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Statement of the Problem

Investigate the hydrodynamic limit of a suitably rescaled
linear transport equation in a slab with multiplying 
boundary conditions as the scaling parameter tends to
zero

Recover the corresponding diffusion equation with 
appropriate initial and boundary conditions
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Motivation
• Fundamental: Unify theoretical framework

Understand occurrence and evolution of dissipation in various regimes of
the dynamical evolution (Newtonian kinetic Euler hydrodynamic 
Navier - Stokes hydrodynamic etc.)

• Practical: Simplify description and analysis
Assess validity of various diffusion approximations for applications in
nuclear reactor physics, porous rock transport, capillary transport, cell  
multiplication, etc.

• Computational: reduce computational 
complexity, stabilize algorithms
Develop solvers for parabolic instead of hyperbolic PDEs
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Background

Over the last 50 years, this type of results have been
obtained for various deterministic and stochastic
transport equations with dissipative and conservative B.C.

Asymptotic Results – Hydrodynamic Limits
Formal derivations (Hilbert, Chapman-Enskog, Scharf, Cercignani, Larsen & 

Keller, etc.)
Probabilistic methods – Homogeneization (Bensoussan, Papanicolaou & 

Lions, Ellis & Pinsky, Lebowitz, Spohn, Babowsky, etc.)
Functional analytic methods ( Bardos, Sentis, Angelescu & V.P., Mokhtar-

Kharroubi, etc.)
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Background (cont’d)
Functional analytic methods:
1) No “small scaling parameter” expansion
Use spectral properties to show the asymptotic 

equivalence between the two descriptions:

2) Asymptotic expansion in a small scaling 
parameter
Carry out formal expansion and use functional 
analytic methods to show: 

lim || (  ) (  ) ||   0
t

transport solution dv diffusion solution
→∞

− =∫

0
lim || (    -exp    )   (  ) ||   0main term in ansion of transport solution dv diffusion solution
ε

ε
→

− =∫
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New Features and Difficult Aspects in a Nutshell

• Multiplying boundary conditions
• Evolution semigroup is not a contraction
• In fact, the solution of the transport 

equation grows exponentially in time
• In the asymptotic limit, this growth 

becomes uncontrollable
• As a result, the corresponding diffusion 

equation cannot be derived, not even 
formally
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Technical Steps to Address This Problem

1. Set the transport problem with multiplying B.C. as a 
well posed evolution problem

2. Determine the evolution generated by and the spectral 
properties of the transport operator

3. Determine the correct scaling and compensating 
factors to ensure well-posedness in the limit

4. Carry out the formal asymptotic expansion
5. Estimate initial and boundary layer terms
6. OBTAIN MAIN RESULT: The bulk term in the 

asymptotic expansion satisfies a diffusion equation 
completely determined by the original transport 
problem, including initial and boundary conditions.
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Model Transport Problem
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Evolution Generated by the Streaming Operator 
Proposition. The streaming operator,                           ,  generates a non-
unitary group, whose action can be computed by explicitly accounting by for
the boundary conditions (image method):

where

For            , the evolution semigroup is (strictly) contractive
For            , the evolution semigroup is exponentially bounded !
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Spectral Properties of the 
Transport Operator 

• “Standard” procedure
- Calculate resolvent of the streaming operator
as the Laplace transform of the semigroup

- Determine singularities of the resolvent
and nature thereof

- Use Gohberg & Krein - type results on relatively
compact perturbations to determine spectrum of
the resolvent of the complete transport operator
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Spectrum of the Transport Operator 
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Rescaled Transport Equation
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Spectrum of Rescaled Transport Operator 
(                        )1;   0α ε> →



15

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Fully Rescaled Transport Equation
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Spectrum of Fully Rescaled Transport  Operator
(                                     )1 ;   >0;   0α εβ β ε= + →
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Spectrum of the Transport Operator
Proposition. The spectrum of the streaming operator, is                     

located in the band and is composed of the line

and the segments

The spectrum of the transport operator, consists of plus 
possibly a denumerable set of isolated eigenvalues with finite algebraic 
multiplicities.  Moreover, for all                              the semigroup
generated by       satisfies the estimate

with the exponential bound
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Corollary
With the scaled restitution coefficient, 
the transport semigroup becomes exponentially
bounded in time, uniformly in      , since

The exponential type depends on the slab size, and strength of 
boundary reflection

Since the type is finite, it can be compensated !

