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Introduction

Molten Fluoride Salts
A High-Temperature Coolant
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There Has Been a Rebirth of Interest in 
High-Temperature Nuclear Reactors

Thermochemical hydrogen production: 
Requires high temperatures: 700 to 850ºC

Brayton power cycles that 
efficiently convert heat to electricity 

(vs. steam cycle limits at ~500ºC)

Increased availability of carbon-
carbon composites and other 
high-temperature materials

H2
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Only Two Coolants Have Been Demonstrated to be 
Compatible with High-Temperature Operations 

Helium
(High Pressure/Transparent)

Molten Fluoride Salts
(Low Pressure/Transparent)
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Mankind has Large-Scale Experience 
with Only 3 High-Temperature Liquids

Iron, Glass, and Fluoride Salts)
Molten Fluoride Salts Were Used in 

Molten Salt Reactors with Fuel in Coolant 
(AHTR Uses Clean Salt and Solid Fuel)

Molten Fluoride Salts Have Been Used 
for a Century to Make Aluminum in 

Graphite Baths at 1000°C
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Reactor Peak Temperatures 
and Power Outputs
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Molten Salt 
Nuclear Applications
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Molten-Salt Nuclear Applications
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Molten salt reactor (MSR)→
with fuel dissolved in a molten salt

←Advanced high-temperature reactor with 
solid fuel and a molten-salt coolant

H2

High-temperature heat transport→
from nuclear reactors to 

thermochemical hydrogen facilities

←Fusion:  Molten salt coolant for heat 
transfer and tritium breeding



High-Temperature 
Heat Transport

Heat Transport From Nuclear Reactors to 
Thermochemical Hydrogen Facilities
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Heat Transport Systems for Hydrogen Production
(Heat + Water → Hydrogen + Oxygen)

Nuclear 
Reactor

Thermochemical 
Hydrogen Production 

System

Heat
Exchanger

H2

Water

Oxygen

• Heat must be transported from the reactor to the hydrogen 
production plant [1000s of MW(t)]

• Significant transport distances are involved because of the 
size of the chemical plants and safety (100s of meters)

• Temperature of delivered heat: 700 to 850ºC
• Other molten salts used in the chemical industry to 600ºC
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Molten Salts Have Superior Capabilities 
for the Transport of Heat

03-258
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Molten Salt Intermediate Heat Exchangers (IHXs) have 
Lower Temperature Drops, Smaller Heat Exchangers, and 

Less Power Consumption than Helium IHXs
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High-Temperature Heat-Transport 
Research-and-Development Challenges

• Materials of construction, if operating 
temperatures are above 750ºC

• Optimized choice of salt
• System engineering of salt with a freeze 

point between 350ºC and 500ºC



The Advanced High-
Temperature Reactor (AHTR)

Solid Fuel
Clean Molten Salt Coolant
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Passively Safe Pool-Type 
Reactor Designs

High-Temperature 
Coated-Particle 

Fuel

The Advanced
High-Temperature 

Reactor 
Combining Existing 

Technologies in a New Way
General Electric 

S-PRISM

High-Temperature, 
Low-Pressure 

Transparent Molten-
Salt Coolant

Brayton Power Cycles

GE Power Systems MS7001FB
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The Advanced High-Temperature Reactor

03-239R
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AHTR Fuels and Coolant

Graphite-Matrix, Coated Particle Fuel
Clean Molten-Salt Coolant
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The AHTR Uses Coated-Particle Graphite Fuel Elements
(Peak Operating Temperature:  1250ºC; Failure Temperature:  >1600ºC)

• Fuel particle with multiple 
coatings to retain fission 
products

• Fuel compact contains particles

• Compacts inserted into graphite 
blocks
− Several options for graphite 

geometry (prismatic, rod, pebble 
bed, etc.)

