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Abstract: We investigate the performance of a large-
scale parallel astrophysics application code on two 
modern parallel architectures. Machine characteristics are 
first evaluated by performing micro-benchmarking 
studies. Application performance is then studied in terms 
of floating-point performance and speedup. A semi-
empirical model consisting of application and machine 
parameters is then constructed to model the timing of the 
application. The parameters are first fit using measured 
times and then the predictive capability of the model is 
evaluated against additional measured times. 

 
INTRODUCTION 

Achieving maximum possible performance on 
large-scale scientific applications is more challenging 
than ever due to the increasing complexity of modern 
parallel architectures. Performance of a parallel 
application primarily depends on two characteristics, one 
pertaining to the application and the other pertaining to 
the machine. Application characteristics include the 
primary algorithmic kernels, programming language, 
parallelization strategy, problem size and other input 
parameters. Machine characteristics include hardware 
metrics such as CPU performance, memory performance, 
and communication performance and software metrics 
such as compiler performance and efficiency of 
communication and math libraries. Producing 
applications that work well on a wide range of hardware 
platforms is a non-trivial task because the machine 
characteristics and its interdependence on application 
characteristics vary from platform to platform. The 
aforementioned  reasons also make performance 
prediction a difficult task. In recent years, performance 

analysis and modeling on parallel architectures have 
attracted considerable attention. These studies range from 
kernel benchmarking studies, application performance 
studies, performance modeling, and detailed comparative 
analysis of newer architectures [e.g., Dunigan et al. 2003, 
Petrini et al. 2003,Vetter and Yoo 2002, Parashar and 
Hariri 2000]. 

This paper deals with a widely used finite 
difference astrophysics code containing over 6500 lines 
of Fortran and MPI (Message Passing Interface, Gropp et 
al. 1999). The program is currently configured to run 
simulations of the Sedov-Taylor blast wave solution in 
2D and 3D spherical geometries. While the code deals 
with a specific application area, the algorithmic kernels 
used are indicative of many numerically intensive finite-
difference codes. Therefore, the performance analysis and 
modeling methodologies used in this paper have more 
general applicability. 

 
APPLICATION DESCRIPTION 

The astrophysics code, VH1 (Virginia 
Hydrodynamics), was originally developed by the 
numerical astrophysics group at University of Virginia. It 
solves the following equations describing ideal inviscid 
compressible flow of gas hydrodynamics [Blondin 1999].  
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where ρ is the mass density, u is the velocity vector, p is 
the pressure, ε is the total specific energy, and F and G 
are momentum and energy source terms (e.g., gravity, 
radiative cooling etc.). The unknowns are u, ρ, and p. 
Note that the second equation is a vector equation. For 
example, for a two dimensional problem we have 4 
unknowns (ux, uy, ρ, and p) and 4 equations. i.e., 2 scalar 
equations (first and third equations) and 1 vector equation 
(2nd equation) that can be expressed as two scalar 
equations.  

VH1 uses finite-differences with a piecewise 
parabolic approximation [Colella and Woodward 1984] 
and a Reimann solver to solve the aforementioned 
equations. Time stepping is explicit. VH1 uses 2nd order 
operator splitting and 1D Lagrangian hydrodynamics in 
each coordinate direction (explicit PPM method). The 
code uses a Lagrangian coordinate system with a remap 
routine that transforms the results back to a fixed Eulerian 
grid. Cartesian (1D or 2D), Spherical (2D), and 
symmetrical cylindrical (1D) geometries are supported. 
The original VH1 code was written in Fortran 77. EVH1 
is an enhanced parallel version of VH1 developed jointly 
by NCSU and ORNL that includes extension to 3D, 
parallelization, and Fortran 90 constructs. Operator 
splitting is implemented with explicit MPI_Alltoall 
calls, to restructure domain decomposition. 

Figure 1 shows output from a typical EVH1 
simulation in a 2D Cartesian box for the evolution of the 
Kelvin-Helmholtz instability at a shear surface.  The top 
and bottom of the computational domain have opposite X 
velocity producing a shear layer in the middle.  This 
contact is wiggled (a sine wave) in order to excite the KH 

instability.  Density of the two fluids is slightly different 
to make the instability visible. 

ARCHITECTURE DESCRIPTIONS 

Two popular parallel architectures are used in 
this investigation: (i) IBM p690 cluster at ORNL 
(Cheetah), and (ii) an Intel Itanium 2 Linux cluster at 
NCSA (TG cluster).  

The IBM cluster at ORNL has 27 32-processor 
IBM p690 nodes connected by the IBM SP Switch2 
(Colony) and Corsair PCI network adapters. Each one of 
these 864 processors is a 1.3 GHz superscalar processor 
capable of up to 5.2 Gflops. The theoretical peak 
performance of the entire machine is about 4.5 Tflops.  

