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ABSTRACT 
 
The properties of a protein depend on its sequence of amino 
acids and its three-dimensional structure which consists of 
multiple folds of the peptide chain. If some of the properties 
depend primarily on the folding structure, then proteins with 
certain folding units may exhibit properties specific to those 
units. In that case, a classification of proteins based on folding 
units would facilitate the selection of proteins with certain 
desired properties. With this in mind, we propose an efficient 
clustering algorithm that can be used to classify proteins 
according to common folding units. Our algorithm has the 
following steps: 
• Represent the protein structure as a series of 

conformational angles. 
• Partition the proteins into fragments (folding units) of a 

specified size.  
• Cluster the fragments into groups. 
 
__________________________________ 
 
 
 
 
 
 
 
 
 
 
 

The use of overlapped substrings makes our unique 
demographic clustering technique not susceptible to noise and 
outliers. Preliminary implementation of this algorithm indicates 
that it has the capability to discover secondary structural 
elements (folding units) in proteins and can be generalized to 
large protein data banks. The algorithm has been applied to a set 
of 20 randomly selected proteins from the Protein Data Bank 
and a set of 12 non-homologous α/β protein structures from the 
PDBSELECT. The algorithm not only identifies the secondary 
structural elements such as α-helices and β-strands, but also 
uncovers different turn types which link extended and helical 
structures. 
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1. INTRODUCTION 
 
A protein is a sequence of amino acids joined by a 
backbone structure called a peptide chain.  In addition to 
the peptide chain, proteins have a three-dimensional 
structure which consists of multiple folds of the chain 
[15,17]. The specific properties of the protein depend on 
both the amino acid sequence and the folding structure. If 
some of the properties of a protein depend primarily on 
the folding structure, then proteins with certain folding 
units may exhibit properties specific to those units. In that 
case, a classification of proteins based on folding units 
would facilitate the selection of proteins with certain 
desired properties. 
 
The library of protein fragments (referred to as folding 
units in our study) derived from the experimentally solved 
proteins structures is shown to be useful in the process of 
the ab initio prediction of the 3D structure of proteins 
from the primary sequence [3,6,11]. A number of 
clustering methods have been proposed in the past to 
identify such representative fragments [8,14]. 
 
Currently there is a large quantity of protein structure data 
available in protein databases [22], and the amount of data 
is steadily increasing [10]. In order to facilitate the search 
for common folding units in large protein data banks, we 
propose a new efficient grouping algorithm derived from 
demographic clustering techniques used in data mining 
applications [2]. This algorithm, which is described in 
detail below, is used to perform case studies on a set of 20 
randomly selected proteins from the Protein Data Bank 
and a set of 12 non-homologous α/β protein structures 
from the PDBSELECT and the identified clusters are 
discussed. 
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2. DATA STRUCTURE 
 REPRESENTATION SCHEME 
 
As mentioned above, a large number of protein 3D 
structures are now stored in databases, and the number of 
structure submissions is steadily increasing.  Basically, 
the protein data banks store the protein’s atomic 
coordinates, as derived from crystallographic studies.  
Although these coordinates contain the structure 
information precisely, they are not the best representation 
for detecting similar folds.  
 
A common way of reducing the number of parameters 
needed to describe the conformation of a protein 
backbone is to take advantage of the fact that the 
backbone contains planar units which are connected at Cα 
atoms, with six atoms per planar unit. Two adjacent 
planar units, (Cα,i-1 , Ci-1 , O , Ni , H , Cαi) and (Cαi , Ci , O , 
Ni+1 , H , Cα,i+1), are shown in Figure 1.  Each Cα atom 
belongs to two of these planar units.  The two adjacent 
planar units which meet at a Cα atom are free to rotate 
about the Cα-N or Cα-C bond at the junction.  This leads 
to a wide range of three-dimensional configurations for 
the protein. 
 
There are a number of ways that the protein backbone can 
be represented [for example: 5, 16, 21], including the 
following: 
 
1. Express the backbone as a series of Cα points in 3D 

space, with 3 coordinates for each point.  This is a 
very precise way to describe the backbone. A large 
amount of work has been done based on this scheme 
[12,20]. But this approach demands too much 
computation to search for common folding units and 
hence is not applicable for large databases. 

