
Performance Evaluation and Modeling of a Parallel Astrophysics Application♣

G. (Kumar) Mahinthakumar∗ and Mohamed Sayeed, Dept. of Civil Engineering, North Carolina State University
John Blondin, Dept. of Physics, North Carolina State University

Patrick Worley, Computer Science and Mathematics Division, Oak Ridge National Laboratory
William Raphael Hix and Anthony Mezzacappa, Physics Division, Oak Ridge National Laboratory

♣ This research was sponsored by the Office of Mathematical, Information, and Computational Sciences, Office of Science,
U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Batelle, LLC. Accordingly, the U.S.
Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes.
∗ Corresponding author. gmkumar@ncsu.edu, 919-515-7696. Campus Box 7908, Raleigh, NC 27695.

Keywords: Performance Evaluation, Performance
Modeling, Parallel Computing.

Abstract: We investigate the performance of a large-
scale parallel astrophysics application code on two
modern parallel architectures. Machine characteristics are
first evaluated by performing micro-benchmarking
studies. Application performance is then studied in terms
of floating-point performance and speedup. A semi-
empirical model consisting of application and machine
parameters is then constructed to model the timing of the
application. The parameters are first fit using measured
times and then the predictive capability of the model is
evaluated against additional measured times.

INTRODUCTION

Achieving maximum possible performance on
large-scale scientific applications is more challenging
than ever due to the increasing complexity of modern
parallel architectures. Performance of a parallel
application primarily depends on two characteristics, one
pertaining to the application and the other pertaining to
the machine. Application characteristics include the
primary algorithmic kernels, programming language,
parallelization strategy, problem size and other input
parameters. Machine characteristics include hardware
metrics such as CPU performance, memory performance,
and communication performance and software metrics
such as compiler performance and efficiency of
communication and math libraries. Producing
applications that work well on a wide range of hardware
platforms is a non-trivial task because the machine
characteristics and its interdependence on application
characteristics vary from platform to platform. The
aforementioned reasons also make performance
prediction a difficult task. In recent years, performance

analysis and modeling on parallel architectures have
attracted considerable attention. These studies range from
kernel benchmarking studies, application performance
studies, performance modeling, and detailed comparative
analysis of newer architectures [e.g., Dunigan et al. 2003,
Petrini et al. 2003,Vetter and Yoo 2002, Parashar and
Hariri 2000].

This paper deals with a widely used finite
difference astrophysics code containing over 6500 lines
of Fortran and MPI (Message Passing Interface, Gropp et
al. 1999). The program is currently configured to run
simulations of the Sedov-Taylor blast wave solution in
2D and 3D spherical geometries. While the code deals
with a specific application area, the algorithmic kernels
used are indicative of many numerically intensive finite-
difference codes. Therefore, the performance analysis and
modeling methodologies used in this paper have more
general applicability.

APPLICATION DESCRIPTION

The astrophysics code, VH1 (Virginia
Hydrodynamics), was originally developed by the
numerical astrophysics group at University of Virginia. It
solves the following equations describing ideal inviscid
compressible flow of gas hydrodynamics [Blondin 1999].

()

() ()

() () ()

0
t

p
t

p G
t

ρ
ρ

ρ
ρ

ρε
ρε ρ

∂
+ ∇ ⋅ =

∂
∂

+ ∇ ⋅ + ∇ =
∂

∂
+ ∇ ⋅ + ∇ = + ⋅

∂

u

u
uu F

u u u F

mailto:gmkumar@ncsu.edu

where ρ is the mass density, u is the velocity vector, p is
the pressure, ε is the total specific energy, and F and G
are momentum and energy source terms (e.g., gravity,
radiative cooling etc.). The unknowns are u, ρ, and p.
Note that the second equation is a vector equation. For
example, for a two dimensional problem we have 4
unknowns (ux, uy, ρ, and p) and 4 equations. i.e., 2 scalar
equations (first and third equations) and 1 vector equation
(2nd equation) that can be expressed as two scalar
equations.

VH1 uses finite-differences with a piecewise
parabolic approximation [Colella and Woodward 1984]
and a Reimann solver to solve the aforementioned
equations. Time stepping is explicit. VH1 uses 2nd order
operator splitting and 1D Lagrangian hydrodynamics in
each coordinate direction (explicit PPM method). The
code uses a Lagrangian coordinate system with a remap
routine that transforms the results back to a fixed Eulerian
grid. Cartesian (1D or 2D), Spherical (2D), and
symmetrical cylindrical (1D) geometries are supported.
The original VH1 code was written in Fortran 77. EVH1
is an enhanced parallel version of VH1 developed jointly
by NCSU and ORNL that includes extension to 3D,
parallelization, and Fortran 90 constructs. Operator
splitting is implemented with explicit MPI_Alltoall
calls, to restructure domain decomposition.

