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Abstract We consider the problem of identifying the potential in the one-dimensional Schrédinger
equation with input Dirichlet data, from measured Neumann data. Knowledge of the Dirichlet to
Neumann map together with spectral controllability results for the Schrédinger equation obtained
using properties of exponential Riesz bases allow recovery of the spectral data. Once the the spectral
data is recovered, we use the Boundary Control method to solve the identification problem.
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1. INTRODUCTION

The Boundary Control (BC) method was introduced by Belishev [8, 10] as a new
method for identification problems. Let us mention here a method developed
by A. S. Blagoveshchenskii for one-dimensional inverse problems for the
wave equation (see, e.g., [12, 13]) which was in some sense a predecessor of
the BC method. The BC method, which uses the connection between inverse prob-
lems of mathematical physics and functional analysis and control theory for partial
differential equations, offers an interesting and powerful alternative to previous iden-
tification techniques based on spectral or scattering methods [18, 23, 24] or optimal
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control 7, 20, 21]. The BC method has been successfully applied to treat identifica-
tion problems for the wave and heat equations (see, e.g., [2, 4, 9, 17]). In [6]
we reported the first application of this method to the Schrodinger equation in the
one-dimensional case by determining the potential by using the Neumann to Dirich-
let (ND) map. We note that, at the same time, this also provided the first use of
dynamical boundary data in an inverse problems for the Schrodinger equation, since
the traditional Gelfand-Levitan-Marchenko approach reconstructs the potential from
either spectral or scattering data [1, 14, 16]. The multidimensional dynamical (ND)
inverse problem for the Schrédinger equation has been solved in [3].

In this paper, we present a new quantum application of the BC method and deter-
mine the potential in a Schrédinger equation from the Dirichlet to Neumann (DN)
map. Using Dirichlet data as opposed to Neumann data in [6] poses an additional
technical difficulty, caused by the loss of smoothness. This in turn requires intro-
ducing of bilinear forms instead of operators (Sec. 5). First, we recover the
spectral data from the DN map using controllability results and properties of expo-
nential Riesz bases (nonharmonic Fourier series), following the ideas from [5]. Second,
we recover the potential from an auxiliary wave equation with the same spectral data
via the BC method.

The outline of the paper is as follows. In Section 2 we define the Schrodinger
problem and the response operator (i.e. the time dependent DN map). In Section 3
we derive a priori regularity results and in Section 4 we prove controllability for the
Schriodinger equation. We define the connecting form and express it in terms of the
DN map in the fifth section. The connecting form has an obvious interpretation in
terms of systems theory, namely it relates the outer space of the controls and the inner
space of the states. In Section 6, a variational algorithm is applied to the connecting
and |7 forms to compute the spectral data for the Schrodinger equation thereby
completing the solution of the first inverse sub-problem. In Section 7 we introduce an
auxiliary wave equation that has precisely the same spectral data as those computed
for the Schrédinger equation. This simply means that the two equations (Schrédinger
and wave) share the same time-independent part. Finally, in the last section we use
the propagation of singularities for the wave equation and the BC method to find an
explicit formula for the sought potential.

2. STATEMENT OF THE PROBLEM

Let T, £ > 0 and let ¢ be a real valued function? from # := L?(0, £). We consider
a one-dimensional quantum system described by the Schrodinger equation
0 2
; u(z,t) N 0%u(x,t)
ot Ox?

—q(x)u(z,t) =0, z€(0,¢),te(0,T), (1)

2With some modifications our approach allows to recover complex potentials.



with the boundary conditions
u(0,t) = f(t), wu((,t)=0, te(0,T) (2)

and zero initial condition
u(z,0) = 0. (3)
We denote the solution of this initial boundary value problem by u/(z,t). We suppose
that f € FT := L%*(0,T) and introduce in this space the response operator BT, defined
by:
T ou’ (0, 1)
(R () = P00, (1
The dynamical inverse problem consists of recovering the unknown potential ¢(x)
from the given operator RT which is the DN map for the problem (1)—(3).
First we recover the spectral data for the dynamical response operator by using
controllability results for the Schrodinger equation. These results are new: in com-
parison with those from [15, 19, 22, 28] we consider a non—smooth potential

q € H. For our purposes it is necessary to study controllability for controls from
L?(0,T) and also from H;(0,7).