 
2. Classify the conformations that an amino acid can 

take into several categories and represent them as 
symbols [23], and implement string alignment to 
search for similarity between folding units. One of 
these approaches is to divide the Ramachandran map 
[18] into domains [19]; another attempt is to divide 
the whole conformation space directly into subspaces 
[13].  Then based on string comparison, we can 
search for similar folds.  These representations 
greatly decrease the computational tasks by 
simplifying a 3-D problem to a 1-D problem.  But 
there is a contradiction in this scheme: if the number 
of subspaces is large, then it is not easy to find 
similar structures; or, if there are only a few 
subspaces, the comparison will be too inaccurate. 

 

3. Express the backbone as a series of conformational 
angles φ and ψ, where φ is the rotation angle of the 
planar unit about the bond between the Cα atom and 
the nitrogen atom, i.e., the Cα-N bond, and ψ is the 
rotation angle of the planar unit about the bond 
between the two carbon atoms, i.e., the Cα-C bond, as 
shown in Figure 1. When comparing the similarity of 
two folding units, we simply compute the difference 
between each pair of φ angles and each pair of ψ 
angles on the same position in their respective 
folding units, and then sum up these differences.  In 
this way, we simplify the 3-D problem to a 2-D one 
while preserving all of the conformational 
information. This data representation scheme enables 
the efficient detection of folding similarities and 
hence will be used in the present study. An added 
advantage is that, from the (φ,ψ)s of a cluster of 
fragments, it is easy to directly identify different 
secondary structural elements and turn types [9] 
represented by that cluster. 

 
The Protein Data Bank (PDB) [1] and the PDBSELECT 
[7] are archives of experimentally determined three-
dimensional structures of proteins.  The archives contain 
the coordinates of each atom in the proteins. We will 
extract the atomic coordinates of the backbone atoms and 
use these to compute the dihedral (conformational) angle 
pairs (φ,ψ).  
 
3. GROUPING ALGORITHM 
 
Once the dihedral angle pairs have been computed, we 
will use them to search for similar folding units in 
proteins. The technique we propose to use is based on 
dividing the protein into fragments of a specified size. For 
the first study described in this paper, we have selected a 
fragment length of 8, that is, 8 pairs of dihedral angles. 
For each protein to be included in the search, we first 
compute the following series of dihedral angles: 
 

{ (φ,ψ)1 (φ,ψ)2 (φ,ψ)3 (φ,ψ)4 (φ,ψ)5  …  (φ,ψ)n-1  } 
 

where n is the number of amino acids used to obtain the 
fragments and the range of the dihedral angles is -180° to 
180°. The peptide chain is then decomposed into a series 
of overlapping fragments of length 8:   
Fragment 1: 
[(φ,ψ)1  (φ,ψ)2  (φ,ψ)3  (φ,ψ)4  (φ,ψ)5  (φ,ψ)6  (φ,ψ)7 (φ,ψ)8 ]     
Fragment 2: 
[(φ,ψ)2  (φ,ψ)3  (φ,ψ)4 (φ,ψ)5  (φ,ψ)6  (φ,ψ)7  (φ,ψ)8 (φ,ψ)9 ] 
Fragment 3: 
[(φ,ψ)3  (φ,ψ)4 (φ,ψ)5  (φ,ψ)6  (φ,ψ)7  (φ,ψ)8 (φ,ψ)9 (φ,ψ)10 ] 
…. 
 



Then we apply a grouping algorithm, which is based on 
the demographic clustering technique of data mining [2].  
In the following, we treat the fragments as points in a 16-
dimensional space.  We define the distance between two 
points Ai and Aj , DIST(Ai , Aj ) , as  
 
 DIST(Ai , Aj ) = ((φi1-φj1) 2 +  (ψi1-ψj1)2  + (φi2-φj2) 2 + 
                            (ψi2-ψj2)2   + …+(φi8-φj8)2 +  (ψi8-ψj8)2) ½ 
 
where 
              Ai =[(φi1, ψi1

 ) , (φi2 , ψi2) , … (φi8 , ψi8)]    
              Aj= [(φj1, ψj1

 ) , (φj2 , ψj2) , … (φj8 , ψj8)]  .  
 
For every (ψim-ψjm) , if  |ψim-ψjm|>180 , then we will use 
360-|ψim-ψjm| , and similarly for (φim-φjm) . 
Let j be the index that labels the groups.  We define the 
center of group j, Cj , as  
 
   Cj = [(φj1, ψj1

 ) , (φj2 , ψj2) , … (φj8 , ψj8)] 
 
where 
           φjm = Σφim / Nj  
           ψjm = Σψim / Nj       ( i = 1, 2, .. Nj; m = 1, 2, … 8  ) , 
 
Nj is the number of points in the group, and the sum is 
over i. Such groups are regarded as folding units in our 
current work. 
 
