
ASYNCHRONOUS DISCRETE EVENT SYSTEMS
AND EMERGENCE OF COMPUTATIONAL CHAOS

Sarit Barhen Jacob Barhen Vladimir Protopopescu
Center for Engineering Science Advanced Research

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6355

barhenj@ornl.gov

Abstract. Asynchronous computing environments
provide an ideal framework for conceptual modeling
and simulation of large scale, distributed discrete event
systems. Such environments may, however, exhibit an
aperiodic oscillatory behavior referred to as “computa-
tional chaos”, which impedes the correct processing of
quantities of interest. In this paper, we illustrate the
emergence of computational chaos from fixed point and
limit cycle attractors for a simple network model. In
particular, the complete Lyapunov spectrum associated
with the network dynamics is computed, and conditions
that prevent its emergence are briefly discussed.

Keywords: asynchronous computing, computational
chaos, discrete event systems, Lyapunov spectrum.

1. INTRODUCTION

Over the past twenty years, distributed computation has
emerged and developed into a very exciting area. Two
driving forces are behind this development. One is the
desire within the scientific community to solve, in ever
greater details, highly complex problems such as
controlling the behavior of materials at the molecular
level [1], modeling the climate, or weather prediction.
The other arises from ever more rapid progress in
electronic circuit integration at the nanoscale,
production of faster and larger memories, and the
availability of very high bandwidth communication
networks. This has resulted in the development of
massively parallel systems that enable the solution of
such problems, and, in turn, is opening the possibility of
addressing new problems, hitherto considered
intractable.
A distributed computing system is defined as a set of
cooperating processes that evolve on multiprocessor
architectures without a common memory [2]. Each
processor and its local memory form a unit known as a
node. Nodes are connected by physical communication

 School of Engineering and Applied Science, Washington

University in Saint Louis, MO; also with the University of
Tennessee (JB: Computer Science, VP: Mathematics), Knoxville, TN.

channels (networks), which allow any two processors to
exchange information (directly or indirectly) via
message passing.

The overarching paradigm of process cooperation to
achieve a common goal has often been interpreted as
requirement for processes to synchronize with each
other. Since the inception of distributed computing (see
[3] for historical references), considerable resources
have been devoted to the development of efficient
synchronization tools. Two approaches were followed.
One consisted of maintaining a single process, the
controller, which through message exchanges would
coordinate the activities of the individual processes in
the system. Such a “centralized control” solution clearly
failed because (1) the precedence constraints implied by
such message exchanges with the controller slowed
down each process, and (2) if the node containing the
controller failed, the entire system had to halt. The
alternative approach, distributed control, installed a local
process controller at each node. But, even here, local
algorithms had to wait at predetermined points for
predetermined messages to become available [4]. This
gave rise to load imbalance across the system and often
resulted in severe processor underutilization.

The concept of asynchronous computing emerged from
an attempt to overcome these constraints, by creating a
distributed environment that enables uncoordinated,
system−wide activity, while ultimately producing a
correct solution, i.e., a solution that would have been
obtained had synchronization been enforced. One area
that may directly benefit from such a paradigm is the
modeling and simulation of discrete event systems
(DES).

The DES paradigm deals with processes whose output is
a dynamic function of time [5]. In a traditional discrete
event specification (DEVS), one approximates the input,
output, and state trajectories through piecewise constant
segments defined over discrete time intervals of varying
length. The accurate modeling of many realistic
processes, however, had long been recognized to pose
significant challenges to this conventional approach. The
G-DEVS formalism [5] models the trajectories in terms
of a piecewise polynomial representation, yielding
higher accuracies in simulating continuous processes as

Mediterranean Multiconference on Modeling and Simulation
Genoa, Italy October 29-31, 2004

discrete event abstractions. Moreover, it enables the
development of a uniform simulation environment for
hybrid (i.e., both continuous and discrete) systems.

Recently, a Discrete Event Calculus Model (DECM) was
proposed [6], where it is argued that the concept of event
is more natural for real-time systems than the concept of
state. Centering a formulation on the former, allows one
to express asynchronous behavior without having to rely
on the classical paradigm of state transition, which is
typically a challenge for systems where the number of
states is very large. In addition, DECM offers an explicit
representation of time that allows the use of timed
simulations for the validation of formal specifications.