3. REGULARITY OF SOLUTION TO THE INITIAL BOUNDARY VALUE PROBLEM

The Fourier method is used to obtain sharp regularity results for the
solution of the initial boundary value problem (1)-(3) with f € F7 in
distributional sense.

We introduce the operator £, defined by

(Lo)(z) = —¢"(z) + q(x)p(z), =z €(0,0), (5)
with domain
D(L) = H*(0,¢)

and the operator Ly acting by the same rule (5) with domain

D(Lo) = {p € H*(0,£) : ¢(0) = (¢) = 0}.
The operator Ly is a self adjoint operator in H [25, Ch.X]. As an operator with com-

pact resolvent, £y has only discrete spectrum. Its eigenvalues A, and eigenfunctions
©n(x) satisfy the relations (see e.g. [23])

\/)\n:%—i-o(l), n=1,2,..., (6)
! !
o< in 1O _ 10
nelN n nelN n

(we suppose that ||on|ly =1 ). The set {An, Xn}, N Where xn := ¢},(0) represents
the spectral data for the problem (1)—(3).

< 00 (7)



We look for the solution of the problem (1)—(3) in the form

uf(x, t) = Z an (1) on (). (8)
n=1
Starting with
L pt
0 = / / (ZU{ -+ 'U/£$ _ quf)gpn(x)e—i/\n(t—T) dT dx
0 0

for f € C§°[0,T] and using integration by parts, (2), (3), and (8), we obtain

¢
a,(t) = an/ f(T)e’i’\“(t’T) dr, neN. 9)
0

These equalities are evidently true for f € F* as well.

In Section 4 we prove using (6) that the family & = {e**»*} forms an L-basis, i.e. a
Riesz basis in the closure of its linear span in FT, for any T > 0. This means (see e.g.
[5, Sec. 1.1] for the definition and properties of Riesz bases) that for some positive m
and M and any finite sequence {a,} we have

2
2
o < MY |al*.

m Yy lom|* < ‘ D e

The L-basis property of the family £ and equality (9) imply that the sequence
{a,(t)x;'} belongs ¢* for any t. Moreover, it can be easily shown (see [5, Sec. II1.2]
for details) that

o0

Z“n_(')

n=1 n
From (7)—(8) it follows now that
ul € C([0,T;H 1), H 1 :=H'(0,¢).
Moreover, the control operator UT,
Ul FT s "oy, UTf =4/ (-, T),

e C[0,T].

is bounded.
Integrating by parts in (9) we see that operator U’ is bounded from F| to H; ,
where F] := H;(0,T) and H, := H;(0,¥¢).

4. CONTROLLABILITY OF THE SCHRODINGER EQUATION

Controllability of the system (1)—(3) is the first step in our approach.

Proposition 1. Let the potential g € H be known. Then:
(1) for any T > 0 and any function z € H_,, there exists a control f € F* such
that
ul (2, T) = 2(x) in H_,, (10)



in other words, U'F' = H_y;
(ii) UTFL = Hy, in particular, for any n € IN, there exists a control f, € F& :=
H;(0,T) such that
u(x,T) = pn(z). (11)

Proof. (i) From (8) it follows that for f € F”, we have

o0
uf(x’ T) = Z an(T)QDn(‘r)a
n=1
where coefficients a,, are determined by (9). Given an expansion of z in the form

o0

2@) = 3 Gnpu(@)

we should choose f such that

T
an(T) = ixn / f)e 2T=D gt = @4, . (12)
0

Thus, taking into account (7), we see that (i) is equivalent to the following statement:
“For any T' > 0 and any {a,} € £, the problem of moments

T
ay, :/ fe*tdt, neN, (13)
0

has a solution f € F*”. By Theorem 1.2.1 in [5], the problem of moments is solvable
if and only if £ = {e"*"!} is an L-basis in FT. An L-basis is a Riesz basis in the
closure of its linear span. We show that it can be extended to a Riesz basis,
and then, as a subset of a Riesz basis it is, by definition, an £-basis.

We denote A := {)\,} and

nt(r):=sup #{AN[z,z + 1)},
zcR
where #.A4 is the number of elements in the set A, and define in a standard way (see
e.g. [11, p. 346]) the upper uniform density of A to be
+

Dt (A) := lim n(r)

r—00 r
The limit exists due to the subadditivity of n* (r).

