
 The Performance Evaluation
Research Center (PERC)

Patrick H. Worley, ORNL

Participating Institutions:

Argonne Natl. Lab. Univ. of California, San Diego

Lawrence Berkeley Natl. Lab. Univ. of Maryland

Lawrence Livermore Natl. Lab. Univ. of North Carolina

Oak Ridge Natl. Lab. Univ. of Tennessee, Knoxville

Website: http://perc.nersc.gov

 Research by Worley was sponsored by the Office of Mathematical,
Information, and Computational Sciences, Office of Science, U.S.
Department of Energy under Contract No. DE-AC05-00OR22725 with UT-
Battelle, LLC.

 These slides have been authored by a contractor of the U.S. Government
under contract No. DE-AC05-00OR22725. Accordingly, the U.S.
Government retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or allow others to do
so, for U.S. Government purposes

 Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the
United States Department of Energy under Contract No. DE-AC05-
00OR22725.

Acknowledgements

Fishing for Performance

"Give a person a fish; you have fed them for today.
Teach a person to fish; and you have fed them for a
lifetime." (Chinese proverb)

PERC builds fishing equipment (poles, nets, and
dynamite) and develops new fishing techniques for
performance analysis, optimization, and modeling.
We also do a little teaching and a little fishing.

PERC Mission:
 Develop a science of performance.
 Engineer tools for performance analysis and

optimization.

New Fishing Techniques

Performance Monitoring

 Flexible performance instrumentation systems

 Performance data management infrastructure

 Tools to tie performance data to user's source code

Performance Modeling

 Convolution schemes to generate models from independent
application and system characterizations

 Statistical and data fitting models

 Hierarchical phase models

 Performance bounds

Performance Optimization

 Source code analysis

 Self-tuning software

 Runtime adaptability

Fishing Equipment

Tools being developed within PERC

 PAPI: cross-platform interface to hardware performance counters

 MetaSim Tracer: tool for acquiring operation counts and memory
address stream information

 CONE: call-graph profiler for MPI applications

 mpiP: lightweight scalable profiling tool for MPI

 MPIDTRACE: a communications (MPI and I/O) tracer

 Performance Assertions: performance expressions for triggering
actions at runtime in application codes

 Dyninst: framework for modifying programs as they run

 dsd: memory access pattern identification tool

 EXPERT: automatic analysis of performance problems in traces

 CUBE: analysis framework for hierarchical performance data

 MetaSim Convolver: performance prediction tool for computational
phases

Fishing Equipment

Tools being developed within PERC

 Active Harmony: software architecture for runtime tuning of
distributed applications.

 SvPablo: graphical environment for instrumenting source code and
analyzing performance data

 ROSE: compiler framework for recognizing and optimizing high-level
abstractions

 PBT: tool for generating performance bounds from source code

Tools being leveraged in PERC research

 DIMEMAS: network simulator used to examine impact of varying
bandwidth, latency, topology and computational performance

 TAU: tool suite for automatic instrumentation, data gathering,
experiment multiplexing, and performance data storage and analysis

 ATOM: binary instrumentation package on Alpha systems

 PIN: binary instrumentation package on Intel systems

Recent Research Results

Selected recent PERC research highlights:
 Scalability analysis in SvPablo
 Identifying and exploiting regularity in memory

access patterns using dsd
 Convolution-based performance modeling

SvPablo Scalability Analysis

Features
 Automatic generation of scalability data based on SvPablo

performance files
 Detection of bottleneck moves as the number of processors

changes
 Scalability Analysis at source code level
 Easy-to-use graphical user interface correlating to the main GUI

Example
• Enhanced Virginia Hydrodynamics One (EVH1)

 all source code in F90
 intertask communication via MPI

• Execution Environment
 IBM SP at LBNL/NERSC
 Test runs on 16, 32, 64, 128, 256, 512 processors

Scalability Analysis: EVH1

Colored boxes
corresponding
to inefficiency

Colored boxes
corresponding
to inefficiency
Each column
represents one
test run

Line graph showing
scalability across
the executions

Scalability Analysis: EVH1

Major routine
sweepy scales
very well across
the executions

Exploiting Memory Access Patterns

dsd: Regularity Measurement Tool

 Instrumentation

 PAPI for bottlenecks

 DynInst for transitory instrumentation

 user control of detection overhead

 binary instrumentation only (source code not needed)

 Applied to several codes

 Fortran and C

 SPEC, NAS benchmarks, and production codes

 Regularity data used to guide optimizations

 4% improvement in gzip

 5% FT improvement

Metrics and Optimizations

Optimization Characteristics Code
Prefetching Long streams (100+) with short/moderate strides

