large datasets and thus a 
large morsel size (at least 100 MB) would be in order. 
 
4.3. Scavenge Manager Group and Functionality 
 
In this section, we present the basic functionality of the 
manager and highlight some issues involved in its realization. 
 
Configuration: Instead of having a single, central manager 
handling all registration, metadata management and individual 
scavenger workstations—as in Condor or several other current 
Grid implementations (Globus MDS [FK98])—we employ a 
group of workstations to collectively take on the responsibility 
of managing the system. This group handles scavenger 
registrations, Grid client requests and all other management 
activities in a deterministic, load-balanced fashion. Although 
the central manager approach will drastically simplify our 
model—and will perhaps suffice for all practical purposes—it 
is prone to obvious scalability concerns. On the other hand, 
while the group-based approach provides scalability, it brings 
with it a range of issues regarding consistency maintenance 
and Byzantine failure. 
 
Registration Management: The manager collects registration 
and “Morsel” contribution information from the scavengers 
and collates it to publish collective storage availability to the 

Scavenger 
Registration 
(Soft State) Scavenged 

Storage Morsel 

Scavenge 
ManagerLocal 

Domain 

Grid Data Access 

Grid Storage 
Management 

Figure 1: An architecture for aggregating idle workstation 
storage space using scavenging. 



Grid. Based on periodic notifications—or lack thereof—from 
scavengers, the manager can keep track of all available 
morsels and take appropriate measures in case of disappearing 
morsels (due to workstation crash, user withdrawal or space 
reclaim). Measures include updating available storage, 
ensuring availability of morsel contents by way of additional 
replication (finding other candidate workstations) and 
updating metadata. We discuss, in detail, below some of these 
issues. 
 
File Management: Grid clients request the manager to store 
bulk datasets as part of their replication process based on the 
manager’s advertisement of its available storage. In response, 
the manager stores the datasets piece-by-piece using all 
available workstations enabling parallel access (Figure 2). To 
implement the piece-by-piece approach, the manager breaks 
down the file in terms of morsels, finds suitable locations for 
each morsel and delegates control and maintenance of the 
morsel to the individual workstation. To start with, locating 
suitable workstations for morsels can be done in a random 
fashion based on scavenger registration information held by 
the manager group. Subsequently, once each scavenger 
workstation builds some “reputation” of service history—
which can be maintained as metadata—the manager can make 
more informed decisions regarding morsel placement and 
retrieval. The piece-by-piece model requires bookkeeping in 
terms of the locations of the various morsels. Further, since 
the various pieces can reside in several workstations there is 
the likelihood of more management overhead due to failure or 
space reclaim in anyone of the individual workstations.  
 
Metadata Management: The manager group maintains the 
following kinds of metadata. First, we need to maintain 
registration information indicating workstations’ space 
availability so it can be efficiently regulated, proportioned and 
published to the Grid. This information is obtained through 
periodic scavenger updates to the manager. Second, there is 
the need to maintain directory metadata concerning the 
datasets stored by the Grid in our scavenging system by 
providing a namespace for identifying, accessing and 
retrieving them. Third, information regarding the mapping 
between datasets and morsels stored in the individual 
workstations is required for retrieving the dataset. Fourth, a 
system built on commodity storage almost always needs to 
address availability with some form of redundancy in place. 
Finally, with our desire to support Grid based storage 
management operations—discussed in detail subsequently—
we are faced with the need to maintain information on 
reservation and pinning details. 
 
4.4. Scavenger  
 
The scavenger coordinates the workstations’ contribution and 
involvement in the aggregation environment and its 
responsibilities can be classified as follows. First, the 
scavenger describes workstation characteristics and its 

contribution to the manager using a specification language—
Classified Advertisements or XML for instance. Second, all 
operations—after global decision making at the manager—
eventually trickle down to the scavenger which is ultimately 
responsible for its execution. These include, creating/deleting 
files, moving data to other scavengers and Grid clients, 
responding to space reclaim by the user, managing morsels, 
monitoring the usage of morsels to aid in eviction policies, 
reserving space, etc. Third, the scavenger orchestrates a 
graceful exit in case of user withdrawal from the system while 
also ensuring the availability of workstation data. 
 