The teragrid cluster at NCSA consists of 256 2-
processor Itanium2 nodes connected by Myrinet. The 
Itanium2 processor clocks at 1.3 Ghz and is also capable 
of 5.2 Gflops. Even though both processors have the 
same theoretical peak, TG cluster performance is 
generally superior because all three of its cache levels are 
integrated into the Itanium2 chip. The combined 
theoretical peak of this system is about 2 Tflops. 
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Figure 2. MPI_Alltoall performance on the IBM P690 

 Theoretical vendor estimates of machine 
characteristics such as Mflop performance, 
communication bandwidth, and latencies are most often 
indicative of upper bounds in an ideal situation. Most full 
applications do not see performance based on these 
numbers due to factors such as memory issues, 
synchronization issues, message contention, and 
environmental noise. Therefore we conducted several 
microbenchmarking studies to identify realistic 
computation and communication characteristics for each 
architecture. The llcbench (low-level characterization 
benchmarks) from the University of Tennessee was used. 
Single processor matrix-matrix multiply DGEMM 

Figure 1. EVH1 simulation for Kelvin-Helmholtz 
instability at a shear surface 

http://icl.cs.utk.edu/projects/llcbench/


performances indicated that the TG processors 
outperform the IBM processors by a factor of 1.3 to 1.5 
(3-4 Gflops vs. 4-5 Gflops). Several MPI benchmarks, 
including those that give MPI_Send latencies, bisection, 
point-to-point, MPI_Allreduce and MPI_Alltoall 
bandwidths, were run on both architectures. Since our 
application code uses MPI_Alltoall as its primary 
communication call we present only these results in this 
paper. Figures 2 and 3 show the MPI_Alltoall 
performance on the IBM P690 and the TG cluster. The 2-
processor bandwidth varies from 100 MB/s to 600 Mb/s 
for the IBM P690 and from 20 MB/s to 180 MB/s for the 
TG cluster for messages sizes ranging from 1 KB to 32 
MB. The bandwidths for other processor counts are up to 
a factor of 3 lower on both architectures. 

Measured MPI latencies for p690 cluster and the 
TG cluster are shown in Table 1. These latencies indicate 
that the IBM P690 latencies are much higher than the TG 
cluster latencies for both intranode and internode 
communication. This is expected for internode 
communication since the IBM p690 uses the Colony 
interconnect and the TG cluster uses Myrinet. The 
measured intranode latencies may be higher on the IBM 
p690 because its nodes are much larger (32 processors 
compared to just 2 processors on the TG cluster) and the 
tests were conducted in a non-dedicated mode.  

PERFORMANCE RESULTS 

Performance of the EVH1 code was analyzed 
extensively using a number of tools including hpm, 
gprof, mpiP, svpablo, PAPI, and 

MPI_wtime. Many of the aforementioned tools give 
highly detailed routine level performance. While these 
were useful in identifying performance bottlenecks and 
resulted in subsequent improvement of the code, much of 
the analysis is too specific to the application and not of 
interest here. Therefore we focus only on the overall 
performance characteristics of the code and a comparison 
among the architectures. Performance is analyzed in 
terms of speedup and Gflop performance. In Figure 4 we 
compare the Gflop performance of the code for a fixed 
size problem when increasing number of processors. The 
numbers indicate that the TG cluster outperforms the IBM 
p690 by less than 25% up to 32 processors. At 64 
processors, TG cluster performance is almost double that 
of the IBM p690. This is obviously due to the slow MPI 
performance on the IBM when going across the nodes.  
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MAx Avg Min Max Avg Min
TG Cluster 14 4 3 98 18 16
IBM P690 22 7 6 118 10 7

Intranode Internode
Machine Name

Figure 4. Performance comparison of EVH1 for a 
64x64x64 problem

Table 1. Measured MPI latencies in microseconds 
 In Figure 5, we show percentage of time spent in 
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Figure 5. Percentage of time spent in 
communication for a 64x64x64 problem 



communication for both architectures for the same 
problem. This percentage is calculated by 
(communication time/total time)*100. These results 
confirm our previous assertion that the slower inter-node 
communication on Cheetah when going outside the 32-
processor nodes causes the big jump in communication 
time when going from 32 to 64 processors (from less than 
10% to over 50%). 

PERFORMANCE MODELING 

EVH1 was run several times with different 
application parameters (problem size, simulation time) 
and machine parameters (different machines, number of 
processors) and the total run time and the communication 
time were recorded for each run. Our goal here is to first 
fit these times using an appropriate model and a subset of 
the measured data and then test the effectiveness of this 
model by predicting the times for remainder of the data. 

