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Abstract. Asynchronous computing environments 
provide an ideal framework for conceptual modeling 
and simulation of large scale, distributed discrete event 
systems. Such environments may, however, exhibit an 
aperiodic oscillatory behavior referred to as “computa-
tional chaos”, which impedes the correct processing of 
quantities of interest. In this paper, we illustrate the 
emergence of computational chaos from fixed point and 
limit cycle attractors for a simple network model. In 
particular, the complete Lyapunov spectrum associated 
with the network dynamics is computed, and conditions 
that prevent its emergence are briefly discussed.  

Keywords: asynchronous computing, computational 
chaos, discrete event systems, Lyapunov spectrum. 
 

1. INTRODUCTION 

Over the past twenty years, distributed computation has 
emerged and developed into a very exciting area. Two 
driving forces are behind this development. One is the 
desire within the scientific community to solve, in ever 
greater details, highly complex problems such as 
controlling the behavior of materials at the molecular 
level [1], modeling the climate, or weather prediction. 
The other arises from ever more rapid progress in 
electronic circuit integration at the nanoscale, 
production of faster and larger memories, and the 
availability of very high bandwidth communication 
networks. This has resulted in the development of 
massively parallel systems that enable the solution of 
such problems, and, in turn, is opening the possibility of 
addressing new problems, hitherto considered 
intractable.   
A distributed computing system is defined as a set of 
cooperating processes that evolve on multiprocessor 
architectures without a common memory [2]. Each 
processor and its local memory form a unit known as a 
node. Nodes are connected by physical communication  
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channels (networks), which allow any two processors to 
exchange information (directly or indirectly) via 
message passing.  

The overarching paradigm of process cooperation to 
achieve a common goal has often been interpreted as 
requirement for processes to synchronize with each 
other. Since the inception of distributed computing (see 
[3] for historical references), considerable resources 
have been devoted to the development of efficient 
synchronization tools. Two approaches were followed.  
One consisted of maintaining a single process, the 
controller, which through message exchanges would 
coordinate the activities of the individual processes in 
the system. Such a “centralized control” solution clearly 
failed because (1) the precedence constraints implied by 
such message exchanges with the controller slowed 
down each process, and (2) if the node containing the 
controller failed, the entire system had to halt. The 
alternative approach, distributed control, installed a local 
process controller at each node. But, even here, local 
algorithms had to wait at predetermined points for 
predetermined messages to become available [4]. This 
gave rise to load imbalance across the system and often 
resulted in severe processor underutilization.  

The concept of asynchronous computing emerged from 
an attempt to overcome these constraints, by creating a 
distributed environment that enables uncoordinated, 
system−wide activity, while ultimately producing a 
correct solution, i.e., a solution that would have been 
obtained had synchronization been enforced. One area 
that may directly benefit from such a paradigm is the 
modeling and simulation of discrete event systems 
(DES). 

The DES paradigm deals with processes whose output is 
a dynamic function of time [5]. In a traditional discrete 
event specification (DEVS), one approximates the input, 
output, and state trajectories through piecewise constant 
segments defined over discrete time intervals of varying 
length. The accurate modeling of many realistic 
processes, however, had long been recognized to pose 
significant challenges to this conventional approach. The 
G-DEVS formalism [5] models the trajectories in terms 
of a piecewise polynomial representation, yielding 
higher accuracies in simulating continuous processes as 
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discrete event abstractions. Moreover, it enables the 
development of a uniform simulation environment for 
hybrid (i.e., both continuous and discrete) systems. 

Recently, a Discrete Event Calculus Model (DECM) was 
proposed [6], where it is argued that the concept of event 
is more natural for real-time systems than the concept of 
state. Centering a formulation on the former, allows one 
to express asynchronous behavior without having to rely 
on the classical paradigm of state transition, which is 
typically a challenge for systems where the number of 
states is very large. In addition, DECM offers an explicit 
representation of time that allows the use of timed 
simulations for the validation of formal specifications. 

In this paper, we focus on the concept of concurrent 
asynchronicity as implied by an uncoordinated, system-
wide activity. In view of existing application challenges, 
there is a strong motivation to develop algorithms that 
can fully exploit such a behavior. One of the main 
reasons progress in this direction has been slow is that 
concurrent asynchronous relaxation algorithms usually 
give rise to an aperiodic oscillatory behavior. This long 
known phenomenon was originally referred to as chaotic 
relaxation [7] or computational chaos.   