− Base design uses prismatic; 
other options are viable

• Graphite blocks provide neutron 
moderation and heat transfer to 
coolant 

Same Fuel as Used in Gas-Cooled Reactors
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Molten Salt Coolant Reduces AHTR Temperatures 
and Equipment Sizes Relative to Helium Reactors
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Liquids Remove Heat More Effectively than Gas:
Cooler Fuel for the Same Coolant Exit Temperatures
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AHTR Facility Design

A Low-Pressure, 
High-Temperature Liquid-Cooled Reactor
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Proposed AHTR Facility Layouts are Based 
on Sodium-Cooled Fast Reactors

Low Pressure, High Temperature, Liquid Cooled

General Electric S-PRISM
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AHTR 9.0-m Vessel Allows 2400-MW(t) Core 

03-155
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In an Emergency, Decay Heat is Transferred to 
the Reactor Vessel and then to the Environment

• Similar to GE S-PRISM (LMR)

• Liquid transfers heat from fuel to 
wall with small temperature drop 
(~50ºC)

• Argon gap: Reactor to guard vessel
−Heat transfer: ~T4

−Thermal switch mechanism

• Heat rejection:  Vessel temperature 
dependent
−LMR:  500-550ºC [~1000 MW(t)]
−AHTR:  750ºC [~2400 MW(t)]

• Other decay heat cooling options

Control
Rods

Hot Air Out

Air
Inlet

Fuel
(Similar to
MHTGR)
Reactor
Vessel

Argon Gap

Guard
Vessel
Insulation

Decay Heat from 
Vessel to 

Environment

Decay Heat 
from Core to 
Vessel Liner

Core

~50º C Difference 
in Molten Salt 
Temperatures
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2400-MW(t) AHTR Nuclear Island is Similar in Size 
to 1000-MW(t) Sodium-Cooled S-PRISM Plant

• Differences from S-PRISM 
facility layout:
− No SNF storage in vessel
− No heat exchanger inside vessel
− Molten salt-to-gas heat 

exchanger in turbine hall

• Same vessel size (low pressure)
− Space for 2400-MW(t) AHTR 

core with low power density

• Similar equipment size
− Molten salt volumetric heat 

capacity > than that for sodium

• Higher-capacity decay heat 
removal system
− 750ºC vessel under accident 

conditions for nominal 1000ºC 
salt exit temperature

• Higher electrical output
− S-PRISM:  380 MW(e)
− AHTR:  >1200 MW(e)

Reactor 
Cavity
Cooling 
Ducts

Reactor 
Core

MS-MS Heat 
Exchanger

Spent 
Fuel 
Storage

Turbine Hall With MS-Gas HX
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The Preliminary Economic Analysis Indicates 
Capital Costs of 50 to 60% per kW(e) Relative to 

S-PRISM and MHTGRs

• Economics of scale
− 2400 MW(t) vs. 600 to 1000 MW(t)

− 1300 MW(e) vs. 300 to 380 MW(e)

• Passive safety in a large 
reactor
− Liquid heat transport inside 

reactor vessel

− Higher temperature (750ºC) vessel 
increases heat rejection 

• Higher efficiency multi-
reheat Brayton cycle

• No high-pressure vessel
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AHTR Research and 
Development Challenges

• New reactor concept with associated 
uncertainties

• No qualified materials of construction if 
operating temperatures are above 750ºC

• Reactor core design
• Refueling temperatures near 500ºC (Avoid 

salt freezing)



Molten Salt Reactor (MSR)

Fuel Dissolved In Molten Salt
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MSRs Were Developed to Support 
Several Large Programs (1950–1970)

Molten Salt Reactors:  Fuel Dissolved in Coolant

Aircraft Nuclear 
Propulsion Program

← ORNL Aircraft 
Reactor Experiment:  

2.5 MW; 882ºC
Fuel Salt:  Na/Zr/F

INEEL Shielded Aircraft 
Hanger→

Molten Salt Breeder 
Reactor Program
← ORNL Molten Salt 
Reactor Experiment
Power level:  8 MW(t) 
Fuel Salt:  7Li/Be/F, 
Clean Salt:  Na/Be/F

Air-Cooled Heat 
Exchangers →
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Molten Salt Reactor
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Cross Section of 1970s 2250-MW(t) 
MSR Design
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The Molten Salt Reactor Experiment 
Demonstrated the Concept

1960s Goal:  Breeder
• Base technology established        

Today’s Option
• Actinide burning
• New requirements
• Changes in the base 

technology

Hours critical 17,655

Circulating  fuel loop time (hours)   21,788

Equiv. full power hrs w/ 235U fuel     9,005

Equiv. full power hrs w/ 233U fuel     4,167

MSRE power = 8 MW(t)          
Core volume  <2 cubic meters
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Renewed Interest in MSRs