Introduce additional volume absorption to compensate for the 
boundary production, as a function of medium size

( ) ( ) ( )2

21n 1 1 11 , 1 2 0 .
2 2 1 2 2a a
+β ⎛ ⎞

ω +βε ε = + +βε+ − → ε→⎜ ⎟ε ε +β
β

ε⎝

β

⎠
+

ε

( )1 0 ,α= +βε β>



19

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Rescaled and Compensated
Inhomogeneous Transport Problem

is a positive constant,                                      and
Before stating the main result, we define the following projection operators:  
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Main Result
Let and assume that the data,          and PS, are sufficiently smooth. 
Then the solution,        , of the rescaled and compensated transport equation satisfies

where T  > 0, M and δ are two positive constants independent of T and ε, and f is the 
solution of the following diffusion problem in
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Sketch of the Proof - Asymptotic Expansion
Seek solution      of the rescaled transport problem in the form:

where denote respectively the interior (bulk), initial 
layer, boundary layer, and reminder terms.   Each one of the first 
three terms in assumed to satisfy exactly the transport equation and is 
written as an asymptotic expansion in ε, namely:

The leading term in the interior (bulk) term does not depend on 
The leading term in the initial layer term does not depend on x.
The leading term in the boundary layer term does not depend on t.
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Separate Terms in Powers of

Solvability condition for         is trivially satisfied and the one for          formally yields diffusion equation !
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A Priori Estimates for the Diffusion Equation
Proposition. For                                   the diffusion equation

admits a solution in                     Additional smoothness in I.C. and sources
Translates in corresponding additional smoothness of the solution and one
can show that

Remark. Conditions to ensure smoothness are not optimal.
Proof. A priori estimates for weak solutions of parabolic equations
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Boundary Layer Term - Milne Problem
Proposition. For                      the systems

admit solutions in                                              , if and only if

Moreover, there exists a constant M>0, such that
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B.C. and I.C. for the Diffusion Equation

- Use asymptotic expansion, solution to the 
Milne problem, and solvability conditions  
of terms of various orders to derive 
boundary and initial conditions for the 
diffusion equation

- Estimate remainder 
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Main Result
Let and assume that the data,          and PS, are sufficiently smooth. 
Then the solution,        , of the rescaled and compensated transport equation satisfies

where T  > 0, M and δ are two positive constants independent of T and ε, and f is the 
solution of the following diffusion problem in

2

2 2a
β β

γ > + 0Pϕ
εϕ

( ) ( )2 [ , ] [ 1,1]
, 0, ,T

L a a
f Me for all t Tδ

ε − × −
ϕ − ≤ ε ∈

( ) ( )

( ) ( )

2

+2

0

1,        , R
3

4 ,    
3
4 ,    
3

, 0

f fx t f P S o n a a
t x

f f P S in x a
n
f f P S in x a
n

f x P x

−

+

⎧ ∂ ∂
= − γ + − ×⎪ ∂ ∂⎪

∂⎪ = β + = −⎪
∂⎨

⎪ ∂
= β + =⎪

∂⎪
⎪ = ϕ⎩

( )1 , :H a a−



27

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Summary and Open Problems
- First rigorous result on the diffusion limit for linear 

transport with multiplying B.C. in L2

- Results carry out, essentially unchanged, to the 
Banach spaces Lp, 1 < p

- Physically relevant case p = 1 is still open for 
multiplying B.C.  The difficulty is purely technical
and has to do with the fact that L1 is not reflexive

- General geometries may require modifications in 
techniques 
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