In this paper, we focus on the concept of concurrent
asynchronicity as implied by an uncoordinated, system-
wide activity. In view of existing application challenges,
there is a strong motivation to develop algorithms that
can fully exploit such a behavior. One of the main
reasons progress in this direction has been slow is that
concurrent asynchronous relaxation algorithms usually
give rise to an aperiodic oscillatory behavior. This long
known phenomenon was originally referred to as chaotic
relaxation [7] or computational chaos.

In the sequel, we first present some of the basic concepts
underlying concurrently asynchronous computing. We
illustrate our discussion in terms of the simple, but well
established neurodynamics model attributed to Gross-
berg and Hopfield [8]. Then, we specify the simulation
framework. We characterize the chaotic behavior of our
discrete event system by estimating the complete Lya-
punov spectrum associated with its dynamics, and
demonstrate the emergence of complex behaviors.
Finally, we briefly address the issue of preventing the
emergence of computational chaos.

2. BASIC CONCEPTS

We begin by defining more precisely what we mean by
concurrent asynchronous computation. Let N denote the
total number of nodes in a network. We assume that a
quantity of interest, xn(ν), is being estimated at each
node n, where ν indexes a discrete temporal sequence.
Let ϕ be the nonlinear operator from RN to RN repre-
senting the model of interest, with network components
expressed as ϕn(x1, x2, … xN). Also, let τn(ν) index the
availability of the most recently updated state of node n.
The successive temporal configurations of the network
are in the set ψ = {τ1(ν), …, τN(ν) | ν = 1, …}. Two
potential paradigms can be envisioned.

P1: random node delays: at each temporal grid point,
only a subset of nodes (e.g., randomly determined) is
allowed to update their state. Note that the expression
time-grid refers to the numerical solution of the model
equations (e.g., coupled ODEs, etc...).

More precisely, a concurrently asynchronous node-
delayed system iteration, denoted by the tuple {ϕ, x(0),

ξ, ψ}, is a sequence of state iterates x(ν) of vectors in
RN, obtained by the following recursion starting from a
given vector of initial node states x(0):

1 1

(1)
(1) if

()
(((),..., (())) if .

n
n

n N N

x n S
x

x x n Sτ τ




− ∉
=

∈
ν

ν

ν
ν

ϕ ν ν

Here Sν denotes the set of nodes that carry out an update
at the ν-th time grid point. The set ξ = { Sν | ν = 1, 2,
…} is the sequence of nonempty subsets of nodes that
performed an update at each ν.

P2: random communication delays: such delays are
assumed to occur between nodes of the network. Each
node updates its state at each ν, using the latest
available information stored in its local buffer. The
updated state is then broadcast to all nodes.

 1 1() (((),..., (1),..., (())) (2)n n n N Nx x x xτ τ−=ν ϕ ν ν ν

For both paradigms, three operational assumptions are
made. Specifically, we require that:
• Each consecutive update uses only state

information previously available at the node under
consideration, i.e., τn(ν) ≤ ν – 1.

• Conservation of temporal logic: evermore recent
state information must be used in evolving each
node.

• Node n is not starved in ξ, i.e., there exists a finite
natural number s ∈ N, such that each node updates
its estimate at least once in every s successive time
grid points.

These two paradigms provide, potentially, a conceptual
framework for modeling asynchronous, distributed
discrete event systems. The dynamics underlying such
systems would be capable of updating the nodes in an
uncoordinated manner, where programs at each node
are seen as a collection of functionally cooperating
processes, with no explicit dependencies to enforce
waiting at synchronization points for the purpose of
swapping partially computed results.

To date, only paradigm P1 has been considered in the
literature [9, 10]. The primary contribution of this study
is the development of a computational framework
corresponding to paradigm P2. Next, we briefly summa-
rize the model we will use to illustrate this study.