• Changing goals
− Passive safety in very large reactors
− Low fissile fuel inventory, no requirement for 

large breeding ratio
− Wastes without long-lived actinides
− Burning actinides from light-water reactors

• New technologies that may significantly 
lower costs and technical challenges
− Brayton cycles (higher efficiency and avoid 

steam/salt mismatch)
− Compact heat exchangers (minimize volume of 

fuel salt)
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MSRs Have a Different Safety Approach that 
Allows Passive Safety in Very Large Reactors

02-069
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Multiple Fuel Cycle Options Exist 
(Process and Preferred Salt May Differ)

Fuel Cycle
On-line

Processing
Molten

Salt

Actinide burning Optional NaF, ZrF4,
other

Once-through Optional NaF, ZrF4,
other

Denatured (238U) Limited NaF, ZrF4,
other

233Th-233U Breeder Required 7LiF, BeF2
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MSR Thorium Cycle:  Low-Fissile-Inventory 
Reactor with Low-Actinide Waste

• Epithermal neutron breeder reactor
− 232Th + n → 233Pa → 233U
− Maximum breeding ratio: 1.06

• Very low actinide content waste
− Fissile materials burnout before generating 

significant actinides (233U, 235U, 239Pu, etc.)
• Very low fissile inventory

− MSR:  2 kg fissile/MW(e)
− LWR:  3-5 kg fissile/MW(e)
− Fast reactor:  25 kg fissile/MW(e)
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Power Reactor Cycle Waste-Burning Problems 
Avoided by MSR

MSR Burner

MSRs Avoid Several Solid-Fuel-Reactor Problems with 
Burning LWR Actinides (High-Burnup Pu, Am, Cm)
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MSR Actinide Burning Strategies

Thermal Reactors
(with Pu recycle)

Thermal Reactors
(with Pu recycle)
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New Technologies may Significantly 
Improve the Viability of MSRs

Compact Heat Exchangers→
(Reduced fuel salt inventory)

←Brayton Power Cycles
Major efficiency gain

No salt-water interactions
(salt freeze, tritium, etc.)

←Better materials
Carbon-carbon composites
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MSR Research and 
Development Challenges

• Update concept to understand impacts of new 
technologies
− Brayton cycles
− Compact heat exchangers
− Carbon-carbon composites

• Develop modern fuel cycles
− Actinide burning (High actinide inventory)
− Simplified salt processing

• Reactor core design for different fuel cycles
• Refine online chemistry control

− Noble metal plate out



Fusion

Magnetic
Inertial
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Molten Salts are Candidates for 
Multiple Fusion Energy Systems

• Low-pressure coolant
• Tritium breeding

− 6Li + n → 3H + 4He
• First wall applications

− “Liquid-wall” fusion 
machines

− Replaceable radiation-
damage-resistant wall

− Withstand shock waves 
in inertial fusion (laser 
and particle beam)  
machines



Molten Salt 
Characteristics

Neutronics, Chemistry, and Physical Properties 
Determine the Choice of Molten Salt
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Advantages of Molten Salt Coolants
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The Choice of Molten Salt Mixture 
Involves Complex Tradeoffs

03-245

Physical Properties
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BeF2, ZrF4,

AlF3
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Materials

Existing metals to 750ºC
Graphite fully compatible



49

Hastelloy-N Qualified to 750ºC; Testing 
Required for Higher Temperature Materials

• Corrosion control strategy
− Metals noble with respect to salt (Same 

corrosion strategy used in sodium 
systems)

− Requires salt chemistry control
• Pure molten salts
• Maintain salt under highly reducing 

chemical conditions
• Materials challenges in MSR are 

significantly larger because of fission 
products

• Test program required for high 
temperatures (>750ºC)
− Flow loop corrosion testing
− Some high-temperature corrosion 

mechanisms depend upon temperature 
differences

3000 hours at 815ºC with minimal 
corrosion by fluoride salt (Williams: 
Global 2003)
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Materials of Construction Must be Chemically 
Noble Relative to the Molten Salts