In the sequel, we first present some of the basic concepts 
underlying concurrently asynchronous computing. We 
illustrate our discussion in terms of the simple, but well 
established neurodynamics model attributed to Gross-
berg and Hopfield [8]. Then, we specify the simulation 
framework. We characterize the chaotic behavior of our 
discrete event system by estimating the complete Lya-
punov spectrum associated with its dynamics, and 
demonstrate the emergence of complex behaviors.  
Finally, we briefly address the issue of preventing the 
emergence of computational chaos.  

  
2.  BASIC CONCEPTS 

We begin by defining more precisely what we mean by 
concurrent asynchronous computation. Let N denote the 
total number of nodes in a network. We assume that a 
quantity of interest, xn(ν), is being estimated at each 
node n, where ν indexes a discrete temporal sequence. 
Let ϕ  be the nonlinear operator from RN to RN repre-
senting the model of interest, with network components 
expressed as ϕn(x1, x2, … xN). Also, let τn(ν) index the 
availability of the most recently updated state of node n. 
The successive temporal configurations of the network 
are in the set ψ = {τ1(ν), …, τN(ν) | ν = 1, …}. Two 
potential paradigms can be envisioned.  

P1: random node delays: at each temporal grid point, 
only a subset of nodes (e.g., randomly determined) is 
allowed to update their state. Note that the expression 
time-grid refers to the numerical solution of the model 
equations (e.g., coupled ODEs, etc...). 

More precisely, a concurrently asynchronous node-
delayed system iteration, denoted by the tuple {ϕ, x(0), 

ξ, ψ}, is a sequence of state iterates x(ν) of vectors in 
RN, obtained by the following recursion starting from a 
given vector of initial node states x(0): 
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Here Sν denotes the set of nodes that carry out an update 
at the ν-th time grid point. The set ξ = { Sν | ν = 1, 2, 
…} is the sequence of nonempty subsets of nodes that 
performed an update at each ν.  

P2: random communication delays: such delays are 
assumed to occur between nodes of the network. Each 
node updates its state at each ν, using the latest 
available information stored in its local buffer. The 
updated state is then broadcast to all nodes. 

     1 1( ) ( ( ( ),..., ( 1),..., ( ( )) )          (2)n n n N Nx x x xτ τ−=ν ϕ ν ν ν  

For both paradigms, three operational assumptions are 
made. Specifically, we require that: 
• Each consecutive update uses only state 

information previously available at the node under 
consideration, i.e.,  τn(ν) ≤ ν – 1. 

• Conservation of temporal logic: evermore recent 
state information must be used in evolving each 
node.  

• Node n is not starved in ξ, i.e., there exists a finite 
natural number s ∈ N, such that each node updates 
its estimate at least once in every s successive time 
grid points.  

These two paradigms provide, potentially, a conceptual 
framework for modeling asynchronous, distributed 
discrete event systems. The dynamics underlying such 
systems would be capable of updating the nodes in an 
uncoordinated manner, where programs at each node 
are seen as a collection of functionally cooperating 
processes, with no explicit dependencies to enforce 
waiting at synchronization points for the purpose of 
swapping partially computed results. 

To date, only paradigm P1 has been considered in the 
literature [9, 10]. The primary contribution of this study 
is the development of a computational framework 
corresponding to paradigm P2. Next, we briefly summa-
rize the model we will use to illustrate this study.  

 
3.  THE MODEL 

We will illustrate our discussion in terms of the 
temporal evolution of a fully (logically) interconnected 
Grossberg − Hopfield (GH) network [8], implemented 
on a spatially distributed computing system. Such a 
model is represented by the following system of 
coupled, nonlinear differential equations: 

                . (3)( )n
n n nnl l l

l

d x
dt
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Here xn represents the internal state of the nth neuron. 
The strength of the synaptic coupling from neuron l to 
neuron n is denoted by Tnl, and the external bias is 
denoted by In. The sigmoid function g modulates the 
neural response, γn denotes the gain of the transfer 
function of the nth neuron, and an represents the inverse 
of a characteristic time constant or a decay scaling term. 
To create a discrete-event model, we replace the time 
derivative of nx  with a first order finite difference 
representation. Then the n-th component of the GH 
discrete-event operator obtained from Eq. (3) is  

      
1 (4).( ) ( ) )( l N
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=
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where ∆ refers to the time discretization. 

 
4.  ASYNCHRONOUS SCHEMES 

We begin by briefly summarizing an implementation of 
paradigm P1. Then, we introduce the new computational 
framework proposed for paradigm P2. 

