
Managing Complexity in Modern High End Scientific Computing through
Component-Based Software Engineering

David E. Bernholdt
Oak Ridge National Laboratory

P. O. Box 2008, MS 6016, Oak Ridge, TN 37831-6016
bernholdtde@ornl.gov

Robert C. Armstrong, and Benjamin A. Allan
Sandia National Laboratories

7011 East Avenue, MS 9915, Livermore CA, 94550-0969
�rob,baallan�@sandia.gov

Abstract

The ever-increasing complexity of modern high-
performance scientific simulation software presents a
tremendous challenge to the development and use of this
type of software, with significant impacts on productivity.
Component-based software engineering is a means of
addressing complexity that has been developed primarily
in response to the needs of business and related software
environments, but which has not yet had a significant
impact on high-end computing. In this paper, we present
the Common Component Architecture (CCA) as a com-
ponent model designed to meet the special needs of
high-performance scientific computing, focusing on how
the CCA addresses issues of complexity. Unique among
component architectures is the technique presented here
by which a CCA component can act as a container to
encapsulate and control other components without itself
having to implement the functionality of a framework.

1. Introduction

Complexity of software is one of the greatest single chal-
lenges facing modern high performance scientific comput-
ing. It comes from several sources. As hardware manu-
facturers strive to provide ever faster systems, they become
more complex, with deep non-uniform memory access hi-
erarchies, CPU hierarchies (clusters of SMPs and similar
models), widely varying architectures and capabilities for
both interconnects and I/O systems. These “features” are
almost always exposed to the programmer, and in order to
achieve maximum performance, the programmer must take

responsibility for tuning their code to each platform of inter-
est. The second source of software complexity is the scien-
tific problem being addressed. As computers have become
more capable, and together with advances in software been
able to deliver interesting and useful results through simu-
lation, researchers demand more. So scientific simulation
software expands to encompass larger problems, higher fi-
delity simulations, and the coupling of simulations across
multiple time and length scales. In each case the complexity
of the software must increase to answer the new challenges.

Studies have shown that the human mind is able to han-
dle a limited amount of complexity [7, 13, 18], so that at
some point the complexity of HPC software will outstrip
the ability of programmers to deal with it and the pace
of software development will slow. Assembling teams of
programmers to create large-scale codes is a response to
the size and complexity of the software and the breadth
of knowledge required to successfully create it. How-
ever adding more workers, while necessary to deal with
complexity, is not sufficient. The coordination required
between workers imposes significant overheads that can
limit the software scalability for the same reasons that Fred
Brooks famously observed that “adding programmers to a
late project only makes it later” [11].

Facing similar problems of software complexity, other
communities, most notably the business and internet soft-
ware communities, have invested heavily in component-
based software engineering (CBSE) as a means to help
address these issues. CBSE is based around the idea of
software components, or units of programmatic function-
ality, that can be composed together to build an application.
Components effectively break the complexity into people-
sized chunks. Except to their developers, components are

treated as black boxes which interact with other compo-
nents and the rest of the external environment only through
well-defined interfaces. In this way, components encapsu-
late complexity with which users of the component need
not concern themselves. Users create applications by com-
posing components together in a “plug and play” fashion
(which is very amenable to visual programming techniques)
based on their interfaces. This provides a new level of ab-
straction for most software development, and thus a means
of managing the complexity at a higher level.

The CBSE approach also provides a natural means to
help control the complexity that arises due to multi-person
interactions in team-developed software. Since interfaces
are the key to component interoperability, the initial design
of a component-based application can focus on the overall
architecture and “componentization” of the problem and on
defining the interfaces through which the components inter-
act. With this task completed, individuals or small groups
can then split off and focus on developing components con-
forming to the specifications without the need to interact
with the creators of other components.