Algorithm 
 
Input:  A set of points in 16-dimensional space and   
           a distance measure R. 
Output: A set of groups into which the points have  
 been  divided, where every point in a group  
 is within the distance R of the group center. 
 
Begin: 
 I. Start a stack with all of the points in it. 
II. Do an operation “pop up” of a point A1, create  

 group 1, with center C1 equal to A1 , set N1 to 1. 
III. While ( stack is not empty ) 

    { 
a. Do an operation “pop up” of a point Ap . 
b. Compute the distances between Ap and each 

existing group center Cj (suppose we have k 
groups now, then 1 <= j <= k) . 

c. Suppose when j = jmin, the distance is a 
minimum. If DIST( Cjmin , Ap ) > R, then create 
a new group k+1, with center Ck+1 equal to Ap , 
set Nk+1 to  1.  Else 

 1. Insert Ap  into group jmin ,add 1 to Njmin . 
 2. Compute the new center C’jmin of group jmin . 
 3. For i = 1, 2, … Njmin 
 { 

i.  Re-compute the distance DIST(Ajmin, i  , 
C’jmin ) between the point Ajmin, i in group 
jmin and the new group center C’jmin . 

ii. If  DIST(Ajmin, i  , C’jmin ) > R, push Ajmin, i  
into the stack, subtract 1 from Njmin , go 
to step 2. 

} 
        } 
IV. For each group, re-calculate the distances between 

the contained points and all of the group centers. If 
there is any point that has a shorter distance with 
another group center than with its own group center, 
move it to the other group where the distance is 
shorter. If there are no such points, go to END. 

V. Re-compute all the group centers. If any point is no 
longer within distance R of the center of its group, 
push it into the stack.  If there are points in the 
stack, go back to step III. If there are no points in 
the stack, go back to step IV. 

END 
 
4. CASE STUDIES 
 
In this section we show how our grouping algorithm can 
be applied to a set of proteins. The software programs 
have been implemented in the C language on a high-
performance computer system. To test our algorithm, we 
conducted the following two case studies: 
 
Case Study A: 20 Randomly Selected 
                       Proteins from the PDB 
 
In this study, we randomly selected 20 proteins from the 
PDB. These proteins have different numbers of amino 
acids and are from different protein families.  Only the 
amino acids with good resolutions are chosen for 
computing the fragments.  Table 1 shows the 20 proteins 
that were selected and the number of points (fragments) 
derived from each one. 
 
In our test, we set R (the maximum allowed distance from 
the center of a group) to 240°. Although R seems to be 
large in this case, it will be significantly decreased if we 
include more proteins in the study.  We obtained a total of 
3083 points from these 20 proteins and used our 
algorithm to group them into 1734 groups. The group 
center is the average of the coordinates of all the points in 
the group and thus is usually not an actual fragment from 
one of the proteins. Therefore, in order to represent each 
group more reasonably, we choose the fragment that is 
closest to the group center. Table 2 gives the five largest 
groups, labeled A, B, C, D, E, and Figure 2 shows the 
fragments (folding units) that have the minimum distance 
from the centers of these groups. The table shows that for 



each group, the fragments are from different proteins, 
which means that our algorithm is capable of efficiently 
detecting common folding units in a set of proteins. 
 
Case Study B: 12 Non-Homologous α/β  
                     Proteins from the  
               PDBSELECT 
 
A small set of 12 non-homologous α/β protein structures 
was selected from the PDBSELECT April 2003 list [7]. 
For a residue to be part of a fragment, the torsion angle 
defining atoms (N, Cα and C) of the residue should have 
the B-factor of less than 60 Å2 so that the atoms are well 
defined in the electron density maps. Any missing 
residues or atoms are considered as a discontinuity in the 
polypeptide chain. Accordingly, an input set of 3636 
fragments has been derived from the selected 12 proteins 
(Table 3). 

