
1

Latest Performance Results from ORNL:

Cray X1 and SGI Altix

Patrick H. Worley

Oak Ridge National Laboratory

2003 LACSI Symposium

System and Application Performance Workshop

October 27, 2003

Eldorado Hotel

Santa Fe, New Mexico

2

• Research sponsored by the Atmospheric and Climate Research
Division and the Office of Mathematical, Information, and
Computational Sciences, Office of Science, U.S. Department of
Energy under Contract No. DE-AC05-00OR22725 with UT-
Battelle, LLC.

• These slides have been authored by a contractor of the U.S.
Government under contract No. DE-AC05-00OR22725.
Accordingly, the U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form
of this contribution, or allow others to do so, for U.S.
Government purposes

• Oak Ridge National Laboratory is managed by UT-Battelle, LLC
for the United States Department of Energy under Contract No.
DE-AC05-00OR22725.

Acknowledgements

3

Evaluation of Early Systems
A project that attempts to evaluate quickly the promise of “early”

(possibly immature) systems:

• Verifying advertised functionality and performance

• Quantifying performance impact of unique system characteristics

• Providing guidance to (early) users

– What performance to expect

– Performance quirks and bottlenecks

– Performance optimization tips

4

Early Systems

ORNL is currently “blessed” with a number of early systems:

• Cray X1

– 64 processors installed in March 2003; upgraded to final 256
processor configuration on 11/14/03.

• SGI Altix

– Initial system installed in August 2003; upgraded to 1.5 GHz
processors on 11/15/03.

• IBM Federation switch (linking 32-way p690 nodes)

– Part of Early Ship Program; pre-GA hardware delivered in
October 2003.

5

Evaluation Methodology

“Measure early, measure often, analyze just in time”

• Hierarchical evaluation
– Microbenchmarks
– Application-relevant kernels
– Compact or full parallel application codes

• Open evaluation
– Rapid posting of evaluation results
– Systems available to external performance researchers

• Fair evaluation
– Determining appropriate way of using system, evaluating

both traditional and alternative programming paradigms
– Collecting data with both standard and custom benchmarks

6

Phoenix

Cray X1 with 64 SMP nodes
• 4 Multi-Streaming Processors

(MSP) per node

• 4 Single Streaming
Processors (SSP) per MSP

• Two 32-stage 64-bit wide
vector units running at 800
MHz and one 2-way
superscalar unit running at
400 MHz per SSP

• 2 MB Ecache per MSP

• 16 GB of memory per node

for a total of 256 processors

(MSPs), 1024 GB of memory ,

and 3200 GF/s peak

performance.

7

Ram

SGI Altix 3700 with 256 processors, configured as two

128-processor SMPs (i.e., 2 OS images)

• Itanium 2 processors running at 1.5 GHz

– 16K L1 instruction cache, 16K L1 data cache

– 256K L2 cache

– 6MB L3 cache.

• 8 GB of memory per processor, for a total of 2 TB of shared
memory

• 17 TB of disk space

• Four processor “compute brick”, made up of two 2-processor +
memory nodes

• Fat-tree NUMAflex network, with support for MPI and SHMEM
communication both within and between SMPs.

• Linux OS, Intel compilers

8

Other Platforms
• Earth Simulator: 640 8-way vector SMP nodes and a 640x640 single-

stage crossbar interconnect. Each processor has 8 64-bit floating point
vector units running at 500 MHz.

• HP/Compaq AlphaServer SC at Pittsburgh Supercomputing Center:
750 ES45 4-way SMP nodes (1GHz Alpha EV68) and a Quadrics
QsNet interconnect with two network adapters per node.

• IBM p690 cluster at ORNL: 27 32-way p690 SMP nodes (1.3 GHz
POWER4) and an SP Switch2 with two to eight network adapters per
node.

• IBM SP at the National Energy Research Supercomputer Center
(NERSC): 184 Nighthawk II 16-way SMP nodes (375MHz POWER3-II)
and an SP Switch2 with two network adapters per node.

• SGI Origin 3000 at Los Alamos National Laboratory (LANL): 512-way
SMP node. Each processor is a 500 MHz MIPS R14000.

9

Outline
Quick sampling of current results, using
• POP parallel application
• COMMTEST microbenchmark
• PSTSWM serial kernel
For more performance data, visit

http://www.csm.ornl.gov/evaluation

10

Caveats
• These are EARLY results (even on the Cray after 6 months),

resulting from sporadic benchmarking on evolving system
software and hardware configurations.