Component-based software engineering may seem like a
natural approach to the creation of complex scientific soft-
ware, and can be thought of as an extension of widely used
approaches, such as the creation of software libraries, and
object-oriented programming. But CBSE has not yet made
significant inroads into HPC software, primarily because
the “commodity” component models currently available,
such as CORBA [14, 15, 23], COM/DCOM [19, 22], and
Enterprise JavaBeans [20] were developed primarily for the
business/internet software communities and do not address
the needs of HPC scientific software very well [6]. Most
commodity component environments have been designed
primarily for distributed computing, and do not recognize
or support the need for local performance and the use of
tightly-coupled parallel computing as being more impor-
tant than distributed computing. In scientific computing,
it is common to have large codes which evolve over the
course of many years, or even decades. Therefore, the ease
with which “legacy” codebases can be incorporated into a
component-based environment, and the cost of doing so, are
also important considerations. Additional considerations
include support for languages, data types, and computing
platforms important to high-performance scientific comput-
ing.

The Common Component Architecture (CCA) [6, 12]
was conceived in 1998 as a grass-roots effort to address the
need of the scientific community for approaches to address
the complexity of scientific software development and to
facilitate and promote the creation of reusable, interopera-
ble software for scientific high performance computing [3].
In this paper we describe features of the Common Compo-
nent Architecture which simplfy the management of soft-

ware complexity.

2. The Common Component Architecture

The Common Component Architecture is the nucleus of
an extensive research and development program in the Dept.
of Energy and academia. On the research side, the effort
is focused on understanding how best to utilize and im-
plement component-based software engineering practices in
the high-performance scientific computing area. In addition
to the definition of the CCA specification itself, the devel-
opment effort is aimed at creating practical reference imple-
mentations conforming to the specification, helping scien-
tific software developers use them to create CCA-compliant
software, and, ultimately, at creating a rich “marketplace”
of scientific components from which new component-based
applications will be built. Space constraints require that
we limit our presentation here to those aspects of the CCA
which bear directly on dealing with complexity: a de-
scription of the basic elements of the CCA’s component
model, and the mechanism by which components are cre-
ated, formed into applications, and executed. However, a
comprehensive overview will be published soon [10] and
tutorials are already available [1].

The specification of the Common Component Architec-
ture defines the rights, responsibilities and the relationships
between the various elements of the model. Briefly, these
are as follows:

� Components are units of software functionality that
can be composed together to form applications. Com-
ponents encapsulate much of the complexity of the
software inside a black box and expose only well-
defined interfaces to other components.

� Ports are interfaces through which components inter-
act. Specifically, CCA ports provide procedural inter-
faces that can be thought of as a class or an interface
in object-oriented languages, or a collection of sub-
routines, or a module in a language such as Fortran
90. Components may provide ports, meaning they im-
plement the functionality expressed in the port (called
provides ports), or they may use ports, meaning they
make calls on that port provided by another compo-
nent (called uses ports).

� The framework holds CCA components as they are as-
sembled into applications and executed. The frame-
work is responsible for connecting uses and provides
ports without exposing the components’ implementa-
tion details. It also provides a small set of standard
services, defined by the CCA specification, which are
available to all components. The BuilderService
and AbstractFramework ports are two of these

standard services which are both central and novel with
respect to the way the CCA deals with complexity.

The CCA employs a minimalist design philosophy to
simplify the task of incorporating pre-existing HPC soft-
ware into the CCA environment. CCA components in-
teract with the CCA framework via the Services inter-
face, which provides the means for components to register
the ports they provide and use (addProvidesPort(),
registerUsesPort()), and to obtain “handles” to
ports so that they can be used (getPort()). This
makes it possible for the framework to effectively and ef-
ficiently mediate component connections. To be “CCA
compliant”, components are required to implement the
gov.cca.Component class, which includes just one
method: setServices(). This method is invoked by
the framework immediately after the component is instan-
tiated, passing in a CCA Services object (later referred to
as svc). The primary purpose of setServices() is for
the component to tell the framework what ports it provides
and uses.