3. THE MODEL

We will illustrate our discussion in terms of the
temporal evolution of a fully (logically) interconnected
Grossberg − Hopfield (GH) network [8], implemented
on a spatially distributed computing system. Such a
model is represented by the following system of
coupled, nonlinear differential equations:

 . (3)()n
n n nnl l l

l

d x
dt

a x T g x I+ = +∑ γ

Here xn represents the internal state of the nth neuron.
The strength of the synaptic coupling from neuron l to
neuron n is denoted by Tnl, and the external bias is
denoted by In. The sigmoid function g modulates the
neural response, γn denotes the gain of the transfer
function of the nth neuron, and an represents the inverse
of a characteristic time constant or a decay scaling term.
To create a discrete-event model, we replace the time
derivative of nx with a first order finite difference
representation. Then the n-th component of the GH
discrete-event operator obtained from Eq. (3) is

1 (4).() ())(l N

n n nnl l lln nx T g x Ia x =

=
= ∆ + ++ − ∑x γϕ

where ∆ refers to the time discretization.

4. ASYNCHRONOUS SCHEMES

We begin by briefly summarizing an implementation of
paradigm P1. Then, we introduce the new computational
framework proposed for paradigm P2.

4.1 Random Node Delays

Let a
nK denote the maximum number of time-grid

points over which updating of node n can be delayed.
The actual delay this node experiences is given by

 (5)1a b
n nK r K= +

where r is a random number (0 1)r≤ < . We see that
the following inequality holds:

)1 (6A B
n nK K≤ ≤

A “counter” denoted c
nK is associated to each node.

It is initialized to zero. Because each a
nK is defined

by using a different random number r, each node n
will experience a different delay a

nK . In other
words, at each point of the integration time-grid, a
different subset of neurons will update, thus
satisfying the paradigm’s assumptions.

The implementation algorithm then proceeds as
follows. Each time the dynamics evolves by one
time step, the counter array cK is incremented by
one (recall that initially 0,c

nK n= ∀). Then,

• If c a
n nK K< : no update is allowed; / 0ndx dt = ,

which implies 1
n nx xν ν+ = , where ν denotes the

time-step (time-grid point).

• If c a
n nK K= : node n is allowed to update, i.e.,

we evaluate the RHS of Eq (1) using Eq (4) and,
for all nodes l n≠ , their latest available value
(i.e., their value at time-step ν when 1ν + is
being calculated). Also, when c a

n nK K= , after
updating nx , a new actual delay for node n (i.e.,

a
nK) is obtained via Eq (5), and c

nK is reset to
zero.

4.2 Random Communication Delays

In the previous paradigm, a node can stay idle up to
b
nK steps. This may result in substantial processor

under-utilization in a distributed, multi-processing
environment. Moreover, many actual delays may
occur not at the nodes, but during information
transfer over the network. It is therefore important to
account for this phenomenon.

We begin by rewriting Eq (4) in a way that will
naturally highlight the network delays. Ignoring the
external bias, we have

1

(, , ,) (7)

(1) ()

 + ()

n n n nn n n

l N
n l

nl l l
l n

x a x T g x

T g x

ν ν ν

η ν θ

+

=

≠

= −∆ + ∆

∆∑

γ

γ

Observe that in the first two terms on the RHS of Eq
(7), we use as state variable nxν . We assume that
process n evolves on node n, and that its previous
values are therefore immediately accessible. In other
words, there is no need to transfer these values over a
network and no delay is incurred.

On the other hand, for all nodes l n≠ , the state
variables lxη used for updating nxν to 1

nxν + are
evaluated at a previous time-step η , where η =

(, , ,)n lη ν θ . Here θ denotes a random delay expe-
rienced by the data packet lxη sent at time η on a
path from l to n and used by n at ν . Its actual
expression will be specified shortly.

To enable the simulation of such a network commu-
nication process, we will assume that each node n
keeps a virtual buffer matrix for incoming data. Each
row of that matrix corresponds to a specific logical
channel. For instance, nl will denote the channel
that transfers data from node l to node n. At each
time step ν , buffer channel nl stores (at node n)
updates lxν from node l. The buffer, however, is
virtual because, even though these updates were
generated at the same time step ν , they will only be
made available to node n at future time steps µ
determined from random propagation delays between
l and n.

Now, we need to interpret this concept. We see that
when Eq (7) is executed (that is, when node n updates
its state at time step ν from nxν to 1

nxν +) it fetches a
value for lx from the buffer. This value, denoted

lxη was actually calculated and sent from node l at a
previous time step (, , ,)n lη η ν θ= . Note that the
actual values η andµ may be inferred at the nodes
from the time stamps associated with each data
packet. When a data packet is sent through a logical
channel (which may correspond to multiple hops on a
physical network), a random delay occurs. This delay
is used, in conjunction with the time stamp, to

position the data in the virtual buffer of the
destination node.