  
In this test, we set R (the maximum allowed distance of a 
fragment from its group center) to 240º. In order to ensure 
that the deviations are more uniformly distributed along 
the fragment, the maximum allowed deviation for any 
main-chain dihedral angle from the corresponding angle 
in the cluster centroid is taken to be 60º. The deviation 
can be adjusted to do fine clustering (say 30º) or coarse 
clustering (say 90º) depending upon the interest of the 
study. With the R value of 240º and the maximum residue 
level deviation of 60º, our algorithm grouped the 3636 
points into 1858 clusters which include single member 
clusters. Table 4 gives the five largest clusters, labeled A, 
B, C, D and E and Figure 3 shows the corresponding 
fragments (folding units) that have the least distance from 
the centers of these groups. The top ten clusters identified 
for varying fragment lengths (6 – 9) and their secondary 
structure descriptions are given in Table 5. Upon testing 
on various R values (160°, 240° and 320°) for fragment 
length 8 (FL8), it is noticed that as expected, the number 
of clusters decreases as R increases. The nomenclature 
used to designate the conformation of a given residue is 
according to Efimov [4]. 
 

Focusing on clusters with FL8 for detailed discussion 
(Table 4 and column FL8 of Table 5), it may be seen that 
all the clusters represent either the regular secondary 
structural elements or combination of them. In general, 
the conformation of helical residues is well defined even 
though deviations are observed for the N- and C- termini 
of helices compared to the body of the helix. The 
deviations are more pronounced at the C-terminal region 
suggesting fraying of the C-terminus [21]). The drift of 
(φ,ψ) from the helical region at the C-terminus 
presumably maximizes capping interactions. An analysis 

such as the one reported here would help not only in 
modeling helical regions but also the helix termini. 
 
There are two clusters which correspond to two different 
kinds of termination of α-helices (clusters 4 and 7 of 
column FL8 of Table 5). In cluster 4, the residue in the αL 
conformation is predominantly Glycine and in many cases 
the residues γαL interlink a β-strand with the preceding α-
helix. 
  
Focusing now on clusters with fragment length 6 (column 
FL6 of Table 5), it is seen that here only the β-strand 
emerges as an independent cluster among the first ten, 
presumably because β-strands in general are shorter 
secondary structural elements compared to α-helices. 
Also the standard deviation in (φ,ψ) associated with β-
strands (β6) is approximately 19° whereas the 
corresponding value for α6 is 6° suggesting that an α-
helix is conformationally more rigid compared to a β-
strand. This may have some implications for the main-
chain conformational entropies associated with different 
types of secondary structural elements in proteins. 
 
5. CONCLUSION 
 
This paper proposes a unique demographic clustering 
algorithm that can be used to classify proteins according 
to similar folding units. Such a classification has the 
potential to facilitate the selection of proteins with 
specific desired properties. Preliminary implementation of 
this algorithm indicates that it has the capability to 
discover secondary structural elements (folding units) in 
proteins and can be generalized to large protein data 
banks. 
 
This novel clustering technique is likely to be useful in 
generating different sizes of libraries of protein fragments 
which may be helpful in the design of peptides with 
required 3D structures. The algorithm may also be used to 
find preferred conformers either within a structural class 
or across structural classes of proteins. 
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8. TABLES AND FIGURES 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

PDB 

Entry 

Name of the Protein Amino Acids 

Selected 
Points 

Derived 

1ash HEMOGLOBIN (DOMAIN ONE) 1 – 146 138 

1bsr RIBONUCLEASE(BOVINE, SEMINAL) (CHAIN A) 1 – 124 115 

1cca CYTOCHROME C PEROXIDASE 4 – 294 282 

1cew CYSTATIN 9- 116 99 

1clm CALMODULIN (PARAMECIUM TETRAURELIA) 4 – 147 135 

1crn CRAMBIN 1 – 46 37 

1ctt CYTIDINE DEAMINASE  4 – 294 285 

1erb RETINOL BINDING PROTEIN COMPLEX WITH  

N-ETHYL RETINAMIDE 2 

2 – 174 164 

1fut RIBONUCLEASE F1 1 – 107 98 

1hng CD2 (RAT)  (CHAIN B) 2 –176 166 

1hoe ALPHA-*AMYLASE INHIBITOR HOE-467*A 1- 74 65 

1lbu HYDROLASE METALLO (ZN) DD-PEPTIDASE 1 – 213 204 

1mka BETA-HYDROXYDECANOYL THIOL ESTER DEHYDRASE  

(CHAIN A) 