The uses/provides design pattern for ports and the frame-
work’s role in mediating the connection of ports is also im-
portant in the CCA’s ability to transparently support both
local high-performance and distributed computing models.
Prior to actually invoking a method on another port, the
component uses the svc.getPort() method to obtain
a handle to the port. In the distributed computing case, the
handle would be a pointer to a local proxy for the provides
port created by the framework, and the framework is re-
sponsible for conveying the remote method invocations to
the actual provider, including marshaling and unmarshal-
ing arguments. In the local high-performance (also referred
to as “direct connect” or “in-process”) case, the frame-
work typically loads components into separate namespaces
within the address space of a single process, so in this case
the handle can be a pointer to the virtual function dispatch
table for the providing port. In this case the method invoca-
tions take place directly without intervention by the frame-
work and without CCA-imposed overheads beyond the vir-
tualization of the function call (common in object-oriented
languages anyway). Since the caller and callee share the
same address space, all arguments are commonly passed by
reference without the loss of performance indirection en-
tails. Measurements show that the CCA-imposed overhead
on calls between components in the direct connect case is
minimal, and does not impact performance relative to tradi-
tional (non-component) programs [9, 21]. In some cases,
the Bable language interoperability tool [8] may need to
translate datatypes between languages, but for most scien-
tific computing these overheads can be avoided.

In the high-performance parallel context, the CCA’s
model is that of many of the local high-performance “in-
process” component assemblies running in parallel across

Figure 1. A schematic representation of the
sequence of interactions between the com-
ponent and framework via the CCA Services
object that allow ports to be connected and
used.

many processors. Components in each process operate via
the usual CCA mechanisms, while the parallel instances of
a given component can utilize whatever parallel communi-
cations model they prefer, without any CCA-imposed over-
heads. Both single-component/multiple-data and multiple-
component/multiple data paradigms are supported, analo-
gous to SPMD and MPMD programs without any CCA-
imposed performance overheads [21].

Figure 1 illustrates more specifically the sequence
of interactions between the component and framework
via the CCA Services object that allow ports to be
connected and used. In step 1, Component 1 calls
svc.addProvidesPort() (and Component 2 calls
svc.registerUsesPort()) to express their intent.
The CCA Services object caches the information about the
port it got from addProvidesPort() (step 2). In the
third step, the framework connects the uses port to the pro-
vides port, and the framework copies information about the
provides port over to the user’s (component 2’s) CCA Ser-
vices object. Finally, when Component 2 wants to invoke
a method on the port provided by Component 1, it issues
a svc.getPort() call to obtain a handle for the port.
Not shown in the diagram is the svc.releasePort()
call, informs the framework that the caller is (temporar-
ily) done using the port. A port may be used only after
a getPort() call is made for it, and before its compan-
ion releasePort() call; getPort() and release-
Port() can be used repeatedly throughout the body of
the component. This is considered better CCA program-
ming practice than acquiring handles to all relevant ports
once at the beginning of the component execution and re-
leasing them only at the end, because it allows the use of
a more dynamic component programming model, through
the BuilderService port.

In “normal” use of the CCA model, steps 1–3 would
take place during the “assembly” phase of the applications.
Specifically, steps 1 and 2 would take place with the compo-
nent’s setServices(), invoked by the framework when
the component is instantiated, and step 3 would take place
as the component instructs the framework how to connect
the uses and provides ports for the application. Step 4 would
take place during execution of the component’s code. Fi-
nally, when not within a getPort()/releasePort()
block, connections between uses and provides ports may be
broken, and components may be destroyed.

In general, components cannot use ports on other com-
ponents during the assembly phase (i.e. within the compo-
nent’s setServices() routine) because there is no guar-
antee that the components providing those ports have been
instantiated and connected to this component’s “uses port”.
There is one exception, however. As a reuse of concepts,
the CCA also casts framework services as ports, and such
services are available to components as soon as they have
been instantiated.

While this explanation has portrayed the phases of the
lifecycle as “collective”, with the entire application being
assembled, executed, and then disassembled, this is not nec-
essarily the case. Through the BuilderService frame-
work service port, applications can have extremely dynamic
behavior. The motivating example for the development of
BuilderService was the desire to be able to swap out
one numerical solver for another during a simulation be-
cause, for example, the solution might be moving into a
region where another solver would provide better perfor-
mance or numerical quality [16]. BuilderService, to-
gether with the AbstractFramework service also al-
low hierarchies of components to be created, encapsulating
many components and treating them as one.