Let ()nB denote the buffer matrix of node n. It is
dimensioned as N x K. A row of ()nB stores data
arriving at node n from a particular node l (over
channel nl). Thus, the length of such a buffer
vector is K, which means that the maximum delay
that is allowed to occur on the network is K time
steps. Data stored in the buffer will be referred to as
back-values for a specific channel.

A back-value is therefore simply the value of a state-
variable under consideration at some previous time
step. For a synchronous system, 1K = , and a single-
cell buffer is used for each channel. The K back-
values of nxν that will be stored successively in such
a buffer at any node l will be: 1 2, , ,...n n nx x x+ +ν ν ν

1.K
nx + −ν

In an asynchronous system, the situation is quite
more complex, since data packets sent from node to
node may arrive in time-locally random order. Thus,
a more sophisticated data structure is needed for
storage. Here, we use the concept of “circular list”
for storing back-values. In particular, the value lxν
sent from node l toward node n at time step ν over
channel nl that exhibits a time-local random delay

nl
νθ will be stored in the buffer matrix of node n at

location ()n
l kB , where k is given by:

 and (8)(1) 1 nmk K νµ µ ν θ= − + = +

In Eq (8) the vertical bar denotes integer modular
division. That is (1) Kµ −  represents the remainder
of the integer division of (1)µ − by K. Note that the
time stamp ν of data packet lxν is stored in a buffer
matrix ()n

l kΩ . Recall also that 0nn
νθ = , i.e., there is no

delay in same node buffering.

The process of retrieving data from the virtual buffer
is more delicate. In particular, it is essential to insure
that temporal logic is enforced. This means that data
from node l being processed at node n should be
retrieved in monotonously increasing temporal order.
But, in a communications network subject to random
delays, a situation could occur, whereby a data packet

1
lxη− arrives at node n for iteration 1ν + , after lxη

was used at time step ν . This can not be allowed.

Specifically, data fetching from the virtual buffer
proceeds as follows. Assume, for illustrative purpose,
that we are at node n at time step ν , in the process of
generating 1

nxν + . We wish to retrieve the latest
available information, lxη , from node l as stored on
buffer channel nl . Let ξ denote the time stamp
associated with the information from l used in the
previous update (at time step 1ν −). These time
stamps are retrieved from the buffer ()nΩ at
locations (,)l kη and (,)l kξ , where

 (9)(1) 1 and (2) 1k K k Kη ξν ν= − + = − + 

If η ξ> , we use lxη . Else, we must use lxξ and
have to reset the buffer

 (10)and , wheren n
l k l l kB x k kξ

µξ= Ω = =

We illustrate this concept below, in Table 1, by
showing the time evolution of the content of the
back-values stored in channel nl< > with n = 1 and
l = 2. We assume that K = 4, and that the random
delays successively encountered by data packets from
l are 3, 1, 2, 2, 3 (in units of ∆). The values to be
retrieved at node n at each successive time step
(1, 2,...)ν = from buffer locations specified by in
Eq (9) would be: 0 0 2 1 3

2 2 2 2 2, , , , ,...x x x x x . As can be
observed, this would result in fetching 1

2x for time
step 4ν = , whereas 2

2x had already been used at
3ν = . Accordingly, we need to invoke kξ in Eq.(9),

which results in the utilization of 2
2x for the update at

4ν = . As per Eq (10), the buffer at 4ν = is reset
to 3 4 2 2

2 2 2 2x x x x .

Table 1. Time evolution of the content of the back-values
stored in channel 1, 2< >

5. LYAPUNOV SPECTRUM

In order to quantitatively characterize the behavior of
the network dynamics, consider an equilibrium point xe
of the autonomous system described by the vector field
f corresponding to the RHS of Eq (3). The local
behavior of the flow near xe is determined by
linearizing the vector field at xe, i.e.,

0 (11)) (0)eδ δ δ δ= (=x f x x x xD

The linear vector field governs the time evolution of a
perturbation δx0 in the neighborhood of the equilibrium
point. Let the eigenvalues and eigenvectors of fD at xe
be λn∈ , and ξn

N∈ , for n = 1,2, … N. We know
from linear systems theory that (assuming that the
eigenvalues are distinct) the trajectory with initial con-
ditions xe + δx0 evolves as

1

)
0 0

1 (12)

(,)

...

e

N

t
e e

tt
e N N

t e

c e c eλλ

δ δ+ = +

= + + +

f xx x x x x

x

D (

1ξ ξ

where nc ∈ are constants determined from the initial
conditions. If λn is real, then ξn and cn are also real. It is
clear that λn corresponds to the rate of contraction (λn <
0) or expansion (λn > 0) near xe in the direction ξn.