4.1  Random Node Delays 

Let a
nK  denote the maximum number of time-grid 

points over which updating of node n can be delayed.  
The actual delay this node experiences is given by 

                  (5)1a b
n nK r K= +  

where r is a random number ( 0 1 )r≤ < . We see that 
the following inequality holds: 

        )1 (6A B
n nK K≤ ≤  

A “counter”  denoted  c
nK  is associated to each node. 

It is initialized to zero. Because each a
nK  is defined 

by using a different random number r, each node n 
will experience a different delay a

nK .  In other 
words, at each point of the integration time-grid, a 
different subset of neurons will update, thus 
satisfying the paradigm’s assumptions. 

The implementation algorithm then proceeds as 
follows.  Each time the dynamics evolves by one 
time step, the counter array cK  is incremented by 
one (recall that initially 0,c

nK n= ∀ ). Then, 

• If c a
n nK K< : no update is allowed; / 0ndx dt = , 

which implies 1
n nx xν ν+ = , where ν  denotes the 

time-step (time-grid point). 

• If c a
n nK K= : node n is allowed to update, i.e., 

we evaluate the RHS of Eq (1) using Eq (4) and, 
for all nodes l n≠ , their latest available value 
(i.e., their value at time-step ν  when 1ν +  is 
being calculated). Also, when c a

n nK K= , after 
updating nx , a new actual delay for node n (i.e., 

a
nK ) is obtained via Eq (5), and c

nK is reset to 
zero.    

4.2 Random Communication Delays 

In the previous paradigm, a node can stay idle up to 
b
nK  steps.  This may result in substantial processor 

under-utilization in a distributed, multi-processing 
environment. Moreover, many actual delays may 
occur not at the nodes, but during information 
transfer over the network.  It is therefore important to 
account for this phenomenon. 

We begin by rewriting Eq (4) in a way that will 
naturally highlight the network delays.  Ignoring the 
external bias, we have 
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Observe that in the first two terms on the RHS of Eq 
(7), we use as state variable nxν .  We assume that 
process n evolves on node n, and that its previous 
values are therefore immediately accessible. In other 
words, there is no need to transfer these values over a 
network and no delay is incurred. 

On the other hand, for all nodes l n≠ , the state 
variables lxη  used for updating nxν  to 1

nxν +  are 
evaluated at a previous time-step η , where η =  

( , , , )n lη ν θ . Here θ  denotes a random delay expe-
rienced by the data packet lxη  sent at time η  on a 
path from l to n and used by n at ν . Its actual 
expression will be specified shortly.  

To enable the simulation of such a network commu-
nication process, we will assume that each node n 
keeps a virtual buffer matrix for incoming data. Each 
row of that matrix corresponds to a specific logical 
channel. For instance, nl  will denote the channel 
that transfers data from node l to node n. At each 
time step ν , buffer channel nl  stores (at node n) 
updates lxν  from node l. The buffer, however, is 
virtual because, even though these updates were 
generated at the same time step ν , they will only be 
made available to node n at future time steps µ  
determined from random propagation delays between 
l and n. 

Now, we need to interpret this concept. We see that 
when Eq (7) is executed (that is, when node n updates 
its state at time step ν  from  nxν  to 1

nxν + ) it fetches a 
value for lx  from the buffer. This value, denoted  

lxη  was actually calculated and sent from node l at a 
previous time step ( , , , )n lη η ν θ= . Note that the 
actual values η andµ  may be inferred at the nodes 
from the time stamps associated with each data 
packet. When a data packet is sent through a logical 
channel (which may correspond to multiple hops on a 
physical network), a random delay occurs. This delay 
is used, in conjunction with the time stamp, to 



position the data in the virtual buffer of the 
destination node. 

Let ( )nB  denote the buffer matrix of node n.  It is 
dimensioned as N x K. A row of ( )nB  stores data 
arriving at node n from a particular node l (over 
channel nl ). Thus, the length of such a buffer 
vector is K, which means that the maximum delay 
that is allowed to occur on the network is K  time 
steps.  Data stored in the buffer will be referred to as 
back-values for a specific channel.  