3. Application Complexity in the CCA

While the CCA does a very good job of encapsulating
the complexity of thousands of lines of source code into
black-box components, the model, as described in Section
2, has only one level. Modern HPC scientific applications
often grow extremely large and involve the coupling of sim-
ulations at different time or length-scales. Eventually even
componentized versions of such applications become too
complex for software developers and users to deal with all
at once.

As an example, consider the study of a reaction-diffusion
simulation under varying numerical and geometric parame-
ters, where the user may be interested in performance, con-
vergence, and efficiency. Figure 2 shows the CCA “wiring
diagram” for a modestly complex “production quality” ap-
plication of this type, developed by Jaideep Ray, Sophia
Lefantzi, and their co-workers in the Center for React-

ing Flow Simulation lead by Sandia National Laboratory
[2, 17].

This figure, derived from a screen capture of the visual
programming interface currently available with the CCaf-
feine CCA framework [4, 5], shows the numerous compo-
nents as dark boxes decorated with smaller boxes represent-
ing the provides ports (left side of each component) and
uses ports (right side). Lines show connections between
uses and provides ports. The component layout is very
cluttered and quickly fills most of the screen. As is typi-
cal in component-based applications, multiple components
are used to implement the various high-level elements of the
application. In this case, three components together provide
the reaction kinetics functionality (heavy oval) and a second
group of four components that handle the diffusion equation
(heavy rectangle). These components dominate the work
area, but are of little interest to the planned study, because
they will not be changed in any way.

This example makes the visual case for the need to be
able to group components to further hide complexity. In this
case, our purposes would be well served if we could group
the three chemistry components together into one a single
ChemSolver, and the four diffusion components into a
single DiffusionIntegrator component. This would
simplify the visual programming picture, making it easier
to work with the remaining components, which are of inter-
est in the planned study. It may also be of interest to export
these groupings as components in their own right, available
for use in other applications. Flexibility of the mechanism
is important too: the target of the next study could be a com-
parison of the numerical and performance characteristics of
the CvodeSolver against other equivalent solvers, look-
ing for a possible replacement. In this case, we would want
to see all of the structure for the chemistry part of the appli-
cation, but could black-box other component groupings.

4. Reusing Component Concepts for Aggrega-
tion and Scalability

For a peer object model like CCA, there is really only
one option to deal with the need to provide multiple levels
of encapsulation: a peer container object for networks of
components. Although there are notable exceptions (e.g.
Visual BasicTM), it was considered a best practice to make
each container itself a component and therefore achieve a
self-similar answer to component aggregation.

Because the BuilderService port exports frame-
work functionality to the user, it serves two vital functions
that normally are under framework control: containment
and composition. Containment allows an entire compo-
nent composition (network of connected components) to
be black-boxed as a single component. Dynamic compo-
sition allows changes in the way a component network is

Figure 2. Assembly diagram of a reaction-diffusion simulation using an implicit/explicit integration
scheme on an adaptively refined grid. The heavy lines highlight the components related to the
reaction kinetics (oval) and the diffusion equation (rectangle).

connected at any time during the execution of the program.

4.1. BuilderService: Component Containers in a
High Performance Setting

The BuilderService interface allows the high-
performance computational scientist the ability to take
on the role of the framework programmer. Builder-
Service is a standard framework service port and
the user requests this interface through the usual
CCA mechanism of svc.registerUsesPort() and
svc.getPort(). The entire interface for BuilderService
can be found on the web at http://www.cca-forum.
org/specification/. Figures 3–6 show an entire sce-
nario for containing a more complicated component net-
work within a controlling component that uses Builder-
Service.

The idealized scenario of these figures is to encapsulate
a two-component network, but proxy an unconnected pro-
vides port and an unconnected uses port on the outside of
the container making them available for connections by a
user. In the figures, a component called Container Compo-
nent is located and instantiated in the usual way of Section

2. Container Component requests a BuilderService
port (Fig. 3). Because BuilderService is a CCA ser-
vice port provided by the framework, it can be retrieved im-
mediately, during its initial setServices() call. During
the same call, two components are instantiated, and then
connected together through use of the BuilderService
interface (Fig. 4). Next the Container Component con-
nects the component network to itself by exporting the same
type of ports on itself (Fig. 5) and connecting them to the
contained network. Finally, the single Container Compo-
nent presents the two proxied ports encapsulating, in this
case a two component network (Fig. 6). The Container
Component here does not have any functionality other than
as a program to create an interior encapsulated network of
components, re-exporting provides ports and proxying uses
ports that are left unconnected.