4.5. Space Reclaim, Relocation and Eviction Policies  
 
One of our key design goals is to revere user autonomy, 
control and his ultimate authority to withdraw or reclaim space 
in part or in its entirety (say, due to excessive I/O load, 
network bandwidth consumption, etc.). One way to address 
autonomy and non-invasiveness is to have the user allocate a 
certain amount of space as contribution to the scavenging 
system and the scavenger performs strictly within those 
confines—Passive Scavenging. This is the approach followed 
by several flavors of currently available p2p systems. Such a 
system is relatively easy to construct and the user has a 
definite sense of control. Space reclaim in such a system can 
occur due to one of the following reasons.  
• Storage morsels have to be relinquished in response to 

user application needs. 
• User expresses a desire to withdraw from the system. 
• Manager performs garbage collection to release morsels 

corresponding to deleted files. 
 
The manager responds to individual scavenger distress signals 
indicating space shrinkage or user’s desire to exit the system 
by performing several global data management operations 
followed by data movement based on certain eviction policies. 
The manager decides which morsels to move where in an 
educated fashion. One way to approach this is to randomly 
select morsels and their destinations. In practice, however, this 
does not always result in optimal utilization of available 
resources. Alternatively, we could factor in attributes such as 
morsel usage and workstation characteristics in deciding 
which morsels to select/evict and where to relocate them. 
Some strategies for morsels to relocate include the following. 
• While attempting to create space in a scavenger 

workstation in response to space reclaim, we could decide 
to move the least recently used set of morsels to a 
workstation determined by the manager. 

• Alternatively, if space reclaim occurred often in a 
particular workstation, we could decide to relocate most 
recently used morsels elsewhere to improve access rates 
and avoid overhead due to constant relocation. 

• If a subset of morsels is heavily used contributing 
significantly to the load on the workstation, part of it 
could be relocated to ensure load balancing. 



• Relocate morsels that currently do not satisfy the 
minimum required replication count (discussed in detail 
below). 

• Relocate morsels corresponding to active files and not 
deleted ones. 

• Relocate morsels serving current client requests to ensure 
continuity in client access. 

 

Strategies for deciding a destination include the following. 
• Perform relocation in a load balanced fashion ensuring 

that no one scavenger workstation is under utilized or 
over burdened. 

• Minimize the number of recent creations in a scavenger 
workstation as creations are often followed by bulk data 
movement. 

• Relocate to a workstation with good service and low 
reclaim or failure history. 

 
Above selection metrics involve significant bookkeeping—at 
both scavengers and managers—in terms of maintaining 
“current” metadata regarding not just files, and morsels but 
their usage access patterns, updating metadata and 
synchronizing it. Thus, using aggregate data the manager 
makes decisions on a global scale while relegating local 
decisions to the scavenger. For instance, the scavenger uses 
local information to decide which files to evict or which ones 
need further replication while the manager decides where to 
relocate them. 
 
4.6. Availability 
 
We address the quality of commodity storage by exploiting the 
abundance in quantity by eagerly and aggressively replicating 
morsels of datasets across numerous scavenger workstations 

(Figure 2). With this approach, anyone particular file has 
pieces of it replicated across multiple workstations ensuring 
high availability through redundancy. Such aggressive 
replication is necessary to handle workstation failure, delayed 
notifications, transient inaccessibility of machines due to 
network partitions, user withdrawal or space shrinkage. Since 
our datasets are write-once-read-many, we need not concern 
ourselves with consistency and synchronization issues. In our 
system, we are concerned about the availability of two kinds 
of data namely, manager metadata and file data. Below are a 
few replication strategies. 
• Metadata is proactively replicated and synchronized 

among manager group members to ensure consistent 
global decision making. The manager group is at the most 
a handful of machines and thus consistency of metadata 
can be maintained and tamed. 

• A minimum replication factor for each file is maintained 
to ensure availability—i.e., each morsel in a file is at the 
very least replicated “so many times” across different 
workstations. 

• When a file is initially created by the manager, it follows 
some of the replication policies outlined in Section 3.2.5 
to decide upon destinations. The manager also maintains 
metadata concerning the morsel replica locations. 