(<10)
gzip, swim, mgrid

Tiling Many (10k+) long streams (100+ elements), some
with large strides (10+); many scalar streams

mgrid, swim, su2cor,
matmult, Jacobi

Loop fission Many short streams; many scalar streams from
register pressure; interleaved long streams

su2cor

Loop fusion Long streams with repetitition
Loop interchange Very large strides (32+) FT
Data layout A few long (100+ elements) streams with short

strides (<8); high cache miss rates
swim, su2cor

Copying, stream
remapping

Long streams with large strides (32+) FT, BT, matmult

Superpaging Long streams, spanning many pages (10+); TLB
misses and page faults

gzip

Loop unrolling Many scalar streams due to register pressure
Code restructuring A few long streams with short stride (<8); high

cache/TLB miss rates
gzip, su2cor

Scatter/gather using
indirection vector

Irregular (Rspatial < 0.65) umt98, CG

Optimization of gzip
Based on Regularity

 Code restructuring

 Targets TLB misses

 Alternate array access
order in fill_window

 Results to the right

 Prefetching (SGI)

 14% improvement for
fill_window

 Overall 4%
improvement

 Sensitivity of regularity

 fill_window invariant

 Additional guidance 2.46.4Total

1.04.8ct_tally

0.14.5updcrc

0.75.2send_bits

0.13.2
compress_
block

2.510.8
longest_
match

-3.47.2deflate

6.934.2
fill_
window

Memory Stall
% Change

TLB Miss
% Change

Function

Convolution-based
Performance Modeling

 Follows an automated “recipe” to generate the model

 Application characteristics gathered with MetaSim Tracer
 Number and types of primitive instructions (flops, loads, stores)

 Memory access patterns and ranges (yielding Cache hit rates)

 Communications patterns (MPI primitives) and message sizes

 I/O patterns and sizes

 System characteristics measured with PMaC HPC Benchmark
Suite probes
 EFF_BW

 I/O Bench

 MAPS

 MAPS_CG

 MAPS_Ping

 PEAK

Performance Predictions for
POP Ocean Code

Table 2: Real versus Predicted-by-Model Wall-clock Times for POP x1 Benchmark
X1 at 16 processors real time 9.21 seconds, predicted time 9.79 seconds, error 6.3%

Blue Horizon Lemieux # of pe’s

Real
Time(sec)

Predicted
Time(sec)

Error Real
Time(sec)

Predicted
Time(sec)

Error

16 204.92 214.29 -5 % 125.35 125.75 0 %

32 115.23 118.25 -3 % 64.02 71.49 -11 %

64 62.64 63.03 1 % 35.04 36.55 -4 %

128 46.77 40.60 13 % 22.76 20.35 11 %

 Longhorn Seaborg # of pe’s

Real
Time(sec)

Predicted
Time(sec)

Error Real
Time(sec)

Predicted
Time(sec)

Error

16 93.94 95.15 -1 % 204.3 200.07 2 %

32 51.38 53.30 -4% 108.16 123.10 -14%

64 27.46 24.45 11% 54.07 63.19 -17%

128 19.65 15.99 16%% 45.27 42.35 6 %

POP has been ported to a wide variety of computers for
eddy-resolving simulations of the world oceans and for
climate simulations as the ocean component of coupled
climate models.

Performance Predictions for
POP Ocean Code

 Seconds per simulation day

POP Total Timings POP 1.4.3, x1 benchmark

0

20

40

60

80

100

120

16 32 64 128

Processors

S
e

c
o

n
d

s
 p

e
r

S
im

u
la

ti
o

n
 D

a
y

Lemieux (R) Lemieux (M)
Blue Horizon (R) Blue Horizon (M)
Longhorn (R) Longhorn (M)
Seaborg (R) SeaBorg (M)
X1 (R) X1 (M)

Figure 2: Real (R) versus Predicted-by Model (M) Times for POP x1 Benchmark

-7.8%3,3003,043234HP SC45HYCOM Large

30.6%2,0622,692234IBM P4HYCOM Large

5.7%5,3115,612234IBM P3HYCOM Large

3.9%1,3781,43296HP SC45HYCOM Standard

-0.4%1,2101,20596IBM P4HYCOM Standard

-0.7%2,6242,60596IBM P3HYCOM Standard

21.5%1,9602,38259HP SC45HYCOM Standard

15.7%1,7992,08159IBM P4HYCOM Standard

4.6%4,3594,55859IBM P3HYCOM Standard

Percent
Error

Actual
Timing
(sec)

Predicted
Timing
(sec)

Number of
Processors

HPC
System

Application Test
Case

Performance Predictions for
HYCOM Ocean Code

Performance Predictions for
HYCOM Ocean Code

Results of “blind” predictions using convolution recipe
(predictions made by PMaC, confirmed by 3rd party at DoD HPCMO)

Errors in the model were reduced below 10% in all cases post-mortem.