 In our first attempt we developed a completely 
empirical model that used an arbitrary power law 
expression with constants fit from measured data using a 
nonlinear regression technique. While this model fit the 
measured data well, its prediction capabilities were poor 
even on the same architecture. This warranted a 
replacement of our original power law expression with a 
semi-empirical model that conforms to computations and 
communications that are actually being performed in the 
code. This required slightly different computation models 
for 2D and 3D problems due to the manner in which time 
stepping is performed in EVH1. Further, lower and upper 
bounds were placed on the fitted parameters so that they 
are within acceptable ranges. The MATLAB function 
lsqcurvefit was used to perform the nonlinear 
regression. For problems with bound constraints, 
lsqcurvefit uses the conjugate gradient trust-region 
method for non-linear regression. 

Computation Timing Model 

For 2D problems the number of time steps (or 
cycles) is linearly proportional to the stop time (T) and the 
horizontal resolution (nx). Note that the number of time 
steps is also a function of horizontal grid resolution 
because of the limitation imposed by the Courant 
condition (higher grid resolution translates to smaller grid 
spacing which in turn requires smaller time steps). 
Therefore we could use the following expression for 
approximating the computation time: 
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where T is the simulation stop time, nz⋅nx2 is the overall 
problem size, and np is the number of processors. a, b, c, 
d, and e are the constants to be fitted. Of these, a 
represents the number of cycles per time step, b is the 
startup overhead within each cycle, c is computation time 
per grid point, exponent d accounts for non-linearity due 
to cache effects, and e accounts for startup overhead. The 
imposed bound constraints are the following: a: 1000 – 
10000, b: 0 – 1e-5, c: 1e-8 – 1e-3, d: 1 – 2, e: 1 – 20. 
Even though a portion of the startup overhead e could be 

a function of problem size and the number of processors, 
we have opted to keep this as a constant parameter to 
keep the number of fitted parameters to a minimum.  The 
fitted computation model parameter values for both 
architectures are summarized in Table 2. 

fitted 

predicted

Figure 6. Computation fit for 3D problems 
on Cheetah 

For 3D problems, time stepping is adaptive; i.e., 
a smaller time step size is used in the beginning of the 
simulation and then it is gradually increased with 
increasing number of time steps. Therefore, the number of 
time steps (or cycles) for 3D problems is non-linearly 
proportional to the stop time (T) and the horizontal 
resolution (nx). Therefore one additional parameter ‘k’ 
that accounts for this non-linearity is required. With this 
parameter k, the computation timing model for 3D 
problems can be written as: 
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Due to the limited amount of 3D data available 
for fitting, b is assumed to be zero  (note that it is very 
close to zero for the 2D cases). Only a, c, d, e, and k are 
fitted. Again, the fitted values are shown in Table 2. Note 
that the values of a and k are nearly equal for both 
architectures. This is expected since both these 
parameters are application dependent and not machine 
dependent. Also, the value of c (computation time per 
grid point) is slightly higher for Cheetah than the TG 
cluster since it is a slower architecture. To illustrate the 
effectiveness of our computation time model, 
computation fit and prediction for 3D problems is shown 
in Figure 6 for Cheetah. The fitting and prediction are 
both very good for this case. The computation fit for the 
other cases are not shown due to length considerations but 
these were observed to be equally good. 

Communication Timing Model 

The primary communication operation in the 
EVH1 code is the MPI_Alltoall call for a matrix 
transpose like operation. The decomposition is similar to 
a 1-D striped partitioning of an nx × nx matrix. In this 
operation, each processor performs an all-to-all broadcast 
of blocks of size nx2/np2. Every processor needs to 
exchange (np-1) blocks of size nx2/p2 with every other 
processor. i.e., an all-to-all broadcast. Diagonal blocks 
undergo only local (intraprocessor) transposition. Once 
the appropriate blocks are exchanged, every processor 
should perform a local transposition on np blocks. Figure 
7 shows this operation schematically. 

The communication operation is the same for 
both 2D and 3D problems. However, the total number of 
cycles will be different in the 2D and 3D problems as 
described for the computation model. In each time step 
two matrix transpose type operations (each involving an 
MPI_Alltoall) are performed. The following expression is 
used for the communication timing for 2D problems: 
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Where g, h, i, and j are the constants to be fitted. With the 
exception of f, all parameters are machine dependent. 
Here f represents the number of cycles proportional to the 
simulation time (set equal to a), g represents the per word 

Fitted Values 
Cheetah TG Cluster 

Parameter 

2D 3D 2D 3D 
a 4965 5034 4979 5031 
b 1.1e-12 0 4.5e-14 0 
c 7.78e-6 1.9e-4 3.48e-6 6.2e-5 
d 1.102 1.06 1.003 1.13 
e 6.64 20 7.36 20 
f 4965 5034 4979 5031 
g 1.24e-8 1.02e-5 1.33e-7 3.72e-4 
h 1.01 1.49 0.998 1.50 
i 1e-5 2.9e-4 2.78e-5 1.26e-4 
j 4.6e-7 9.18e-5 1.93e-7 3.57e-4 
k - 0.81 - 0.82 

P0 n/p

P1

P2

P3

Figure 7. Communication in a matrix transpose 
operation using 1-D striped partitioning.  