• Once minimum replication factor is guaranteed, morsels 
can be replicated further depending on temporal access 
patterns and popularity.  

• With replication comes the question of which replica to 
choose for any given morsel. The manager metadata 
maintains—from periodic updates from scavengers over a 
period of time—morsel characteristics which include 
access rates, load, service history and popularity (as a 
measure of clients requesting data from that particular 
workstation). A function of some of the aforementioned 
attributes can be used to decide which workstation to 
access the morsel from. 

 
4.7. Grid Awareness 
 
Our solution is intended for use as a Grid storage fabric to 
store and access large datasets at high sustained rates. To 
achieve this goal we address the following features. 
 
Information: The ability to discover properties about the 
scavenging system in the context of a Grid Information 
Service is highly desired. Apart from the local information 
management at the scavenger workstations and the managers, 
we would require support for Grid information providers 
collating information about the several scavengers, storage 
space available, transfer protocols supported, etc., and 
notifying state information to directory services (say, Globus 
MDS). 
 
Protocol Agnostic: The Grid is replete with several high-
speed bulk transfer protocols with varied benefits (GridFTP 

File 1: 1      2       3

File n: 1a    2a       3a     4a

1 2 3 2 1 3a

1a 2a 3a 4a 1a 2a

Figure 2: File/Morsel management using the piece-by-piece 
strategy and availability through morsel replication. 



[FK98], SRB [RWM02], IBP [PBE+99], NFS [Niwicki89] 
and HTTP). Thus, our local storage solution should be 
agnostic enough to support transfers through anyone of the 
aforementioned tools. NeST [CONDOR04] provides similar 
protocol agnostic behavior but for a standard file system based 
storage. Our position is complicated due to the induction of 
numerous individual workstations. Our approach is to expose 
the transfer protocols supported by the aggregate commodity 
storage to the information service through local information 
providers so they can be discovered by clients. Clients can 
then choose the appropriate protocol to initiate the transfer. 
Locally at the aggregate site, however, we will need a 
virtualization layer so these requests can be translated to the 
individual workstations. 

 
Distributed Space Reservation and Pinning: Grid data 
transfers are usually preceded by requests for space 
reservations followed by bulk transfers. Tools such as GARA 
[FK98] and NeST or SRM provide middleware for co-
allocated reservations across multiple domains and 
reservations on single local storage system respectively. The 
challenge for us is to enable, support and guarantee distributed 
space reservation operations across numerous commodity 
scavenger workstations and several types of space guarantees 
required by the Grid (volatile, persistent). 

 
Yet another commonly required Grid operation is the ability to 
“pin” datasets to their locations (workstations) which 
guarantees their availability at a future point in time. SRM 
supports several pinning strategies for a hierarchical storage 
environment. Our challenge is to translate such mechanisms to 
the scavenging environment which poses new questions. We 
need to address pinning multiple morsels belonging to a file 
that may reside at different workstations, maintain pin 
integrity in the face of constant data relocation due to space 
reclaim, etc. Both distributed pinning and space reservations 
warrant the need for a two-phase commit protocol.  

 
Security: In terms of Grid security, there are questions 
regarding clients authenticating to the manager and individual 
workstations. We could, for instance, draw analogies from 
Condor-G [CONDOR04] that accepts Grid client requests to 
submit jobs to a Condor pool. This is similar to our case of 
Grid clients requesting data from the scavenging pool. Once 
authenticated by the manager, clients should be able to 
transparently fetch morsels from any scavenger workstation if 
necessary. In terms of data integrity itself, morsel encryptions 
and checksums would be in order. 
 
Transparent Access: The system should provide transparent 
interface to clients in terms of data discovery, access and 
transport. Clients should be able to access files stored using 
standard file system syntax often provided by typical high-end 
storage systems. We address this by providing a namespace as 
an external visible interface for all the datasets stored, while 
internally maintaining associations between namespace 

entries, scavenger workstations and morsels. A namespace 
also provides the manager a convenient way to organize 
numerous workstations, hundreds and thousands of files and 
multitudes of morsels. 
 
5. Related Work 
 
At this time we review related work in distributed file systems 
research and point out differences from our effort. 
 