Fish Stories
(Recent Application Impacts)

PERC analysis and optimization techniques have recently led to

the following (easily quantifiable) performance improvements:

 AGILE-BOLTZTRAN (TSI): performance improved up to 55%
on IBM by eliminating redundant computations

 ZEUS-MP (TSI): single processor performance improved by 90%
on IBM by changing compiler options

 GS2 (PMP): performance improved by 300% on IBM by
changing data decomposition

 POP (CCSM): performance improved over 300% on Cray by
modifying communication algorithms and correcting OS
performance problems

 CAM (CCSM): performance improved by 10-30% from new load
balancing schemes (in addition to performance optimizations
reported last year).

 SciDAC code developed to study low-frequency turbulence in
magnetized plasma. Typical use

 assess the microstability of plasmas

 calculate key properties of the turbulence

 simulate turbulence in plasmas which occur in nature

 Initial analysis

 IBM Power3 (NERSC Seaborg: 8 nodes, 16 processors/node)

 Runtime adaptation using Active Harmony

 Performance (execution time) improvement by changing layout

 55.06s =>16.25s (without collisions)

 71.08s => 31.55s (with collisions)

 Work in progress

 Tuning time spent in communication

Runtime Optimization of GS2

Evolution of Ocean Model Performance

Performance analysis

motivated code

modifications and

identified OS

optimizations

that increased

performance by more

than a factor of 3 from

May 7 baseline.

Evolution of Atmospheric Model
Performance as of April 2003

Last year’s results

for 64x128x26 grid

and 3 advected fields.

Since then, resolution

has increased to

128x256x26, 11

advected fields and

parameterizations for

many new processes.

Evolution of Atmospheric Model
Performance as of March 2004

New resolution decreased

simulation rate significantly.

Previous optimizations

continue to be important,

But new opportunities for

optimization arise as

science in code evolves

and as code is ported to

new platforms.

Using Visualization to Identify Load
Imbalance

Graphs show processor

utilization on the Cray X1

before and after enabling load

balancing in the Community

Atmospheric Model. The

visualization was used to

motivate using a load

balancing option that

has not been useful on

other platforms.

Fishing Lessons

The PERC tutorial was presented at ScicomP’03 and SC’03, and
will be taught again at Sigmetrics/Performance at Columbia
University, N.Y. during the week of June 12th. PERC will also
be happy to present the tutorial at SciDAC project meetings. The
tutorial can also be downloaded from the PERC website:

http://perc.nersc.gov

Looking to the Future:
The Massively Parallel Challenge

Systems featuring 10,000+ CPUs, present daunting challenges for
performance analysis and tools:

 What performance phenomena should we measure?

 How can we collect and manage performance data spewed out
by tens of thousands of CPUs?

 How can we visualize performance phenomena on 10,000+
CPUs?

 How can we identify bottlenecks in these systems?

Intelligent, highly automated performance tools, applicable over a

wide range of system sizes and architectures, are needed.

Looking to the Future:
Benchmarking and Modeling

 How can a center meaningfully procure a system with 10,000+
CPUs, a system 10 to 100 times more powerful than any system
currently in existence?

 How can we define a benchmark that provides meaningful
results for systems spanning four orders of magnitude in size?

 Can we assess the programming effort required to achieve
these extra-high levels of performance?

Reliable performance modeling techniques, usable with modest

effort and expertise, offers the best hope for a solution here.

The DARPA High-Productivity Computing Systems (HPCS)

program is also examining benchmarks for future high-end

systems.

Looking to the Future:
System Simulation

 “Computational scientists have become expert in simulating
every phenomena except for the systems they run on.” --
Speaker at recent HPC workshop.

 System simulations heretofore have been used sparingly in
system studies, because of the great cost and difficulty in
parallelization of such simulations.

Such simulations are now feasible, due to:

 Availability of large-scale parallel systems

 Developments in the parallel discrete event simulation field

Looking to the Future:
User-Level Automatic Tuning

 Self-tuning software technology has already been demonstrated
in a few large-scale libraries:

 FFTW (MIT).

 LAPACK-ATLAS (Univ. of Tennessee).

Near term: Adapting these techniques to a wider group of widely
used scientific libraries.

Mid term: Automatically incorporate simple performance models
into user application codes.

Future goal: Automatically incorporate simple run-time tests, using
compiler technology, into user application codes.

Working with PERC

For further information:

http://perc.nersc.gov