• Performance characteristics are still changing, due to continued
evolution of OS and compilers and libraries.

11

Parallel Ocean Program (POP)

• Developed at Los Alamos National Laboratory. Used for high
resolution studies and as the ocean component in the
Community Climate System Model (CCSM)

• Ported to the Earth Simulator by Dr. Yoshikatsu Yoshida of the
Central Research Institute of Electric Power Industry (CRIEPI).

• Initial port to the Cray X1 by John Levesque of Cray, using Co-
Array Fortran for conjugate gradient solver.

• X1 and Earth Simulator ports merged and modified by Pat
Worley and Trey White of Oak Ridge National Laboratory.

• Optimization on the X1 ongoing.

12

POP Experiment Particulars

• Two primary computational phases
– Baroclinic: 3D with limited nearest-neighbor communication;

scales well.
– Barotropic: dominated by solution of 2D implicit system using

conjugate gradient solves; scales poorly
• One benchmark problem size

– One degree horizontal grid (“by one” or “x1”) of size
320x384x40

• Domain decomposition determined by grid size and 2D virtual
processor grid. Results for a given processor count are the best
observed over all applicable processor grids.

13

POP Platform Comparison

Comparing performance
and scaling across
platforms.

 - Earth Simulator results
 courtesy of Dr. Y. Yoshida
 of the Central Research
 Institute of Electric Power
 Industry (CRIEPI).
 - SGI Origin results
 courtesy of Dr. P. Jones
 of LANL.
 - IBM SP results
 courtesy of Dr. T. Mohan
 of Lawrence Berkeley
 National Laboratory
 (LBNL)

14

POP Performance Diagnosis: Baroclinic

15

POP Performance Diagnosis: Barotropic

16

POP Performance Diagnosis
Cray X1
 Communication-bound for
 more than 192 processors,
 with communication costs
 increasing. Communication
 algorithms known to have
 scaling problems, and
 alternatives being
 developed.

SGI Altix
 Not yet communication
 bound. Using MPI
 point-to-point and
 collectives for barotropic.
 Initial experiments with
 do not show significant
 improvement.

17

POP Performance Evolution on the X1

18

POP Implementation Comparison on the X1

Much of recent
algorithm development
driven by OS
performance problems.
Once OS problems
solved, algorithmic
differences less
significant. MPI
performance still poor
for latency sensitive
Algorithms, and
restructuring for
vectorization still vital.

19

POP Implementation Comparison on the X1

20

POP Implementation Comparison on the X1

21

What’s next for POP?
• Additional Cray X1 optimizations

– Scalable (tree-based) allreduce
– Portable Co-array Fortran
– Cray-specific vectorization

• Additional SGI Altix optimizations
– Careful evaluation of SHMEM-based barotropic

• Increased resolution
– 0.1 degree resolution

• More recent versions of the model
– CCSM version of POP 1.4.3
– POP 2.0
– HYPOP

22

COMMTEST Benchmark

COMMTEST is a suite of codes that measure the
performance of MPI interprocessor communication.
In particular, COMMTEST evaluates the impact of
communication protocol, packet size, and total
message length in a number of “common usage”
scenarios. (However, it does not include persistent
MPI point-to-point commands among the protocols
examined.) It also includes simplified
implementations of the SWAP and SENDRECV
operators using SHMEM.

23

COMMTEST Experiments
i-j

processor i swaps data with processor j. Depending
on i and j, this can be within an SMP node or
between SMP nodes.

i-(i+j), i=1,n

n processor pairs (i,j) swap data simultaneously.
Depending on j, this will be within an SMP node or
between SMP nodes (or both).

24

COMMTEST SWAP Benchmark on X1

Comparing performance
of SWAP for different
communication patterns.
All performance is similar
except for the experiment
in which 8 pairs of
processors swap
simultaneously. In this
case, contention for
internode bandwidth
limits the single pair
bandwidth.

25

COMMTEST SWAP Benchmark on X1

Comparing performance
of SWAP for different
communication pattern,
plotted on a log-linear
scale. The single pair
bandwidth has not
reached its peak yet, but
the two pair experiment
bandwidth is beginning to
reach its maximum.

26

COMMTEST SWAP Benchmark on Altix

Comparing performance
of SWAP for different
communication pattern,
plotted on a log-linear
scale. The single pair
bandwidth has not
reached its peak yet, but
the two pair experiment
bandwidth is beginning to
reach its maximum.