It is worth noting that once all of the connections to the
containing component are made, there is no further involve-
ment by the container in the execution of the program. All
of the encapsulated components are dealt with directly. This
means that taking advantage of the CCA containment mech-
anism inflicts no performance penalty on the user’s applica-
tion.

�

�

�

�
Figure 3. CCA Containment Mechanism Using Builder-
Service: Step 1: Create the container component.

�

�

�

�
Figure 4. CCA Containment Mechanism Using BuilderSer-
vice: Step 2: Container component composes a network of
components.

4.2. Using CCA from Main: AbstractFramework

Component-oriented programming implies that there is
an overarching framework that instantiates, manipulates,
and destroys components and otherwise manages compo-
nents on the behalf of the user. The downside is that
the user is unable to write or control the main() pro-
gram. In most cases a well-written CCA-compliant frame-
work will cover what 90% of the users would like to do.
However since high performance computing involves ever
more sophisticated hardware, and hence runtime environ-
ments, some setup may be needed ahead of the framework
to prepare it for queuing systems, message passing lay-
ers, or other nonstandard facilities that could not be antic-
ipated by the framework developers. The CCA’s answer
to this requirement is another interface called Abstract-
Framework. This interface is not a gov.cca.Port but
one that allows an instantiation of a CCA framework from
a library. Beyond creation and destruction there is only

one method on the interface: getServices() which
returns a Services object identical to the one received
in the setServices call by a normal component. The
getServices() call effectively creates an image of the
main program inside the framework allowing addPro-
videsPort() and registerUsesPort() calls from
the main program the same as any other component. From
then on the BuilderService interface can be requested
and the process can proceed as before. Listing 1 shows an
example of this in Python.
BuilderService and AbstractFramework in-

terfaces are considered by the CCA working group to be
“advanced” behavior, and would probably only be under-
taken by a user that is already well versed in CCA compo-
nent semantics and behavior. In essence the user is taking
over the role usually occupied by a CCA compliant frame-
work. It is important that the user of the BuilderSer-
vice containment be cognizant of what CCA components
are entitled to expect and to respect the component life cycle

�

�

�

�
Figure 5. CCA Containment Mechanism Using BuilderSer-
vice: Step 3: Container component connects itself to un-
connected ports.

that the component writers depend on.

Mentioned previously, another important function of
BuilderService is the automation of the componen-
tized programs at the component level. For example, an
equation solver component used in the solution of a PDE
might work fastest with an LU preconditioner for some
number of time steps, but later in the calculation might
require a multigrid method. A component that monitors
the convergence behavior (possibly the condition number)
could disconnect the LU component and plug in the multi-
grid method as the need arises. BuilderService allows
high-performance components to be programmed dynami-
cally, as any other object in the calculation [16].

4.3. The Simplified Reaction-Diffusion Application

The mechanisms described in this section can be applied
to our reaction-diffusion simulation example, producing the
result shown in Figure 7. The core chemistry and physics
of the problem are now encapsulated within the black-
box ChemSolver and DiffusionIntegrator com-
ponents. The ErrEstAndRegrid and TimeInter-
polator components are readily accessible, and there is
enough screen real estate available to easily manipulate the
components of interest as needed.

5. Conclusions

A certain amount of complexity is unavoidable in high-
performance scientific computing due to the complexity of
the problems being solved. The Common Component Ar-
chitecture is design specifically to meet the needs of this
community, including the need to better manage complex-
ity.