1- 171 162 

1mng MANGANESE SUPEROXIDE DISMUTASE  (CHAIN A) 1 – 203 194 

1pkp RIBOSOMAL PROTEIN S5 4 – 148 137 

1udi URACIL-DNA GLYCOSYLASE 18 – 244 218 

1utg UTEROGLOBIN(OXIDIZED) 1 – 70 61 

1yal CARICA PAPAYA CHYMOPAPAIN 1 – 218 209 

2vab MHC CLASS I H-2KB HEAVY CHAIN 1 – 274 265 

5pti TRYPSIN INHIBITOR 1 – 58 49 

Table 1.  A short list of proteins that were randomly selected for the demographic clustering of dihedral angles in the 
peptide chain.  For each protein, the table shows the amino acids that were selected and the number of points that 



 
 
 
 
 

 
 
 
 
 

Group Name A B C D E 

φ1 -67.8 -118.0 -105.2 -81.8 -80.7 

ψ1 -39.1 139.9 127.0 132.4 -36.7 

φ2 -67.0 -117.6 -120.8 -64.6 -107.8 

ψ2 -37.3 139.6 141.4 48.4 106.2 

φ3 -67.2 -120.3 -119.2 -63.2 -106.6 

ψ3 -38.6 140.4 126.9 -29.4 130.9 

φ4 -67.3 -118.3 -120.8 -72.1 -114.4 

ψ4 -38.1 139.2 138.6 -35.5 130.7 

φ5 -68.1 -113.8 -115.5 -71.7 -102.6 

ψ5 -36.6 137.6 143.2 -34.6 119.9 

φ6 -65.8 -111.5 -113.8 -66.7 -105.7 

ψ6 -36.1 134.9 132.3 -32.5 121.1 

φ7 -68.1 -113.7 -85.4 -69.5 -104.5 

ψ7 -35.2 128.4 132.0 -32,4 112.3 

φ8 -70.8 -112.4 -15.5 -72.9 -105.5 

ψ8 -31.6 141.0 -29.6 -30.5 127.1 

Points in the 

Group 

202 109 42 40 38 

The Nearest 

Points 

1mka81-90 1cew92-101 1hng75-84 1udi133-142 1mka121-130 

Sources of 
Points  

1ash: 1 
1bsr: 11 
1cew: 15 
1mka: 16 
1mng: 60 
1udi: 43 
2vab: 56 
 

1bsr: 16 
1cew: 13 
1hng: 27 
1mka: 11 
1mng: 1 
1udi: 2 
2vab: 39 
 

1bsr: 2 
1cew: 2 
1hng: 11 
1mka: 7 
1mng: 3 
1udi: 3 
2vab: 14 

1bsr: 6 
1cca: 1 
1cew: 3 
1mka: 4 
1mng: 9 
1udi: 13 
2vab: 4 

1bsr: 8 
1cew: 4 
1hng: 7 
1mka: 5 
1udi: 5 
2vab: 9 

Table 2. The top 5 groups detected by our grouping algorithm. For each group, the table gives the coordinates of the 
group center, the number of points in the group, the point nearest the group center, and the number of points 
derived from the various proteins.  



 
 
 

 
 
 
 

PDB code Name of the protein 
 

# fragments  

1byi_ Dethiobiotin Synthase 208 
1g66A Acetyl xylan esterase II 191 
1ga6A Serine-carboxyl proteinase 353 
1gci_ Subtilisin 205 
1i1wA Endo-1, 4-beta-xylanase 286 
1ixh_ Phosphate binding protein 305 

1muwA Xylose isomerase 370 
1mxtA Cholesterol oxidase 482 
1n55A Triosephosphate isomerase 233 
1o7jA L-asparaginase 309 
1ug6A Beta-glycosidase 410 
7a3hA Endoglucanase 284 

Table 3.  A list of non-homologous α/β proteins used for the case study and the number of 8 residue fragments derived 
from each protein. 



 
 
 
 

