Optimal Control for a Standard CPR Model
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Optimal control techniques are applied here for the first time to a validated blood
circulation model of cardiopulmonary resuscitation (CPR), consisting of a system
of seven difference equations. In this system, the non-homogeneous forcing term is
the externally applied chest pressure acting as the “control”. The optimal control
technique seeks to maximize the blood flow as measured by the pressure differences
between the thoracic aorta and the right head superior vena cava. As a result, we
provide a new CPR strategy, with improved resuscitation rates. The optimal control
is characterized in terms of the solutions of the circulation model and of the cor-
responding adjoint system. the calculated optimal control gives the pattern of the
external pressure to be applied on the chest to obtain optimal blood flow and higher
resuscitation rates.
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1. Introduction

Each year, more than 250,000 people die from cardiac arrest in the USA alone.
Despite widespread use of cardiopulmonary resuscitation, the survival of patients
recovering from cardiac arrest remains poor. Indeed, the rate of survival for CPR
performed out of the hospital is 3%, while for patients who have cardiac arrest in the
hospital, the rate of survival is 10-15%. [4-7] One of the reasons for this situation is
that the practical technique of CPR has changed little since the 1960’s. The goal of
this paper is to reconsider the traditional CPR technique and attempt to improving
it by using the optimal control methodology.

The standard and various alternative CPR techniques such as interposed abdom-
inal compression, active compression-decompression, and Lifestick CPR have been
represented in various mathematical models. Here, we consider a model for standard
CPR.

We apply the optimal control strategy for improving resuscitation rates to a val-
idated circulation model developed by Babbs. [1] In his model, heart and blood
vessels are represented as resistance-capacitive networks, pressures in the chest and
in the vascular components as voltages, blood flow as electric current, and cardiac
and venous valves as diodes (electrical devices that permit flow in only one direction).

The chosen CPR model consists of seven difference equations, with time as the
discrete underlying variable, which describe the adult human circulation (hemody-
namics). For the optimal control application, the circulation model is extended to
include the control functions as discrete inputs. As a control, we choose the the
pattern of the external pressure on the chest. The pressure state variables are as
follows:

P, pressure in abdominal aorta

P, pressure in inferior vena aorta

P3;  pressure in carotid

P, pressure in jugular

P5; pressure in thoracic aorta

Ps pressure in right heart and superior vena cava

P; pressure in thoracic pump.

At the step n, when time is nAt , the pressure vector is denoted by:

P(n) = (Pi(n), Py(n), ..., Pr(n)).

We assume that the initial pressure values are known: P(0) = (Py(0), ..., P7(0)).
To make the chest pressure profiles medically reasonable, we assume that the ad-
missible controls are equal at the beginning and the end of the time interval, i.e.,
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u(0) = u(N — 1). Using the control vector v = (u(0),u(1),...,u(N — 2),u(0)), the
difference equations (in vector notation) representing the circulation model are as
follows:

P(1) = P(0) + T'(u(0)) + AtF(P(0)) (1.1)
P(n+1)=P(n)+T(u(n) —u(n—1)) + AtF(P(n)),n=1,2,..,N -1 (1.2)

where T' represents the linear map,
T(u(n)) = (0,0,0,0,t,u(n), t,u(n), u(n)).

Thus, at time step n, the control terms in the 5th and 6th equations are t,(u(n) —
u(n — 1)), while in the 7th equation, the control term is u(n) — u(n — 1). We use N
time steps, and the initial data for pressures is entered at n = 0.

Note that the pressure vector depends on the control, P = P(u), and the calculation
of the pressures at the next time step requires the values of the controls at the current
and previous time steps.

We define the function F'(P(n)) by listing its seven components:

L [i<p5<n> — Pi(n) — ~(Pi(n) - P2<n>>]

caa Ra RS
| 3 P0) = Pao) = - (Pa) — o)
g - P - () - i)

L o) = Pl = 2V (Pun) = o)

Ciug | Rn R;

%a [R%V(R(n) _ Py(n)) — R%(P5(n) - P3(n))}
+Ria(p5(n) — Pi(n)) — RLMV(%(n) - Pe(n))]

% [}%V(Rl(n) — Ps(n)) + R%}(E(”) — P5(n))

1 1
+R—M(P5(n) — Ps(n)) — EV(P(;(H) - P7(n))]



4 Lenhart, Protopopescu, Jung, and Babbs

1|1 1
o | BV B~ Brl) — oV (Pil) — By(m)
where the valve function is defined by
V(s)=sifs>0
V(s)=0if s <0.
Note that F'is a linear function except for the valve function.
To be rigorous mathematically, one should approximate the valve function by a
smooth function that is differentiable at zero.
We assume —K < u(n) < K foralln =0,1,..., N — 2 and choose the control set

U= {(u(0),u(l),...,u(N—-2),u(0)|— K <u(n) <K,n=0,1,..., N — 2}.

We define the objective functional

N N-2

J(u) = [Ps(n) = Py(n)] -

n=1 n=0

u?(n) (1.3)

where the first term represents the pressure differences between the thoracic aorta
and the right head superior vena cava, called the systemic perfusion pressure. The
second term represents the cost of implementing the control and has the double effect
of stabilizing the control problem and yielding an explicit characterization for the
optimal control. Our goal is to maximize J(u), i.e., to find an u* such that

J(u*) = max J(u).