Figure 1 shows output from a typical EVH1
simulation in a 2D Cartesian box for the evolution of the
Kelvin-Helmholtz instability at a shear surface. The top
and bottom of the computational domain have opposite X
velocity producing a shear layer in the middle. This
contact is wiggled (a sine wave) in order to excite the KH

instability. Density of the two fluids is slightly different
to make the instability visible.

ARCHITECTURE DESCRIPTIONS

Two popular parallel architectures are used in
this investigation: (i) IBM p690 cluster at ORNL
(Cheetah), and (ii) an Intel Itanium 2 Linux cluster at
NCSA (TG cluster).

The IBM cluster at ORNL has 27 32-processor
IBM p690 nodes connected by the IBM SP Switch2
(Colony) and Corsair PCI network adapters. Each one of
these 864 processors is a 1.3 GHz superscalar processor
capable of up to 5.2 Gflops. The theoretical peak
performance of the entire machine is about 4.5 Tflops.

The teragrid cluster at NCSA consists of 256 2-
processor Itanium2 nodes connected by Myrinet. The
Itanium2 processor clocks at 1.3 Ghz and is also capable
of 5.2 Gflops. Even though both processors have the
same theoretical peak, TG cluster performance is
generally superior because all three of its cache levels are
integrated into the Itanium2 chip. The combined
theoretical peak of this system is about 2 Tflops.

0
100
200
300
400
500
600
700

0.001 0.1 10 1000
Message Size (KB)

B
an

dw
id

th
 (M

B
/s

) 2 procs
4 procs
8 procs
16 procs
32 procs

Figure 2. MPI_Alltoall performance on the IBM P690

 Theoretical vendor estimates of machine
characteristics such as Mflop performance,
communication bandwidth, and latencies are most often
indicative of upper bounds in an ideal situation. Most full
applications do not see performance based on these
numbers due to factors such as memory issues,
synchronization issues, message contention, and
environmental noise. Therefore we conducted several
microbenchmarking studies to identify realistic
computation and communication characteristics for each
architecture. The llcbench (low-level characterization
benchmarks) from the University of Tennessee was used.
Single processor matrix-matrix multiply DGEMM

Figure 1. EVH1 simulation for Kelvin-Helmholtz
instability at a shear surface

http://icl.cs.utk.edu/projects/llcbench/

performances indicated that the TG processors
outperform the IBM processors by a factor of 1.3 to 1.5
(3-4 Gflops vs. 4-5 Gflops). Several MPI benchmarks,
including those that give MPI_Send latencies, bisection,
point-to-point, MPI_Allreduce and MPI_Alltoall
bandwidths, were run on both architectures. Since our
application code uses MPI_Alltoall as its primary
communication call we present only these results in this
paper. Figures 2 and 3 show the MPI_Alltoall
performance on the IBM P690 and the TG cluster. The 2-
processor bandwidth varies from 100 MB/s to 600 Mb/s
for the IBM P690 and from 20 MB/s to 180 MB/s for the
TG cluster for messages sizes ranging from 1 KB to 32
MB. The bandwidths for other processor counts are up to
a factor of 3 lower on both architectures.

Measured MPI latencies for p690 cluster and the
TG cluster are shown in Table 1. These latencies indicate
that the IBM P690 latencies are much higher than the TG
cluster latencies for both intranode and internode
communication. This is expected for internode
communication since the IBM p690 uses the Colony
interconnect and the TG cluster uses Myrinet. The
measured intranode latencies may be higher on the IBM
p690 because its nodes are much larger (32 processors
compared to just 2 processors on the TG cluster) and the
tests were conducted in a non-dedicated mode.

PERFORMANCE RESULTS

Performance of the EVH1 code was analyzed
extensively using a number of tools including hpm,
gprof, mpiP, svpablo, PAPI, and

MPI_wtime. Many of the aforementioned tools give
highly detailed routine level performance. While these
were useful in identifying performance bottlenecks and
resulted in subsequent improvement of the code, much of
the analysis is too specific to the application and not of
interest here. Therefore we focus only on the overall
performance characteristics of the code and a comparison
among the architectures. Performance is analyzed in
terms of speedup and Gflop performance. In Figure 4 we
compare the Gflop performance of the code for a fixed
size problem when increasing number of processors. The
numbers indicate that the TG cluster outperforms the IBM
p690 by less than 25% up to 32 processors. At 64
processors, TG cluster performance is almost double that
of the IBM p690. This is obviously due to the slow MPI
performance on the IBM when going across the nodes.