Because CCA’s target developers are computational sci-
entists who wish to focus not on software development, but
on their scientific simulations, the tools and concepts of the
CCA must be both simple to grasp and scalable to the prob-
lems of interest to the computational scientists. Reuse of
concepts is an important means for the CCA to achieve this
necessary simplicity – in other words, to reduce the com-
plexity inherent in the CCA itself. An example is the use
of the uses/provides concept for ports to transparently en-
able both high-performance local component assembly and
distributed computing. In the parallel computing case, the
CCA’s approach allows the programmer to reuse the tools
and techniques with which they are most comfortable for
parallel programming, rather than imposing a new model or
tools on them.

The CCA also deals with software complexity directly.
At the first level, components provide black-box encapsu-
lation of complex pieces of source code so that the user of
the component (as opposed to its developer) need not be
concerned about its internals. Through the BuilderSer-

�

�

�

�
Figure 6. CCA Containment Mechanism Using
BuilderService: Step 4: Finally, only proxied
ports are available for further connections.

Listing 1. Abstract Framework example in Python
! / u s r / b i n / py thon
import c c a f f e i n e . Abs t r ac tF ramework # load t h e framework
Framework�s p e c i f i c p o r t i o n , i n t h i s case C c a f f e i n e :
a = c c a f f e i n e . Abs t r ac tF ramework . Abs t r ac tF ramework () # c r e a t e i t
i n i t i a l i z e t e l l i n g t h e framework what components we w i l l u se and
where t h e y are l o c a t e d .
a r g s = ”��pa t h / home / rob / cca / l i b / components ”
a . i n i t i a l i z e (a r g s)
From here on , t h i s main program i s u s i n g on l y s t anda rd CCA,
n o t h i n g i m p l e m e n t a t i o n s p e c i f i c .
We c r e a t e t h i s main py thon program as a component i n t h e framework by
g e t t i n g gov . cca . S e r v i c e s :
svc = a . g e t S e r v i c e s (” main” , ” MainComponent” , p r o p e r t i e s) ;
myid = svc . getComponentID () ; # t h i s i s our ComponentID
svc . r e g i s t e r U s e s P o r t (” bs ” , ” gov . cca . B u i l d e r S e r v i c e ” , p r o p e r t i e s)
p o r t = svc . g e t P o r t (” bs ”)
import gov . cca . p o r t s . B u i l d e r S e r v i c e
bs = gov . cca . p o r t s . B u i l d e r S e r v i c e . B u i l d e r S e r v i c e (p o r t)
From here on e v e r y t h i n g i s t h e same as i f i t were
a ” normal ” CCA component .

vice and AbstractFramework interfaces, the CCA
also provides an approach to hierarchically encapsulate a
network of components as a single component, a design
pattern which is unique (as far as we know) in the world
of components.

In this way, application developers can manage the
complexity presented by their CCA-based applications in
a flexible and general fashion. It is hoped that by in-
troducing fewer new concepts, it will be easier to em-
ploy BuilderService in applications, making even
large-scale multi-physics applications more manageable.
An important side effect of this approach is that CCA-
compliant frameworks need to add little to support this
style of containment because most of the existing infras-
tructure can be reused. Because there are numerous CCA-

compliant frameworks specialized in various areas of high
end computing, a beneficial artifact of the BuilderSer-
vice/AbstractFramework approach is that disparate
frameworks can be linked together using only CCA ports.

6. Acknowledgments

The CCA has been under development since 1998 by the
CCA Forum and represents the contributions of many peo-
ple, all of whom are gratefully acknowledged. We further
acknowledge our collaborators outside the CCA Forum and
the early adopters of the CCA for the important contribu-
tions they have made both to our understanding of CBSE in
the high-performance scientific computing context, and to
making the CCA a practical and usable environment. We

Figure 7. Assembly diagram of the simulation with reaction and diffusion black boxes.

particularly thank Jaideep Ray and Sophia Lefantzi for pro-
viding the original components used in our chemical sci-
ences example.

This work has been supported in part by the U. S. Dept.
of Energy’s Scientific Discovery through Advanced Com-
puting initiative, through the Center for Component Tech-
nology for Terascale Simulation Software, of which ORNL
and SNL are members.

Oak Ridge National Laboratory is managed by UT-
Battelle, LLC for the US Dept. of Energy under contract
DE-AC-05-00OR22725.