It is easy to prove, using (6), that DT(A) = 0. Indeed, we use the fact that
nt(k?) = O(k) and n™(k?)/k? tends to zero as k tends to infinity. Proposition 1(i)
follows now from the result of Seip [26, Theorem 2.3]:

For any T > 27D*(A) the family £ can be extended to a family of exponentials
which forms a Riesz basis in FT.




(ii) Let f € Fg. Denote f'(t) = g(t), integrate by parts in (12) and recall that
f(0) = f(T) =0. We get,

T
a,(T) = —% g(t)em TN g for A, #0, (14)
n J0
T
an(T) = ix / o(t) (T—t)dt for A =0. (15)
0

Taking into account (6) and (7) we see that (ii) is equivalent to solvability of the
problem of moments

T
a, = / gt)ertdt, nelN,\, #0, (16)
0
T
ap = / g(t)tdt for N\, =0. (17)
0

/Tg(t) dt = 0. (18)

This means that for any {a,} € ¢? there exists g € F' satisfying the equations
(16), (17), (18). This is equivalent to the fact that the family £(J{1} (in the case
A # 0Vn € IN) or the family £ J{t} (in the case A, = 0 for some n € IN) forms an
L-basis in FT. This statement is true and can be proved exactly in the same way as
we proved the L-basis property of £ in (i).

5. ForMms ¢&' anp [T

In this section we introduce two bilinear forms which play a central role in our
approach to the inverse problem. The form ¢! connects the (metrics of the) control
space FT and space of solutions . We note that in [6] the connection between
the spaces of controls and solutions was realized by a connecting operator.
We cannot apply the same approach here, due to the lack of smoothness
of the solutions. The form /7 is a bilinear form corresponding to the operator L.
We prove the very important fact that the value of the both forms can be explicitly
expressed in terms of the response operator, R”.

In the language of system theory, FZ is the outer space of the system (1)—(3), H is
the inner space, and R” is the input—output map. We shall define the form ¢’ in the
outer space through the bilinear form of the elements of the inner space, ; however,
its action can be expressed via the action of the operator BT on the outer space, F'.

More exactly, we define the form ¢ in F? with the domain F] x F] by the equality

CT[fa g] = (uf("T)aug('aT))H: 9 € -7:(? (19)
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Here u/ and u¢ are solutions of (1)—(3) corresponding to the boundary controls f and

g, respectively. Since u/(-,T) = UT f, we can also write ¢’ in the form:
c'lf.g)= U f,U 9)u, fgeFi.

(20)

To obtain an expression for ¢’ through R” we use the equations (1)—(4) for f,g €

C$0[0,T] and write:

0 = // (zu (z,1) +ul, (z,) — q(z)u (x,t))m} dz dt

= / / uf wf(z,t) + ude(z,t) — q(x)ud(x, t))] dz dt

4 2/0[ (2, 1) (,t)T:de

t=0
z={

i /oT |l (2, us (e, ) — o (2, )l (2, )| .

=0
Finally, we have
—t (uf(a T)a ug(': T))q.[ = (RTfa g)]:T - (fa RTg)]:T .
Comparing (19) and (22) and using a standard density argument, we get:
CT[f, g] = /L[(RTf’ g)]:T - (f’ RTg)]:T ]

Formula (23) shows that the form ¢’ is symmetric,

'If, 91 ="y, f]

which is consistent with the representations (22) and (20).
Let us define the form {7 := FT x FT +— €, Dom!” = FI x FF,

"1f,9) j/ [l (. T) WG T) + g (-, T (7)) da
and show that its values are determined by the response operator.

Proposition 2. The following representations are valid:
lT[fa g] = CT[ifta g] = (RTfa gt)]:T + (fta RTg)}'T .
Substituting f, g € C§°[0,T] into (24) and integrating by parts we have

FMM=AKﬂ%@IwaM@$DW@ﬂMx
= /0 wd (z, T)ud(x, T) dx

0
= / ’U/ift (.7,‘, T)Ug(.T,T) d.T = CT[iftag]
0

(25)



=i [(R"(if), 9) g — (ift, BT g) ] - (26)
Since the coefficients of the system (1)—(2) are time independent, the operator R
commutes with £. Using this fact and integrating by parts in (26), we obtain

"f gl =i [(R"f.ige) pr — (if, B"9) ]
which implies (25).