0
20
40
60
80

100
120
140
160
180
200

0.001 0.1 10 1000 100000 1E+07
message size (KB)

ba
nd

w
id

th
 (M

B
/s

) 2 procs
4 procs
8 procs
16 procs
32 procs
64 procs

0

5

10

15

20

25

30

35

0 8 16 24 32 40 48 56 64 72

Number of processors

G
flo

ps

Cheetah

TG-Cluster (NCSA)

Figure 3. MPI_Alltoall performance on the TG cluster

MAx Avg Min Max Avg Min
TG Cluster 14 4 3 98 18 16
IBM P690 22 7 6 118 10 7

Intranode Internode
Machine Name

Figure 4. Performance comparison of EVH1 for a
64x64x64 problem

Table 1. Measured MPI latencies in microseconds
 In Figure 5, we show percentage of time spent in

0

10

20

30

40

50

60

4 8 16 32 64
Number of processors

C
om

m
un

ic
at

io
n

Pe
rc

en
ta

ge
 (%

)

Cheetah
TG-Cluster (NCSA)

Figure 5. Percentage of time spent in
communication for a 64x64x64 problem

communication for both architectures for the same
problem. This percentage is calculated by
(communication time/total time)*100. These results
confirm our previous assertion that the slower inter-node
communication on Cheetah when going outside the 32-
processor nodes causes the big jump in communication
time when going from 32 to 64 processors (from less than
10% to over 50%).

PERFORMANCE MODELING

EVH1 was run several times with different
application parameters (problem size, simulation time)
and machine parameters (different machines, number of
processors) and the total run time and the communication
time were recorded for each run. Our goal here is to first
fit these times using an appropriate model and a subset of
the measured data and then test the effectiveness of this
model by predicting the times for remainder of the data.

 In our first attempt we developed a completely
empirical model that used an arbitrary power law
expression with constants fit from measured data using a
nonlinear regression technique. While this model fit the
measured data well, its prediction capabilities were poor
even on the same architecture. This warranted a
replacement of our original power law expression with a
semi-empirical model that conforms to computations and
communications that are actually being performed in the
code. This required slightly different computation models
for 2D and 3D problems due to the manner in which time
stepping is performed in EVH1. Further, lower and upper
bounds were placed on the fitted parameters so that they
are within acceptable ranges. The MATLAB function
lsqcurvefit was used to perform the nonlinear
regression. For problems with bound constraints,
lsqcurvefit uses the conjugate gradient trust-region
method for non-linear regression.

Computation Timing Model

For 2D problems the number of time steps (or
cycles) is linearly proportional to the stop time (T) and the
horizontal resolution (nx). Note that the number of time
steps is also a function of horizontal grid resolution
because of the limitation imposed by the Courant
condition (higher grid resolution translates to smaller grid
spacing which in turn requires smaller time steps).
Therefore we could use the following expression for
approximating the computation time:

2

comp

d
nz nx

t T nx
n

e
p

a b c
⋅

= ⋅ ⋅ ⋅ + +
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

where T is the simulation stop time, nz⋅nx2 is the overall
problem size, and np is the number of processors. a, b, c,
d, and e are the constants to be fitted. Of these, a
represents the number of cycles per time step, b is the
startup overhead within each cycle, c is computation time
per grid point, exponent d accounts for non-linearity due
to cache effects, and e accounts for startup overhead. The
imposed bound constraints are the following: a: 1000 –
10000, b: 0 – 1e-5, c: 1e-8 – 1e-3, d: 1 – 2, e: 1 – 20.
Even though a portion of the startup overhead e could be

a function of problem size and the number of processors,
we have opted to keep this as a constant parameter to
keep the number of fitted parameters to a minimum. The
fitted computation model parameter values for both
architectures are summarized in Table 2.

fitted

predicted

Figure 6. Computation fit for 3D problems
on Cheetah

For 3D problems, time stepping is adaptive; i.e.,
a smaller time step size is used in the beginning of the
simulation and then it is gradually increased with
increasing number of time steps. Therefore, the number of
time steps (or cycles) for 3D problems is non-linearly
proportional to the stop time (T) and the horizontal
resolution (nx). Therefore one additional parameter ‘k’
that accounts for this non-linearity is required. With this
parameter k, the computation timing model for 3D
problems can be written as:

n/p

()
2 d

omp
k⋅ ⋅c

nz nxt T nx
np

a b c e
⎡ ⎤⎛ ⎞⋅

= ⋅ + +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

Due to the limited amount of 3D data available
for fitting, b is assumed to be zero (note that it is very
close to zero for the 2D cases). Only a, c, d, e, and k are
fitted. Again, the fitted values are shown in Table 2. Note
that the values of a and k are nearly equal for both
architectures. This is expected since both these
parameters are application dependent and not machine
dependent. Also, the value of c (computation time per
grid point) is slightly higher for Cheetah than the TG
cluster since it is a slower architecture. To illustrate the
effectiveness of our computation time model,
computation fit and prediction for 3D problems is shown
in Figure 6 for Cheetah. The fitting and prediction are
both very good for this case. The computation fit for the
other cases are not shown due to length considerations but
these were observed to be equally good.