Table 2. Fitted parameter values 

fitted 
predicted

Figure 8. Communication fit for 2D problems on t
TG cluster 

he 



memory-to-memory copy time (tm), i represents the 
message latency, j represents the message bandwidth, and 
h represents non-linearity due to message contention. All 
parameters except f are fitted; for f, the fitted a value from 
the computation time is used. As in the fitting of 
computation timing, the fitted parameters are bounded 
based on realistic machine parameters. The following 
bound constraints are used: g: 1e-9 – 1e-3, h = 1 – 1.5, i = 
1e-9 – 1e-3, j = 1e-9 – 1e-3. The fitted values are 
summarized in Table 2. 

The fitted values of i and j are acceptable for 
each architecture as described in the next paragraph. To 
illustrate the effectiveness of our communication time 
model, communication fit for 2D problems on the TG 
cluster is shown in Figure 8.  

While the communication prediction is not as 
good as the computation prediction, it still captures most 
points within 80% accuracy. Communication fit for other 
cases are not shown but are equally good in most cases. 

The measured MPI latencies for the TG cluster 
vary between 3 - 14 microseconds for intranode 
communication and 16 - 98 microseconds for internode 
communication (Table 1). The fitted value, i = 27 
microseconds, is well within these values, indicating that 
our model fit captures realistic values. The measured MPI 
bandwidth for MPI_Alltoall varies between 20 Mb/s 
to 180 Mb/s depending on the number of processors and 
message size. This translates to about 0.04 to 0.4 
microseconds per word transfer. The fitted value of j = 
0.2 microseconds falls well within this range.  

Figure 11. Model fitting and prediction for 3D 
problems on Cheetah 

Figure 12. Model fitting and prediction for 3D 
problems on the TG cluster 

 

 

 

 

Figure 10. Model fitting and prediction for 2D 
problems on TG cluster 

Figure 9. Model fitting and prediction for 2D 
problems on Cheetah 
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As in computation timing modeling the 
following modification is adapted for communication 
timing of 3D problems with the additional parameter k: 
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where g, h, i, and j are the constants to be fit. A 
computation fitted value of k (= 0.82) is used. Again, f is 
set to the computation fitted value of a. All parameters 
are defined as before. As in the fit of computation timing, 
the fitted parameters are bounded based on realistic 
machine parameters. Same bounds as in the 2D case are 
assumed for the 3D problems. The fitted values are again 
shown in Table 2. 

The overall timing is obtained by simply adding 
the communication time to the computation time. The 
measured, fitted and predicted overall timing data points 
for all cases are shown in Figures 9 to 12. Of the 63 data 
points about half (32) were used for fitting and the 
remainder were used for testing the prediction. Of the 31 
data points predicted, 26 showed an accuracy of 85% or 
higher when compared to the measured values. Four of 
the 5 points that resulted in a poor prediction were for 2D 
problems on Cheetah. We attribute this to the fact that the 
overall time for 2D problems is more sensitive to 
communication timing and our communication prediction 
on Cheetah was not as good as on the TG cluster. 

SUMMARY AND CONCLUSIONS 

 In this paper we have analyzed and compared the 
performance of an extensively used astrophysics code on 
two modern parallel architectures. We have developed a 
semi-empirical model to predict the timings of this 
application for various problem configurations on the two 
architectures. The model includes both application and 
machine dependent parameters. The fitted machine 
dependent parameters are well within realistic values for 
both architectures. Prediction accuracy is over 80% for 
most data points.  

While the model contains certain specificities to 
the target application, several aspects of the model could 
be easily extended to other finite-element or finite-
difference codes running on parallel architectures. For 
example, in the computation time model, the following 

parameters will occur in most codes: (i) a parameter 
represents the number of cycles or time steps, (ii) a 
parameter that accounts for the computation time per grid 
point, (iii) parameters that account for startup overhead 
and I/O time, and (iv) a parameter that accounts for cache 
effects. Similarly, in the communication time model, the 
following parameters will be generic to most applications: 
(i) a parameter that accounts for message bandwidth, (ii) a 
parameter that accounts for latency, and (iii) a parameter 
that accounts for message contention. Therefore we 
conclude that the approach used in the development of 
this model shows promise and could be used in other 
applications. 
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