6. VARIATIONAL PRINCIPLE

In this we shall recover the spectral inverse data ({An, Xn},N) from the dynamical
inverse data (the operator RT) using the forms ¢’ and [T and the controllability of
the system (1)—(3).

In general, the spectral data of the operator £y may be obtained by applying the
well-known variational principle:

l
A= min /0[|g0'($)|2+q(:v)|g0(x)|2] dz |

EM1, ||plZ,=1

V4
o1 / [164@) 2 + g(@)0r(@)[2] do = A,

Mo = min / [1¢(@) + ¢(2) () ?] dz,

PEHL|0l3,=1, (9yp;)n=0, j=1,...,n—1
)2
o [ @ +a@)en@)?] do =, ne .
0

We note that these eigenfunctions are uniquely determined if x,, are positive. Indeed,
since the eigenvalues are simple, the eigenfunctions are uniquely determined by the
normalization constant and the sign of x,,. We will choose all x,, to be positive.

An alternative way to recover the spectral data is based on using the forms (7
and ¢’. From Proposition 1 (ii) it follows that given an eigenfunction ¢ and
corresponding eigenvalue \ of the operator Ly, one can find f € FI such that ¢ = UT f
and IT[f, g] = Mo, ¥)n = AT[f, g], where UTg = 1), g € FL. Then we can realize the
variational principle using the forms ¢! and 7 :

)‘1 = min lT[faf]a
where the minimum is taken over

fery, clffl=1

and

fi: lT[fl:fl] = A1 .



Further,
A\, = min [T[f, f],
where the minimum is taken over the functions f that satisfy:

fer, dILA=1 =0 j=1...,n-1,
and

fo: T [fo, f]l = An, n €N

Thus we find A, and f,.
By the definitions of R? and f, we have

(R"fa)(T) = ul*(0,T) = ¢,,(0) = Xn (27)

These relations allow us to find x, from f,, and so we can recover the complete
spectral data, {An, Xn},cIN-

From the spectral data, {A,, Xn}, N, (or their approximation, {)\An, Xn }neIN)> One
could recover the potential by using the Gelfand-Levitan-Marchenko [1] and Krein
[16] methods. Instead, we choose to solve the inverse problem using the extension
of the BC method. Besides offering yet another alternative to identification methods
based on control and optimization [7, 20, 21], the BC formalism is entirely linear and
is essentially independent on dimensionality.

7. WAVE EQUATION: REGULARITY AND CONTROLLABILITY

The application of the BC method to solve the dynamical inverse problem for the
system (1)—(3) relies on regularity and controllability results for a closely related
boundary value problem for the wave equation, which we briefly discuss in the next
section. These results are new since they are obtained for nonsmooth coefficients.

We consider the related initial boundary value problem for wave equation:

O?w(x,t)  0Pw(z,t)

Y R +q(z)w(z,t) =0, z€(0,¢), te(0,T), (28)
with the boundary conditions
w(0,t) = f(t), w(,t)=0,te(0,T), (29)
and zero initial conditions
0
w(z,0) = 6—1:(:5, 0) = 0. (30)

We denote the solution of (28)-(30) by w’/. Here and below we assume all functions
are real.
To represent the solution w/ and study its properties, we consider the Goursat
problem [27]:
ky — kez +q(x)k =0, 0<z<t<T, (31)
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E0,6) =0, k(z,z) = —%/qu(s) ds. (32)

Using the standard successive approximation method, one can prove the following:

Proposition 3. For ¢ € H problem (31), (82) has a unique solution such that k €
HYQTD), QT i={(z,t): 0 <z <t <T < L}, ky — kup € L*(QF) and equation (51) is
satisfied almost everywhere.

Similar proposition is proved e.g. in [27, Sec. IL.4] for smooth ¢, but the method
works as well for ¢ € L?(0, ).
The following proposition can be checked by direct calculations.

Proposition 4. (i) If f € C?[0,T] and f(0) = f'(0) = 0, the problem (28)-(50) has

the unique solution w = w'(x,t),

_ f(t—x)-i-f;k(x,s)f(t—s)ds forz <t
w! (z,t) = { 0 Tora >t (33)

wl € H3(QT), QT :=(0,£) x (0,T), equation (28) is satisfied almost everywhere, and
the boundary and initial conditions are satisfied in a classical sense.