A back-value is therefore simply the value of a state-
variable under consideration at some previous time 
step.  For a synchronous system, 1K = , and a single-
cell buffer is used for each channel. The K back-
values of nxν  that will be stored successively in such 
a buffer at any node l will be: 1 2, , ,...n n nx x x+ +ν ν ν  

1.K
nx + −ν  

In an asynchronous system, the situation is quite 
more complex, since data packets sent from node to 
node may arrive in time-locally random order. Thus, 
a more sophisticated data structure is needed for 
storage. Here, we use the concept of “circular list” 
for storing back-values. In particular, the value lxν  
sent from node l toward node n at time step ν over 
channel nl  that exhibits a time-local random delay 

nl
νθ will be stored in the buffer matrix of node n at 

location ( )n
l kB  , where k is given by: 

        and     (8)( 1) 1      nmk K νµ µ ν θ= − + = +  

In Eq (8) the vertical bar denotes integer modular 
division. That is ( 1) Kµ −   represents the remainder 
of the integer division of ( 1)µ −  by K. Note that the 
time stamp ν  of data packet lxν  is stored in a buffer 
matrix ( )n

l kΩ . Recall also that 0nn
νθ = , i.e., there is no 

delay in same node buffering. 

The process of retrieving data from the virtual buffer 
is more delicate. In particular, it is essential to insure 
that temporal logic is enforced. This means that data 
from node l being processed at node n should be 
retrieved in monotonously increasing temporal order. 
But, in a communications network subject to random 
delays, a situation could occur, whereby a data packet  

1
lxη−  arrives at node n for iteration 1ν + , after lxη  

was used at time step ν . This can not be allowed.    

Specifically, data fetching from the virtual buffer 
proceeds as follows. Assume, for illustrative purpose, 
that we are at node n at time step ν , in the process of 
generating 1

nxν + . We wish to retrieve the latest 
available information, lxη , from node l as stored on 
buffer channel nl . Let ξ  denote the time stamp 
associated with the information from l used in the 
previous update (at time step 1ν − ). These time 
stamps are retrieved from the buffer  ( )nΩ  at 
locations ( , )l kη  and ( , )l kξ , where 

    (9)( 1) 1 and ( 2) 1k K k Kη ξν ν= − + = − +   

If  η ξ> , we use lxη . Else, we must use lxξ  and 
have to reset the buffer 

      (10)and ,   wheren n
l k l l kB x k kξ

µξ= Ω = =  

We illustrate this concept below, in Table 1, by 
showing the time evolution of the content of the 
back-values stored in channel nl< >  with n = 1 and 
l = 2.  We assume that K = 4, and that the random 
delays successively encountered by data packets from 
l are 3, 1, 2, 2, 3 (in units of ∆). The values to be 
retrieved at node n at each successive time step 
( 1, 2,...)ν =  from buffer locations specified by in 
Eq (9) would be: 0 0 2 1 3

2 2 2 2 2, , , , ,...x x x x x . As can be 
observed, this would result in fetching 1

2x  for time 
step 4ν = , whereas 2

2x  had already been used at 
3ν = . Accordingly, we need to invoke kξ in Eq.(9), 

which results in the utilization of 2
2x  for the update at 

4ν = . As per Eq (10), the buffer at 4ν =  is reset 
to 3 4 2 2

2 2 2 2x x x x . 
 

 

 

        

 
Table 1. Time evolution of the content of the back-values 
stored in channel 1, 2< >  
 

5.  LYAPUNOV SPECTRUM  

In order to quantitatively characterize the behavior of 
the network dynamics, consider an equilibrium point xe 
of the autonomous system described by the vector field 
f corresponding to the RHS of Eq (3). The local 
behavior of the flow near xe is determined by 
linearizing the vector field at xe, i.e.,     
                  

0 (11)) (0)eδ δ δ δ= ( =x f x x x xD  

The linear vector field governs the time evolution of a 
perturbation δx0 in the neighborhood of the equilibrium 
point. Let the eigenvalues and eigenvectors of fD  at xe 
be λn∈ , and ξn 

N∈ , for n = 1,2, … N. We know 
from linear systems theory that (assuming that the 
eigenvalues are distinct) the trajectory with initial con-
ditions xe + δx0 evolves as 
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where nc ∈ are constants determined from the initial 
conditions. If λn is real, then ξn  and cn are also real. It is 
clear that λn corresponds to the rate of contraction (λn  < 
0) or expansion (λn  > 0) near xe in the direction ξn. 

0 0 0 0
2 2 2 2
0 0 0 1
2 2 2 2
0 0 2 1
2 2 2 2
3 0 2 1
2 2 2 2
3 4 2 1
2 2 2 2
3 4 2 5
2 2 2 2
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1 4 (4 1) 4 1 4
2 3 (3 1) 4 1 3
3 5 (5 1) 4 1 1
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Since the matrix fD  is real, if the eigenvalues λn are 
complex, they occur in complex conjugate pairs, and 
the real part of λn gives the rate of expansion or 
contraction.  