Optimal control of discrete difference equations has been used for various physical
and engineering models, but it has never been applied to a CPR model. In most
applications, the control at the current time step only feeds into the states at the next
time step. The fact that the controls enter the system at two time levels (current
and immediate past time steps) to give input to the pressure at the next time is
also a novel feature [2,10]. This new feature requires an innovative adaptation of the
discrete version of Pontryagin’s Maximum Principle. [3,8,9] The characterization of
the optimal control in terms of the solutions of the optimality system, which is the
pressure system and an adjoint system, is given in the next section.

2. Characterization of an Optimal Control

The existence of an optimal control «* in U that maximizes the objective functional
J is standard, since we have compactness, due to the finite number of state variables
with continuous functions in the equations and the finite number of time steps.
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To characterize an optimal control, we must differentiate the map v — J(u), which
requires the differentiation of the solution map v — P = P(u). [3,10]

Theorem 2.1. The mapping u € U — P 1is differentiable in the following sense:
P(u+€l)(n) — P(u)(n)

€

— 9(n)

as € = 0 for any u € U and | such that (u +€l) € U for € small, forn=1,...,N .
Also ¢ satisfies the discrete system:

p(n+1) = p(n) + AtM (n)y(n) + T(I(n) — I(n — 1)) (2.1)
»(N) = ( —1) + AtM(N = D)yp(N — 1) + T(1(0) — U(N - 2)) (2:2)
»(0) = (2.3)
v(1) = T( (0)) (2-4)

— OF(P(n))
forn=1,...,N =2, where M(n) = =55>.

Proof: This follows from the component-wise calculation of the difference quotient
and passage to the limit in each component, using the differentiability of the function
F'. Note that, in order to compute the derivative rigorously, one should use here a
differentiable approximation to the valve function. [

Note: To illustrate the elements in the matrix M, we write the first row:

1 ( 1 N 1 ) 1 0.0 1 0.0
Caa Ra RS ’ CaaRs ’ ’ ’ Caa ’ ’
, and a row with a valve term, like the fourth row:
1 1,1 1
0,0, ——,—(—+ =V'"(Ph— F)),0,— V(P — P,
) ’Cjuth,’ Cjug(Rh + R] ( 4 6)), ) CjugRj ( 4 6)

Theorem 2.2. Given an optimal control u* and the corresponding state solution,
P* = P(u*), there exists a solution satisfying the adjoint system:

AMn—1) = A(n)+ AtM"(n — 1)A(n) + (0,0,0,0,1,—1,0) (2.5)
A(N) =(0,0,0,0,1,-1,0), (2.6)

where n = N, ...2. Furthermore, forn=1,2,...,N — 2,
1
B

u'(n) == (t,(As(n+ 1)+ Xs(n+1) = As(n + 2) — Xs(n + 2))
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and for n =0,

u*(0) = % (tp(As(NV) + A6(N) + As(1) + As(1) = As(2) = As(2))

+A72(N) + A7 (1) — M (2)), (2.8)

where the controls are subject to the prescribed bounds, M™ 1is the transpose of the
matriz M, which depends on the state P.

Proof: Let u* be an optimal control and P its corresponding state. Let (u*+¢€l) € U
for € > 0, and P¢ be the corresponding solution of the state system (1.1)-(1.2). Since
the adjoint system is linear, there exists a solution A satisfying (2.5). We compute
the directional derivative of the functional J(u) with respect to u in the direction .
Since J(u*) is the maximum value, we have

0< lim J(u* +el) — J(u")
e—0+ €
N N-2

= 3 [s(n) — e(m)] — 3 Bu*(n)i(n)

n=1 n=0
N-1 N-2

=) (n) - [A(n) = A(n+1) = AtM"(n)A(n+1)] = Y _ Bu*(n)l(n)

n=1 n=0

= S A0+ 1) [0+ 1) — $(n) — ALM(m)p(n)] - 3 Bu*(n)i(n)

(V) - [6(N) — (N — 1) — AN — Dgp(N — 1)] + A1) - (1)

Z—I—ﬁ
o> e

An+1)-T((n) — I(n — 1)) + A1) - (1) - Z_ Bu*(n)i(n)

(V) - T(I(0) = I(N —2))

2+ﬁ
N

In)[(A7 + (A5 + X6))(n 4+ 1) — (A7 + t,(As + X6))(n + 2) — Bu*(n)]

3
I
—

AN) - T(U(0) = UN = 2)) = L{0)[tp((As + A6)(2)) + A7(2) — Bu™(0)

+ +

—
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Using the equality (1) = T'(1(0)), we can group together terms with coefficients
1(0). Since I(0) is arbitrary within the constraint that u*(0)+€l(0) satisfies the control
bounds, we can solve for u*(0). From the summation above with n =1 to N — 3, we
can solve for u*(n) and then for u*(N — 2). Note that the controls are subject to the
control bounds. The representation (2.7)-(2.8) is obtained by choosing appropriate
variations [. [J

Thus, the optimal control is completely and explicitly characterized in terms of the
solution of the optimality system involving the optimal state and adjoint variables.
The solution of the optimality system is carried out iteratively. After an initial
control guess, the iterative method uses forward sweeps of the state system followed
by backward sweeps of the adjoint system with control updates between. See [11] for
similar iteration techniques. The numerical solution yields the optimal control and
thereby the strategy for improving the standard CPR technique. The details of the
numerical algorithm and results are reported elsewhere. [12] The optimal controls
yield explicit patterns for the external chest pressure. Our results indicate that more
rapid changes in the external pressure levels than those currently performed within
standard CPR may yield up to 40% increase in the systemic perfusion pressure. For
many people who undergo cardiac arrest, this may represent the difference between
life and death. Eventually, the improved CPR strategy suggested by our work could
be implemented either by an emergency helper or by a portable pressure device.
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