0 0 0 0
2 2 2 2
0 0 0 1
2 2 2 2
0 0 2 1
2 2 2 2
3 0 2 1
2 2 2 2
3 4 2 1
2 2 2 2
3 4 2 5
2 2 2 2

0 initial conditions
1 4 (4 1) 4 1 4
2 3 (3 1) 4 1 3
3 5 (5 1) 4 1 1
4 6 (6 1) 4 1 2
5 8 (8 1) 4 1 4

v x x x x
v x x x x k
v x x x x k
v x x x x k
v x x x x k
v x x x x k

µ

µ

µ

µ

µ

=

= = = − + =

= = = − + =

= = = − + =

= = = − + =

= = = − + =







Since the matrix fD is real, if the eigenvalues λn are
complex, they occur in complex conjugate pairs, and
the real part of λn gives the rate of expansion or
contraction.

The Lyapunov exponents generalize the concept of
eigenvalues at an equilibrium point. Their intended use
is to characterize the behavior of a dynamical system
which may include equilibrium points, periodic
solutions, as well as quasi-periodic and chaotic regimes.
To find all N Lyapunov exponents, a set of N linearly
independent perturbation vectors δx(m) is repeatedly
integrated and orthonormalized [11]. Here, a modified
Gram-Schmidt (GS) procedure [12] is used for
improved numerical stability. After each integration
stage r of duration T, the GS generates two sets of
vectors, v(m)(r) and r(m)(r), such that v(1)(r) = δx(1), and

1() () () () ()

1

() () () (13)

() , () ()

() () / () , 2,... .

i mm m m i i

i

m m m m N

ρ ρ ρ

ρ ρ ρ

δ δ= −

=
= < >

= =

−∑r x x v v

v r r

Note that the set of vectors {v(m)} spans the same
subspace as {δx(m)} for m = 1… N. Then, at the L-th
stage (for L sufficiently large), the n-th Lyapunov
exponent is computed as
 ()

1
(14)(()) / .n

n eLog Tρ Λ

ρ
λ ρ Λ=

=
≈∑ r

For an asynchronous DES with random network delays,
the variational equation corresponding to Eq (3) takes
the form

2

2 (, , ,) (, , ,) (15)

(1 ())

(1 ())

nm n nm nn n n n nm

l N
n m n m

nl l l l l m
l n

d U a U T g x U
dt

T g x Uη ν θ η ν θ
=

≠

= − + −

+ −∑

γ γ

γ γ

where
 (16)() () / (0) , (0) .nm n mU t x t xδ δ= =U I

Note that the vector δx(m) in (13) refers to the m-th
column of U. In deriving Eq (15), a distribution of one
process (here neuron) per node was assumed, for expo-
sition simplicity.

We now apply these concepts to illustrate the emer-
gence of computational chaos in a distributed discrete
event system.

6. EMERGENCE OF COMPUTATIONAL CHAOS

We now consider a low-dimensional model made up
of 4 spatially distributed, but logically fully inter-
connected neurons. We show that, even in such a
small network, asynchronous dynamics gives rise to a
variety of complex behaviors.

In a previous study [13], we examined emergent
behaviors under random node delays. Here, the focus
is on random network delays. All simulations were
performed with the recently developed A NET code

[14]. This code is entirely written in Intel Visual
FORTRAN 95. The figures correspond to a direct
screen dump at the conclusion of a simulation. The
A NET visualization software creates, in real time,
these graphics displays.

Each figure comprises three regions. The upper
region displays the evolution of the complete
Lyapunov Spectrum. The color-coded magnitude of
each exponent is plotted versus consecutive time
intervals.

The lower left region displays the signal output of
each neuron versus integration time. This time-series
plot is a basic observational tool for dynamical
systems. As integration time progresses, one is able
to monitor the output of each neuron, to ascertain
whether it converges to a single (fixed) point, follows
a cyclic path, or wanders chaotically.