The Lyapunov exponents generalize the concept of 
eigenvalues at an equilibrium point. Their intended use 
is to characterize the behavior of a dynamical system 
which may include equilibrium points, periodic 
solutions, as well as quasi-periodic and chaotic regimes. 
To find all N Lyapunov exponents, a set of N linearly 
independent perturbation vectors δx(m) is repeatedly 
integrated and orthonormalized [11]. Here, a modified 
Gram-Schmidt (GS) procedure [12] is used for 
improved numerical stability.  After each integration 
stage r of duration T, the GS generates two sets of 
vectors, v(m)(r) and r(m)(r), such that v(1)(r) = δx(1), and  
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Note that the set of vectors {v(m)} spans the same 
subspace as {δx(m)} for m = 1… N. Then, at the L-th 
stage (for L sufficiently large), the n-th Lyapunov 
exponent is computed as  
              ( )

1
(14)( ( ) ) / .n

n eLog Tρ Λ

ρ
λ ρ Λ=

=
≈∑ r  

For an asynchronous DES with random network delays, 
the variational equation corresponding to Eq (3) takes 
the form 
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where 
                    (16)( ) ( ) / (0) , (0) .nm n mU t x t xδ δ= =U I  

Note that the vector δx(m) in (13) refers to the m-th 
column of U. In deriving Eq (15), a distribution of one 
process (here neuron) per node was assumed, for expo-
sition simplicity.  

We now apply these concepts to illustrate the emer-
gence of computational chaos in a distributed discrete 
event system.   

 

6.  EMERGENCE OF COMPUTATIONAL CHAOS  

We now consider a low-dimensional model made up 
of 4 spatially distributed, but logically fully inter-
connected neurons. We show that, even in such a 
small network, asynchronous dynamics gives rise to a 
variety of complex behaviors.  

In a previous study [13], we examined emergent 
behaviors under random node delays. Here, the focus 
is on random network delays. All simulations were 
performed with the recently developed A NET code 

[14]. This code is entirely written in Intel Visual 
FORTRAN 95. The figures correspond to a direct 
screen dump at the conclusion of a simulation. The 
A NET visualization software creates, in real time, 
these graphics displays. 

Each figure comprises three regions. The upper 
region displays the evolution of the complete 
Lyapunov Spectrum. The color-coded magnitude of 
each exponent is plotted versus consecutive time 
intervals.  

The lower left region displays the signal output of 
each neuron versus integration time. This time-series 
plot is a basic observational tool for dynamical 
systems. As integration time progresses, one is able 
to monitor the output of each neuron, to ascertain 
whether it converges to a single (fixed) point, follows 
a cyclic path, or wanders chaotically.  

The lower right region displays a Poincaré plot. This 
is a phase-space diagram where the signal output of 
one neuron is plotted versus the signal output of 
another neuron over time. From a dynamical system 
perspective, the Poincare plot depicts the trajectories 
(orbits) of two particular components (neurons) of the 
network. Trajectories that enter the domain of a point 
attractor will approach and remain at that point. Then 
a stable equilibrium solution or fixed point has been 
reached. Trajectories that enter the domain of a limit 
cycle attractor will approach and generate a periodic 
solution. Finally, trajectories that enter the domain of 
a strange attractor, will exhibit divergence from one 
another, and are usually in a state of chaos.  

Our first case addresses a situation, whereby in the 
synchronous regime the dynamics converges to a 
fixed point attractor. In the asynchronous regime, as 
delays are introduced, we observe first a transition to 
a quasi limit cycle. Then, as delays become larger, a 
chaotic regime emerges. The following parameters 
are used: ,   1,   0.n n nn a I∀ = = =γ  The elements 
of the synaptic matrix are shown in Table 2. 

 

 

 

 

Synchronous dynamics is an idealized situation in 
which no network delays are assumed to occur in 
information propagation between processes. This is a 
convenient simulation assumption, which is 
essentially equivalent to the requirement of 
synchronization blocking (and possible processor 
idling) in an actual distributed system. Of course, in a 
real-life system, synchronization requirements reduce 
the overall efficiency of the information processing 
throughput. 