Communication Timing Model

The primary communication operation in the
EVH1 code is the MPI_Alltoall call for a matrix
transpose like operation. The decomposition is similar to
a 1-D striped partitioning of an nx × nx matrix. In this
operation, each processor performs an all-to-all broadcast
of blocks of size nx2/np2. Every processor needs to
exchange (np-1) blocks of size nx2/p2 with every other
processor. i.e., an all-to-all broadcast. Diagonal blocks
undergo only local (intraprocessor) transposition. Once
the appropriate blocks are exchanged, every processor
should perform a local transposition on np blocks. Figure
7 shows this operation schematically.

The communication operation is the same for
both 2D and 3D problems. However, the total number of
cycles will be different in the 2D and 3D problems as
described for the computation model. In each time step
two matrix transpose type operations (each involving an
MPI_Alltoall) are performed. The following expression is
used for the communication timing for 2D problems:

2

2

2

2
(1)

comm
h n

n

f
xi j

gnx nx
np

t T nx
pn

p

⎧ ⎫⎛ ⎞
−⎪ ⎪⎜ ⎟

⎪⎝ ⎠ ⎪= ⋅ ⋅ ⋅ ⎨ ⎬
⎛ ⎞⎪ ⎪+ − +⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

Where g, h, i, and j are the constants to be fitted. With the
exception of f, all parameters are machine dependent.
Here f represents the number of cycles proportional to the
simulation time (set equal to a), g represents the per word

Fitted Values
Cheetah TG Cluster

Parameter

2D 3D 2D 3D
a 4965 5034 4979 5031
b 1.1e-12 0 4.5e-14 0
c 7.78e-6 1.9e-4 3.48e-6 6.2e-5
d 1.102 1.06 1.003 1.13
e 6.64 20 7.36 20
f 4965 5034 4979 5031
g 1.24e-8 1.02e-5 1.33e-7 3.72e-4
h 1.01 1.49 0.998 1.50
i 1e-5 2.9e-4 2.78e-5 1.26e-4
j 4.6e-7 9.18e-5 1.93e-7 3.57e-4
k - 0.81 - 0.82

P0 n/p

P1

P2

P3

Figure 7. Communication in a matrix transpose
operation using 1-D striped partitioning.

Table 2. Fitted parameter values

fitted
predicted

Figure 8. Communication fit for 2D problems on t
TG cluster

he

memory-to-memory copy time (tm), i represents the
message latency, j represents the message bandwidth, and
h represents non-linearity due to message contention. All
parameters except f are fitted; for f, the fitted a value from
the computation time is used. As in the fitting of
computation timing, the fitted parameters are bounded
based on realistic machine parameters. The following
bound constraints are used: g: 1e-9 – 1e-3, h = 1 – 1.5, i =
1e-9 – 1e-3, j = 1e-9 – 1e-3. The fitted values are
summarized in Table 2.

The fitted values of i and j are acceptable for
each architecture as described in the next paragraph. To
illustrate the effectiveness of our communication time
model, communication fit for 2D problems on the TG
cluster is shown in Figure 8.

While the communication prediction is not as
good as the computation prediction, it still captures most
points within 80% accuracy. Communication fit for other
cases are not shown but are equally good in most cases.

The measured MPI latencies for the TG cluster
vary between 3 - 14 microseconds for intranode
communication and 16 - 98 microseconds for internode
communication (Table 1). The fitted value, i = 27
microseconds, is well within these values, indicating that
our model fit captures realistic values. The measured MPI
bandwidth for MPI_Alltoall varies between 20 Mb/s
to 180 Mb/s depending on the number of processors and
message size. This translates to about 0.04 to 0.4
microseconds per word transfer. The fitted value of j =
0.2 microseconds falls well within this range.