The lower right region displays a Poincaré plot. This
is a phase-space diagram where the signal output of
one neuron is plotted versus the signal output of
another neuron over time. From a dynamical system
perspective, the Poincare plot depicts the trajectories
(orbits) of two particular components (neurons) of the
network. Trajectories that enter the domain of a point
attractor will approach and remain at that point. Then
a stable equilibrium solution or fixed point has been
reached. Trajectories that enter the domain of a limit
cycle attractor will approach and generate a periodic
solution. Finally, trajectories that enter the domain of
a strange attractor, will exhibit divergence from one
another, and are usually in a state of chaos.

Our first case addresses a situation, whereby in the
synchronous regime the dynamics converges to a
fixed point attractor. In the asynchronous regime, as
delays are introduced, we observe first a transition to
a quasi limit cycle. Then, as delays become larger, a
chaotic regime emerges. The following parameters
are used: , 1, 0.n n nn a I∀ = = =γ The elements
of the synaptic matrix are shown in Table 2.

Synchronous dynamics is an idealized situation in
which no network delays are assumed to occur in
information propagation between processes. This is a
convenient simulation assumption, which is
essentially equivalent to the requirement of
synchronization blocking (and possible processor
idling) in an actual distributed system. Of course, in a
real-life system, synchronization requirements reduce
the overall efficiency of the information processing
throughput.

0.850 -2.000 1.100 0.500
1.800 1.150 0.600 0.300
1.100 2.500 2.500 0.050
0.100 -0.400 -1.441 1.450

Table 2

As can be observed in Fig. 1, the network dynamics
converges to a fixed point attractor. All Lyapunov
exponents are accordingly negative. The actual
spectrum calculated by the A NET code is:
 (0.047, 0.059, 0.948, 0.9751 2 3 4λ = − λ = − λ = − λ = −).

For random communication delays of up to 5∆, the
Poincare plot in Fig. 2 appears to indicate a quasi limit
cycle. This is supported by the output signal from each
neuron, which exhibits almost periodic motion.

When the bound on random communication delays
increases, aperiodic oscillations arise. For a maximum
allowable communication delay of 200∆, the emergence
of computational chaos (Fig. 3) is confirmed by the
existence of positive components in the Lyapunov
spectrum. The exponents calculated by the A NET code
are:
 (0.162, 0.026, 0.303, 0.6081 2 3 4λ = + λ = + λ = − λ = −).

Our second case addresses a situation, whereby in the
synchronous regime the dynamics converges to a limit
cycle (see Fig. 4). In the asynchronous regime, as delays
are introduced, we observe (Fig. 5) transition to chaos.
The limit cycle was obtained by changing three synaptic
parameters. The following data were changed:

1,2 1,3 1,46.00; 0.55; 2.08T T T= − = − = + .

Figure 1

 Figure 2 ∆ denotes the integration step size

 Figure 3

 Figure 4

Figure 5

The lower left region in Fig 4 clearly indicates periodic
behavior. The leading Lyapunov exponent is zero. In
presence of network communication delays, Fig 5
illustrates the emergence of computational chaos. The
Lyapunov spectrum exhibits a distribution with two
positive exponents:
 (0.216, 0.008, 0.139, 0.6071 2 3 4λ = + λ = + λ = − λ = −).

7. TAMING COMPUTATIONAL CHAOS

Since asynchronous discrete event systems may become
chaotic, additional tools are needed to guarantee that
correct results are ultimately obtained. The tools we are
proposing are based on the concept of contraction [15].
Contraction plays a fundamental role in the iterative
solution of nonlinear equations. It is most useful to
express contraction in terms of vector norms, defined as

1| | (| |,... | |)Nx x=x [15]. This norm induces a partial
ordering on RN.

An operator ϕ : D ⊂RN → RN is called a Φ -contraction
on a set D0 ⊂ D, if there exists a linear operator Φ ∈
L(RN) with the following properties:

, (17)

(17)
(17)

| () () | |

1.

a
b
c

• ∀ ∈ −

• −

• −

− ≤ −
≥

<

x yx y x y|
0

ρ()

Dϕ ϕ Φ
Φ
Φ

The first property implies Lipschitz continuity. Indeed, Φ
is often referred to as the Lipschitz matrix of ϕ . The
latter requirements, namely non-negativity and spectral
radius of Φ , generalize the typical specification of the
contractive constant used in conjunction with the usual
norm on RN. We make use of the following result [9].