       βI – refers to type I β turn 

Group 
Name 

A B C D E 

φ1 -62.7 6.7 -66.2 10.1 -61.2 5.4 -61.8 4.0 -74.7 14.5 
ψ1 -41.5 7.7 -40.7 9.6 -41.7 6.5 -41.7 4.9 136.6 22.1 
φ2 -63.2 5.7 -63.0 4.7 -63.1 6.8 -64.2 4.8 -64.1 12.5 
ψ2 -42.3 6.7 -42.1 5.8 -41.1 5.7 -42.9 5.5 -33.7 12.8 
φ3 -62.8 5.3 -63.3 6.3 -63.9 4.6 -61.9 5.0 -63.3 4.7 
ψ3 -42.9 6.2 -41.2 5.1 -42.7 5.5 -43.9 5.0 -37.7 9.4 
φ4 -62.7 5.8 -63.5 3.9 -62.2 4.5 -64.1 6.9 -69.8 15.6 
ψ4 -42.8 6.2 -43.2 5.1 -43.1 5.2 -40.2 7.4 -35.9 17.0 
φ5 -62.7 4.3 -62.8 4.9 -64.0 6.5 -67.2 8.8 -61.8 8.9 
ψ5 -42.7 5.2 -42.4 5.6 -40.9 7.0 -28.4 8.7 -44.3 10.3 
φ6 -62.9 4.3 -63.9 8.6 -66.7 8.3 -91.6 13.2 -61.5 4.8 
ψ6 -42.8 5.1 -39.0 9.9 -28.8 9.1 -0.1 11.5 -41.5 4.9 
φ7 -62.6 4.2 -69.4 11.1 -90.3 14.3 79.8 13.3 -64.3 5.3 
ψ7 -42.7 5.4 -28.9 10.1 -0.9 13.2 19.3 13.0 -42.1 7.1 
φ8 -63.3 4.9 -94.4 16.1 78.1 13.1 -84.7 18.1 -65.8 10.5 
ψ8 -40.8 7.3 -6.52 14.7 20.3 13.4 139.2 17.5 -40.5 8.1 

 
Fragments 

in the Group 
 

 
443 

 

 
5.8 

 
87 

 
9.0 

 
52 

 
8.7 

 
39 

 
10.3 

 
38 

 
11.6 

The Nearest 
Fragment 

1n55A 
110A – 117A 

7a3hA 
85A – 92A 

1ug6A 
63A – 70A 

1o7jA 
264A – 271A 

1i1wA 
244A – 251A 

 
Description 

of the 
fragments 

 

 
An α - helix 

[α8] 

 
An α - helix with 

type I β turn at 
the C terminal 

[α7-βI] 

An α - helix with 
type I β turn at 
the C terminal 
followed by an 
αL residue 
[α6-βI-αL] 

 
[α5-βI-αL-β] 

 
[β-α7] 

Table 4.  The group centers of the top 5 groups detected by our grouping algorithm for a fragment length of 8 (FL8) and 
the nearest points to the group centers in each group. The root mean square deviations of each position (φ, ψ) 
and the overall deviation are also given. 



 
 
 
 

 
 
 
 
 
 
 

 

Cluster Number FL 9 FL 8 FL 7 FL 6 
1 α9    

(367) 
α8 

(443) 
α7 

(522) 
α6 

(626) 
2 α8 γ 

(81) 
α7 γ 
(87) 

α6 γ 
(97) 

α5 γ 
(107) 

3 α7 γ αL 
(45) 

α6 γ αL 
(52) 

α5 γ αL 
(55) 

β α5 
(59) 

4 α6 γ αL β 
(39) 

α5 γ αL β 
(39) 

β α6 
(53) 

α4 γ αL 
(55) 

5 β α8 
(35) 

β α7 
(38) 

α4 γ αL β 
(39) 

β6 
(50) 

6 α7 γ β 
(32) 

α6 γ β 
(33) 

β6 α 
(32) 

β6 
(41) 

7 β2 α7 
(30) 

α5 γ β γ 
(26) 

α5 γ β 
(30) 

α3 γ αL β 
(39) 

8 α5 γ αL β2 
(26) 

β2 α6 
(26) 

α4 γ β γ 
(29) 

α4 γ β 
(39) 

9 α5 γ α3 
(25) 

α4 γ α3 
(26) 

β2 α5 
(28) 

α γ αL β3 
(34) 

10 α2 γ α6 
(24) 

α2 γ α5 
(25) 

α γ α β4 
(28) 

β2 α4 
(33) 

Table 5.  The first 10 ranked clusters identified with the fragment length (FL) varying from 6 to 9 and their corresponding 
secondary structure combination are listed.  Values in parentheses refer to the number of fragments in each 
cluster. 

Figure 1.   The two rotation angles φ and ψ characterize the three-dimensional nature of the protein molecule. 
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Figure 2.   Examples of Folding Units produced by the grouping algorithm. Figures A, B, C, D, E show the conformation 
of the point nearest the center in groups A, B, C, D, E . 
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Figure 3.  Cα traces of nearest fragments for the first five clusters listed in Table 4. The amino and 
carboxyl terminal ends of the fragments are denoted as N and C respectively. 

 