2.5-50.9MoF6

4.5-55.3NiF2

2.5-66.5FeF2

3.0-75.2CrF2

Structural Metal Constituents (Fluoride Must Be Less Stable Than Salt)
0.05 (11B)~-9511BF3

0.18-94ZrF4

0.01-104BeF2

0.52-112NaF

0.033 (7Li)-1257LiF
Fluoride Salt Constituents

Cation thermal capture
cross section (barns)

Free energy of formation 
at 1000ºK (kcal/mol-F)Constituent

Salts Are Strong Fluxing Agents; 
Dissolve Oxide Coatings
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Molten Fluoride Salts are Fully 
Compatible with Graphite

• Century of experience 
in the aluminum 
industry (1000ºC)

• Tested in high 
radiation fields

• Tests to 1400ºC
• Does not wet graphite 

(right)
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Physical Properties of Demonstrated Coolants
(Properties at ~700ºC Except for Pressurized Water at 290ºC)

0.130.564,0407321000Water

0.13161,70010,5401,750328Lead
0.25621,00079088397.8Sodium

1.6~13,6703,1401,290500*0.58 NaF-
0.42 ZrF4

(ARE)

2.81.04,5401,9401,430459*7Li2BeF4

(MSRE)

ν·106

(m2/s)
k

(W/mºC)
ρ Cp

(kJ/m3ºC)
ρ

(kg/m3)
Tboil

(ºC)
Tmelt

(ºC)Coolant

*Salts Used in Reactors.  Examples of fluoride salts with lower melting 
points:  Li-Na-Be (22-44-33):  ~300ºC; Na-K-Zr (10-48-42):  385ºC
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Partial List of Candidate Salt Systems

385<0.1NaF-KF-ZrF4

10/48/42
Zirconium
Fluorides

4600.7KBF4/KFFluoro-
Borates

4540.01LiF-NaF-KF
11.5/46.5/42

Alkali
Fluorides

Melting 
Point 
(ºC)

Pressure at 
1000ºC
(Atm.)

Example
(mole %)

Family



Energy Conversion
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Liquid-Cooled Reactors Deliver Heat at Higher 
Temperatures than Gas-Cooled Reactors
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Delivering Heat at a Nearly Constant 
High Temperature Allows the Use of 

Advanced Electric Power Cycles

• Multi-reheat helium 
Brayton cycle

• Cycle requirements
− High temperature
− All heat delivered at a 

high temperature
− 4 to 8% more efficient 

than simple gas-cooled 
Brayton cycle with 
same peak 
temperatures

Hot
Molten Salt

Return
Molten Salt

Cooling Water

Generator

Recuperator

Gas
Compressor
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Brayton Cycles:  An Enabling Technology 
for High-Temperature Salt-Cooled Reactors
• No steam-cycle 

temperature limit
• Brayton cycle efficiencies

− 48% efficiency at 705ºC
− 51.5% efficiency at 800ºC
− 56.6% efficiency at 1000ºC

• High temperatures match 
salt properties (avoid 
freezing)

• No salt interactions if a 
heat- exchanger failure 
occurs
− Steam and salt slowly 

react
− Helium or nitrogen does 

not react with salt

Above:  GE Power 
Systems 
MS7001FB

Left:  GT-MHR 
Power Conversion 
Unit (Russian 
Design)
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Scaled Comparison of the 1380-MW(e) ABWR 
Turbine Building and ~1300-MW(e) AHTR/MSR

• No low-pressure steam turbines (Brayton cycle operates at 
higher pressures)

• Brayton cycle requires ~1100 MW(t) of cooling water 
capacity, compared with 2800 MW(t) for ABWR

Advanced helium Brayton 
cycles can  likely achieve a 
substantial reduction of the 
turbine building volume

ABWR

Helium-Brayton Cycle with 
Three Power Conversion
Units (Similar to GT-MHR)



Conclusions
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Molten Salts may be the Enabling Technology 
for Economic High-Temperature Reactors
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Application

Molten Salt Systems (Low Pressure)
• Heat Transport Systems
• Advanced High-Temperature Reactor (Solid Fuel)
• Molten Salt Reactor (Liquid Fuel)
• Fusion Reactors

General Electric ESBWR