Baudet’s Theorem. If ϕ : RN → RN is a Φ -contraction on
the closed subset D ⊂ RN, and if ϕ (D) ⊂ D, then any
asynchronous iteration corresponding to ϕ and starting
with a vector x(0) ∈ D, converges to a unique fixed point
of ϕ on D.

These concepts can be applied to study the convergence of
concurrently asynchronous time-evolving processes in
general, and discrete event systems in particular. In a
recent effort [13], we derived specific conditions for
taming computational chaos for distributed asynchronous
systems under node delays. A preliminary analysis
indicates that similar derivations can be applied to
networks with communication delays, even though
different variational equations are needed for estimating
the Lyapunov spectrum. These results will be reported at
an upcoming conference.

8. CONCLUSIONS

In this paper, we have shown that a discrete event model
associated with a spatially distributed, concurrently
asynchronous system may exhibit complex dynamical

behaviors. Controlling the dynamics of materials at the
molecular level is a typical example of a hard problem
requiring such a formalism. Here, we have used for
illustrative purposes a much simpler, but phenomeno-
logically comparable model, namely a discretized version
of the well known Grossberg-Hopfield neural network. A
computational framework based on network commu-
nication delays was proposed, including node buffer
architecture details enabling the conceptual modeling of
concurrently asynchronous processes. The emergence of
computational chaos from fixed point and limit cycle
attractors was observed and accurately characterized. To
that effect, the complete Lyapunov spectrum associated
with the network dynamics was computed. Future work
directed toward the taming of computational chaos was
also briefly addressed.

ACKNOWLEDGEMENTS. Funding for this effort was
provided by the DOE Office of Basic Energy Sciences
(JB and VP), and by the Missile Defense Agency (JB).
ORNL is operated for DOE under contract DE-AC05-
00OR22725 with UT - Battelle, LLC.

REFERENCES
1. Braiman, Y., J. Barhen, and V. Protopopescu, “Control of friction

at the nanoscale”, Phys. Rev. Lett., 90(9), 094301_1-4 (2003).
2. V. Garg, Elements of Distributed Computing, Wiley (2002)
3. Lampson, B., M. Paul, and H. Siegert, Distributed Systems,

Springer (1981).
4. Rodrigue, G., Parallel Computations, Academic Press (1982).
5. Giambiasi, N., B. Escude, and S. Ghosh, “GDEVS: A generalized

discrete event specification for accurate modeling of dynamic
systems”, Trans Soc Comp Simul, 17(3), 120-124 (2000).

6. Paillet, J.L. and N. Giambiasi, “DECM, a user oriented formalism
for high level discrete event specifications of real-time systems”,
Jour Intel & Robotic Sys, 34(1), 27-81 (2002).

7. Chazan, D. and W. Miranker, (1969). “Chaotic relaxations”,
Linear Algebra & Applic., 2, 199-222.

8. Hopfield, J., (1984). “Neurons with graded response have
collective computational properties like those of two-state
neurons”, Proc. Nat. Acad. Sci., 91, 3088-3092.

9. Baudet, G. M., (1978). “Asynchronous iterative methods for
multiprocessors”, Jour. ACM, 25, 226-244.

10. Bertsekas, D. and J. Tsitsiklis, Parallel and Distributed
Computation, Athena Scientific (1997).

11. Wolf, A., J. Swift, H. Swinney, and J. Vastano, (1985). “De-
termining Lyapunov exponents from a time series”, Physica 16D,
285-317.

12. Golub, G. and C. Van Loan, (1996). Matrix Computations, Johns
Hopkins University Press.

13. Barhen, J. V. Protopopescu, S. Barhen, and J. Wells,
“Asynchronous Computation and Emergence of Computational
Chaos”, Proceedings of ADHS’03s, pp. 123-128, IFAC Press
(2003).

14. Barhen, S., “Asynchronous computing in artificial neural
networks”, ORNL TM report (in press, 2004).

15. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of
Nonlinear Equations in Several Variables, Academic Press
(1970).