0.850 -2.000 1.100 0.500  
1.800  1.150 0.600 0.300 
1.100  2.500 2.500 0.050 
0.100 -0.400     -1.441 1.450 

Table 2



 

 

 

 

 

 

 

 

 

 

 

As can be observed in Fig. 1, the network dynamics 
converges to a fixed point attractor.  All Lyapunov 
exponents are accordingly negative. The actual 
spectrum calculated by the A NET code is: 
 ( 0.047, 0.059, 0.948, 0.9751 2 3 4λ = − λ = − λ = − λ = − ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For random communication delays of up to 5∆, the 
Poincare plot in Fig. 2 appears to indicate a quasi limit 
cycle. This is supported by the output signal from each 
neuron, which exhibits almost periodic motion. 

When the bound on random communication delays 
increases, aperiodic oscillations arise. For a maximum 
allowable communication delay of 200∆, the emergence 
of computational chaos (Fig. 3) is confirmed by the 
existence of positive components in the Lyapunov 
spectrum. The exponents calculated by the A NET code 
are: 
        ( 0.162, 0.026, 0.303, 0.6081 2 3 4λ = + λ = + λ = − λ = − ). 

Our second case addresses a situation, whereby in the 
synchronous regime the dynamics converges to a limit 
cycle (see Fig. 4). In the asynchronous regime, as delays 
are introduced, we observe (Fig. 5) transition to chaos. 
The limit cycle was obtained by changing three synaptic 
parameters. The following data were changed: 
                               

1,2 1,3 1,46.00;   0.55;   2.08T T T= − = − = + .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 1 

     Figure 2                          ∆ denotes the integration step size 

    Figure 3 

   Figure 4

Figure 5 



The lower left region in Fig 4 clearly indicates periodic 
behavior. The leading Lyapunov exponent is zero. In 
presence of network communication delays, Fig 5 
illustrates the emergence of computational chaos. The 
Lyapunov spectrum exhibits a distribution with two 
positive exponents: 
     ( 0.216, 0.008, 0.139, 0.6071 2 3 4λ = + λ = + λ = − λ = − ). 

 
7.  TAMING COMPUTATIONAL CHAOS  

Since asynchronous discrete event systems may become 
chaotic, additional tools are needed to guarantee that 
correct results are ultimately obtained. The tools we are 
proposing are based on the concept of contraction [15]. 
Contraction plays a fundamental role in the iterative 
solution of nonlinear equations. It is most useful to 
express contraction in terms of vector norms, defined as 

1| | (| |,... | |)Nx x=x  [15]. This norm induces a partial 
ordering on RN.  

An operator ϕ : D ⊂RN → RN is called a Φ -contraction 
on a set D0 ⊂ D, if there exists a linear operator Φ  ∈ 
L(RN) with the following properties: 
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The first property implies Lipschitz continuity. Indeed, Φ  
is often referred to as the Lipschitz matrix of ϕ . The 
latter requirements, namely non-negativity and spectral 
radius of Φ , generalize the typical specification of the 
contractive constant used in conjunction with the usual 
norm on RN.  We make use of the following result [9]. 

Baudet’s Theorem. If ϕ : RN → RN is a Φ -contraction on 
the closed subset D ⊂ RN, and if ϕ (D) ⊂ D, then any 
asynchronous iteration corresponding to ϕ  and starting 
with a vector x(0) ∈ D, converges to a unique fixed point 
of ϕ  on D. 

These concepts can be applied to study the convergence of 
concurrently asynchronous time-evolving processes in 
general, and discrete event systems in particular. In a 
recent effort [13], we derived specific conditions for 
taming computational chaos for distributed asynchronous 
systems under node delays. A preliminary analysis 
indicates that similar derivations can be applied to 
networks with communication delays, even though 
different variational equations are needed for estimating 
the Lyapunov spectrum. These results will be reported at 
an upcoming conference. 
 
 

8.  CONCLUSIONS 

In this paper, we have shown that a discrete event model 
associated with a spatially distributed, concurrently 
asynchronous system may exhibit complex dynamical 

behaviors. Controlling the dynamics of materials at the 
molecular level is a typical example of a hard problem 
requiring such a formalism. Here, we have used for 
illustrative purposes a much simpler, but phenomeno-
logically comparable model, namely a discretized version 
of the well known Grossberg-Hopfield neural network. A 
computational framework based on network commu-
nication delays was proposed, including node buffer 
architecture details enabling the conceptual modeling of 
concurrently asynchronous processes. The emergence of 
computational chaos from fixed point and limit cycle 
attractors was observed and accurately characterized. To 
that effect, the complete Lyapunov spectrum associated 
with the network dynamics was computed. Future work 
directed toward the taming of computational chaos was 
also briefly addressed.  
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