(ii) For f € FT the function w'(z,t) defined by (33) gives a generalized solution
of problem (28)-(30) such that w’ € C([0,T]; L*(0,£)).

Let
HT .= {feH: supp f C[0,T]}.
From Proposition 3 it also follows that the control operator W7,
W FUs 1Y, WHF = w! (-, T),

is bounded.
We can prove a controllability result which shows that the operator W' is bound-
edly invertible:

Proposition 5. When the potential g € H is known and T € (0,£], then for any
function z € HT, there exists a unique control f € F' such that

w!(z,T) = 2(z) in HT. (34)
Proof. According to (33), condition (34) is equivalent to the equation
T
o(z) = — (T — 2) +/ k(z,$) (T — s)ds z € (0,T). (35)

This is the Volterra equation of the second kind with respect to f. Its solvability
proves Proposition 5.
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8. SOLUTION OF THE SPECTRAL INVERSE PROBLEM

Now we show how to recover the potential function ¢(z) from the known spectral

data, {An;, Xn},cIN-
Introduce a connecting operator CT : FT — FT for the wave equation (28)-(30):

(CTfa g)]:T = (wf('a T),w(., T))H :

The operator C?' is bounded and boundedly invertible, since ¥ = (W')* W”. Note
that this definition of the connecting operator dlffers from the one we used in a
previous paper [6] which included the inner product of w; instead of w. Indeed,
the definition involving w; is more convenient in problems with Neumann spectral
data and ND maps. The definition involving w is more convenient in problems with
Dirichlet data and DN maps.

The solution w/(x,t) admits the (Fourier series) representation

o0

wf(x’ t) = Z bn(t)gon(m)a

n=1

wherefrom we obtain the equalities

ba(t) = —xn /Otf(f)sm\/f;_ T dr. neN. (36)

From (36) we compute

(CTf 9) r ZXn/ sm\/;)\(_n n) dr -

sin v A, (T — s)
[ YT =) (37)

which shows that the spectral data completely determine the operator C7.
Let y(x) be a solution to the boundary value problem

y'(z) —q(@)y(z) =0, y(0) =0, ¥'(0) =1,z € (0, ) (38)

and let us find a control p’ € FT such that

w (2,T) = { 0, z>T. (39)



12

Note that, since ¢(z) is unknown, both y(z) and p’ (¢) are unknown functions at this
point. For any g € C§°[0,T], we have

€ g)rr = (' (,T),w(T))
y(x)w?(z,T) dx

H

(T — 1) dt /0 y(@)wd,(z, ) d
(T — ) dt /0 y(2) W (2,1) — q(@)w (2, 1)] dz
(T — ) [(y(2)wi(z,t) — y' (z)w? (z, )] 1y dt

= g ar

I
S— o S S —

(we used that for g € C§°[0,T], the function w9 and its derivatives are equal to zero
at z = T). Hence the function p” satisfies the equation

") (t)y=T—t, te[0,T).

Since CT is boundedly invertible this equation has a unique solution, p” € FT, for
any T < /.

Moreover, it can be proved that pI € H'(0,T). Indeed, the right hand side of (35)
gives the representation of (W7 f)(z). Therefore, the operator CT, CT = (WT)" W7,
can be represented in the form

¢ =1+,
where IT is the identity operator in F¥ and C! is bounded from FT to H'(0,T).
Hence,
pl = -Clp" +T -t HY(0,T).

Formula (33) implies that solution of the initial boundary value problem (28)-(30)

satisfies the relation

w! (z,t) = —f(t — z) —|—/tk(x,s)f(t— s)ds forxz < t.
Therefore,
wf(t - Oat) = _f(+0)

provided the limit f(40) exists. Applying the propagation of singularities property
for f = p’, we obtain

w? (T —0,T) = —p" (+0).
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Denote pT(+0) by u(T). From (39), w? (T — 0,T) = y(T), thus u(T) is twice
differentiable with respect to 7', and (38) gives

Y1) _ u"(T)

y(T) — u(T)

By varying T in (0, ), we obtain ¢(-) in that interval. Since the function y(7') may

have only a finite number of zeroes in (0, £), this completes the solution of the iden-
tification problem.

q(T) =
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