Figure 11. Model fitting and prediction for 3D
problems on Cheetah

Figure 12. Model fitting and prediction for 3D
problems on the TG cluster

Figure 10. Model fitting and prediction for 2D
problems on TG cluster

Figure 9. Model fitting and prediction for 2D
problems on Cheetah

 fitted fitted
 predicted predicted

 fitted
fitted predicted

predicted

As in computation timing modeling the
following modification is adapted for communication
timing of 3D problems with the additional parameter k:

()

2

2

2

2

(1)

k
comm

h

nx
nx

np
t T nx

nx
np

n

g

j
p

f

i

−

= ⋅ ⋅ ⋅

+ − +

⎧⎛ ⎞
⎜ ⎟⎪
⎪⎝ ⎠ ⎪
⎨

⎛ ⎞⎪
⎜ ⎟⎪ ⎝ ⎠⎩

⎫
⎪
⎬
⎪
⎪⎭

where g, h, i, and j are the constants to be fit. A
computation fitted value of k (= 0.82) is used. Again, f is
set to the computation fitted value of a. All parameters
are defined as before. As in the fit of computation timing,
the fitted parameters are bounded based on realistic
machine parameters. Same bounds as in the 2D case are
assumed for the 3D problems. The fitted values are again
shown in Table 2.

The overall timing is obtained by simply adding
the communication time to the computation time. The
measured, fitted and predicted overall timing data points
for all cases are shown in Figures 9 to 12. Of the 63 data
points about half (32) were used for fitting and the
remainder were used for testing the prediction. Of the 31
data points predicted, 26 showed an accuracy of 85% or
higher when compared to the measured values. Four of
the 5 points that resulted in a poor prediction were for 2D
problems on Cheetah. We attribute this to the fact that the
overall time for 2D problems is more sensitive to
communication timing and our communication prediction
on Cheetah was not as good as on the TG cluster.

SUMMARY AND CONCLUSIONS

 In this paper we have analyzed and compared the
performance of an extensively used astrophysics code on
two modern parallel architectures. We have developed a
semi-empirical model to predict the timings of this
application for various problem configurations on the two
architectures. The model includes both application and
machine dependent parameters. The fitted machine
dependent parameters are well within realistic values for
both architectures. Prediction accuracy is over 80% for
most data points.

While the model contains certain specificities to
the target application, several aspects of the model could
be easily extended to other finite-element or finite-
difference codes running on parallel architectures. For
example, in the computation time model, the following

parameters will occur in most codes: (i) a parameter
represents the number of cycles or time steps, (ii) a
parameter that accounts for the computation time per grid
point, (iii) parameters that account for startup overhead
and I/O time, and (iv) a parameter that accounts for cache
effects. Similarly, in the communication time model, the
following parameters will be generic to most applications:
(i) a parameter that accounts for message bandwidth, (ii) a
parameter that accounts for latency, and (iii) a parameter
that accounts for message contention. Therefore we
conclude that the approach used in the development of
this model shows promise and could be used in other
applications.

References

Blondin, JM, (1999). VH-1 User’s Guide, North Carolina

State University.

Collela, P., and Woodward, P.R., (1984). The Piecewise
Parabolic Method (ppm) for Gas-Dynamical
Simulations, Journal Of Computational Physics, 54
(1): 174-201, 1984.

Dunigan, T.H., M.R. Fahey, J. B. White, and P. H.
Worley, (2003). Early evaluation of the Cray X1,
Proceedings of SC 2003, Phoenix, AZ.

Gropp, W., Lusk W., and Skjellum A., (1999). Using
MPI: Portable Parallel Programming with the
Message-Passing Interface, 2nd edition, The MIT
Press, Cambridge, MA.

Petrini, F., D. J. Kerbyson, and S. Pakin, (2003). The case
of the missing supercomputer performance: achieving
optimal performance on the 8,192 processors of ASCI
Q, Proceedings of SC 2003, Phoenix, AZ.

Parashar, M., and Hariri, S., (2000). Interpretive
Performance Prediction for Parallel Application
Development, Journal of Parallel and Distributed
Computing, Vol. 60, No. 1, pp. 17 – 47, January 2000.

Vetter, J.S., and A. Yoo, (2002). An empirical
performance evaluation of scalable scientific
applications, Proceedings of SC 2002, Dallas, TX.

Acknowledgements

This work was supported by the Department of
Energy’s SciDAC program (Scientific Discovery through
Advanced Computing). The authors gratefully
acknowledge the supercomputer resources provided by
the National Center for Supercomputing Applications and
the Oak Ridge National Laboratory that was necessary for
this work.

http://wonka.physics.ncsu.edu/pub/VH-1/VH-1_guide.html

	INTRODUCTION
	APPLICATION DESCRIPTION
	ARCHITECTURE DESCRIPTIONS
	PERFORMANCE RESULTS
	PERFORMANCE MODELING
	SUMMARY AND CONCLUSIONS