Networked and Distributed File Systems: Tens of 
networked and distributed file systems have been built since 
the eighties addressing issues such as performance (NFS 
[Nowicki89]), transparency (LOCUS [PW85]) and availability 
(CODA [CODA87]). These approaches either use centralized 
servers (like in NFS) or distributed replicated file servers (as 
in CODA or Zebra [HO93]) to support numerous clients 
demanding remote file access. Such techniques, while apt for 
their respective design choices, still require high maintenance 
in terms of administering the file servers. 
 
Parallel File Systems: A parallel file system offers a high-
performance alternative to distributed file systems, comprising 
of a set of computers providing uniform name space to a 
cluster. It provides high-performance, high-availability and 
reliability but requires high-speed communication capabilities 
and does not translate well to loosely connected environments. 
Such systems are popular in the supercomputing and Grid 
environments (PVFS [CLR+00] and Lustre [LUSTRE01]). 
 
Serverless File Systems: Serverless file systems address 
performance and scalability by removing the server bottleneck 
in the aforementioned systems. Prominent examples in this 
category are GFS [GGL03] and FARSITE [ABC+02] that 
attempt to build a unified file system name space using a 
network of workstations in a loosely connected environment. 
They are similar to our proposed approach in addressing 
loosely connected workstations and serverless behavior but 
differ in their lack of local autonomy, desire to provide unified 
name space (very costly in a networked workstation 
environment) and concentration on typical file usage patterns 
(with the exception of GFS which addresses data intensive 
needs). 
 
Peer-to-Peer Storage: Peer-to-peer [CP02] storage 
techniques thrive on the premise that individual workstations 
contribute storage to the pool in return for access from the 
pool. Several Internet-scale p2p storage systems—PAST 
[DR01] and OceanStore [KBC+00]—are being constructed to 
provide a persistent, scalable, highly available, decentralized 
storage infrastructure. In theory, such a system could perhaps 
be used to harness idle storage in workstations within a 
domain for use by the Grid. In practice however, much of p2p 
storage research is motivated by design choices concerned 
with wide-area environments as opposed to a corporate LAN 
setting. With our design setting and assumptions involving 



sharing within a domain, we can optimize in terms of 
performance, administration, security and availability. Further, 
Grid access to bulk data requires specialized storage 
management operations and sustained delivery performance 
which p2p storage techniques do not provide. 
 
Grid Storage Services: Systems such as LegionFS 
[LEGION03], SRM [SSG02] and IBP [PBE+99] provide both 
local storage management and Grid scheduling middleware. 
For instance, LegionFS provides a location transparent wide-
area file system using an object based system; SRM is a 
storage resource manager—similar to compute resource 
manager—providing middleware components for space and 
file management on storage resources for the Grid; IBP is an 
Internet scale middleware designed to provide a global shared 
storage service, implemented as part of the network fabric. 
Much as how a peer-to-peer storage system can be used to 
build a local scavenging environment, IBP depots can also be 
used in a similar context. However, given the design of both 
p2p and IBP-like systems, each node would behave as a router 
which can be quite expensive in a local scavenging realm. 
SRB [RWM02] and GASS [FK98] both provide middleware 
for uniform access to heterogeneous storage resources in the 
Grid environment.  
 
6. Conclusions 
 
In this paper, we have presented our initial design on the 
construction of a distributed storage infrastructure through the 
aggregation of commodity user workstations and scavenging 
space from them. Some of our guiding principles have been to 
address the “quality” of workstations by aggressive replication 
and encryption; exploit their “quantity” to aggregate 
staggering storage; revere user autonomy through space 
reclaims and morsel evictions; provide scalability through 
soft-state registration, separation of concerns between 
scavengers and the manager group, etc.; and provide a 
transparent interface for Grid clients. Subsequent to the 
realization of the architecture described in this paper, more 
sophisticated strategies and issues—including performance 
optimizations through I/O bandwidth aggregation, proactive 
scavenging of space to emulate CPU cycle stealing and 
constructing a hierarchy of storage services between high-
speed, aggregated and archival storage based on data aging—
can be addressed and built atop. 
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