References

[1] CCA tutorials. http://www.cca-forum.org/
tutorials/.

[2] CFRFS webpage. http://cfrfs.ca.sandia.gov.
[3] Requirements of component architectures for high-

performance computing. http://www.cca-forum.
org/documents/requirements.shtml.

[4] B. Allan, R. Armstrong, S. Lefantzi, J. Ray, E. Walsh, and
P. Wolfe. Ccaffeine - a CCA component framework for
parallel computing. http://www.cca-forum.org/
ccafe/.

[5] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E.
Bernholdt, and J. A. Kohl. The cca core specification
in a distributed memory spmd framework. Concurrency

and Computation: Practice and Experience, 14(5):323–345,
2002.

[6] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn,
L. C. McInnes, S. Parker, and B. Smolinski. Toward a
common component architecture for high-performance sci-
entific computing. In Proceedings of High Performance Dis-
tributed Computing, pages 115–124, 1999.

[7] R. Armstrong and R. B. McCoy. The common component
architecture: Fostering an open source community in high
performance computing. In Proc. of the Advanced School
for Computing and Imaging. Center Parcs Het Heijderbos,
Heijen, Netherlands, 4–6 June 2003.

[8] Babel homepage. http://www.llnl.gov/CASC/
components/babel.html.

[9] D. E. Bernholdt, W. R. Elwasif, and J. A. Kohl. Com-
munication infrastructure in high-performance component-
based scientific computing. In D. Kranzlmüller, P. Kac-
suk, J. Dongarra, and J. Volkert, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface.
9th European PVM/MPI User’s Group Meeting Linz, Aus-
tria, September/October 2002. Proceedings, volume 2474
of Lecture Notes in Computer Science, pages 260–270.
Springer, September 2002.

[10] D. E. Bernholdt et al. A component architecture for high-
performance scientific computing. Intl. J. High Perf. Comp.
Appl., in preparation for ACTS Collection special issue.

[11] F. P. Brooks, Jr. The Mythical Man-Monday: Essays on
Software Engineering. Addison Wesley Professional, sec-
ond edition, 1995.

[12] Common Component Architecture Forum. http://www.
cca-forum.org.

[13] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. In ICSM, pages 131–142, 2000.

[14] O. M. Group. The Common Object Request Broker: Archi-
tecture and Specification. OMG Document, 1998. http:
//www.omg.org/corba.

[15] O. M. Group. CORBA Components. OMG TC Document
orbos/99-02-05, March 1999.

[16] P. Hovland, K. Keahey, L. C. McInnes, B. Norris, L. F. Di-
achin, and P.Raghavan. A quality of service approach for
high-performance numerical components. In Proceedings of
Workshop on QoS in Component-Based Software Engineer-
ing, Software Technologies Conference, Toulouse, France,
June 20 2003.

[17] S. Lefantzi, J. Ray, and H. N. Najm. Using the common
component architecture to design high performance scien-
tific simulation codes. In Proceedings of the 17th Inter-
national Parallel and Distributed Processing Symposium
(IPDPS 2003), 22-26 April 2003, Nice, France. IEEE Com-
puter Society, 2003. Distributed via CD-ROM.

[18] M. M. Lehman. A brief introduction to the FEAST hypoth-
esis and projects (feedback, evolution and software technol-
ogy). http://www.doc.ic.ac.uk/˜mml/feast.

[19] Microsoft COM Web page. http://www.microsoft.
com/com/about.asp.

[20] R. Monson-Haefel. Enterprise JavaBeans. O’Reilly, June
1999.

[21] B. Norris, S. Balay, S. Benson, L. Freitag, P. Hovland,
L. McInnes, and B. Smith. Parallel components for PDEs
and optimization: Some issues and experiences. Parallel
Computing, 28 (12):1811–1831, 2002.

[22] R. Sessions. COM and DCOM: Microsoft’s Vision for Dis-
tributed Objects. John Wiley & Sons, 1997.

[23] J. Siegel. OMG overview: CORBA and the OMG in enter-
prise computing. Communications of the ACM, 41(10):37–
43, 1998.