27

COMMTEST SWAP Benchmark

Comparing performance
of SWAP for different
platforms. Experiment
measures bidirectional
bandwidth between two
processors in the same
SMP node.

28

COMMTEST SWAP Benchmark

Comparing performance
of SWAP for different
platforms. Experiment
measures bidirectional
bandwidth between two
processors in different
SMP nodes.

29

MPI vs. SHMEM 64-66 Comparison on Altix

Comparing MPI and
SHMEM performance for
64-66 experiment, looking
at both SWAP
(bidirectional bandwidth)
and ECHO (unidirectional
bandwidth).
SHMEM performance is
better for all message
sizes.

30

MPI vs. SHMEM 64-66 Comparison on Altix

Comparing MPI and
SHMEM performance for
64-66 experiment when
invalidating the cache first,
looking at both SWAP
(bidirectional bandwidth)
and ECHO (unidirectional
bandwidth).
SHMEM performance is
still better for all message
sizes, but not by as much.

31

MPI vs. SHMEM i-(i+64) Comparison on Altix

Comparing MPI and
SHMEM performance for
i-(i+64) experiment,
looking at both SWAP
(bidirectional bandwidth)
and ECHO (unidirectional
bandwidth). Again,
SHMEM performance is
better for all message
sizes.

32

MPI vs. SHMEM i-(i+64) Comparison on Altix

Comparing MPI and
SHMEM performance for
i-(i+64) experiment with
cache invalidation, looking
at both SWAP
(bidirectional bandwidth)
and ECHO (unidirectional
bandwidth). Again,
SHMEM performance is
better for all message
sizes, although not by as
much as without
invalidating the cache.

33

MPI vs. SHMEM 0-1 Comparison on X1

Comparing MPI and
SHMEM performance for
0-1 experiment, looking at
both SWAP (bidirectional
bandwidth) and ECHO
(unidirectional bandwidth).
SHMEM performance is
better for all but the
largest messages.

34

MPI vs. SHMEM 0-1 Comparison on X1

Comparing MPI and
SHMEM performance for
0-1 experiment, using a
log-linear scale. MPI
performance is very near
to that of SHMEM for
large messages (when
using SHMEM to
implement two-sided
messaging).

35

MPI vs. SHMEM i-(i+8) Comparison on X1

Comparing MPI and
SHMEM performance for
i-(i+8) experiment, looking
at both SWAP
(bidirectional bandwidth)
and ECHO (unidirectional
bandwidth). Again,
SHMEM performance is
better for all but the
largest messages.

36

MPI vs. SHMEM i-(i+8) Comparison on X1

Comparing MPI and
SHMEM performance for
i-(i+8) experiment, using
a log-linear scale. MPI
performance is very near
to that of SHMEM for
large messages (when
using SHMEM to
implement two-sided
messaging). For the
largest message sizes,
MPI ECHO bandwidth
exceeds MPI SWAP
bandwidth.

37

PSTSWM Description
 The Parallel Spectral Transform Shallow Water Model represents an

important computational kernel in spectral global atmospheric models.
As 99% of the floating-point operations are multiply or add, it runs well
on systems optimized for these operations. PSTSWM exhibits little
reuse of operands as it sweeps through the field arrays; thus it
exercises the memory subsystem as the problem size is scaled and can
be used to evaluate the impact of memory contention in SMP nodes.
PSTWM is also a parallel algorithm testbed, and all array sizes and loop
bounds are determined at runtime. This makes it difficult for the X1
compiler to identify which loops to vectorize or stream.

38

PSTSWM Experiment Particulars
Horizontal Resolutions

T5: 8 x 16

T10: 16 x 32

T21: 32 x 64

T42: 64 x 128

T85: 128 x 256

T170: 256 x 512

T340: 512 x 1024

T680: 1024 x 2048

 These experiments examine serial
performance, both using one processor
and running the serial benchmark on
multiple processors simultaneously.
Performance is measured for a range of
horizontal problems resolutions for 1, 18,
and 66 vertical levels.

39

PSTSWM Code Versions

• Original (unvectorized) code

• Port to X1

• changing loops and local array definitions for select routines

• Port to X1 with compile-time specification of number of vertical levels

• Math libraries used for block FFTs when available (and when
performance enhancers compared to bundled Fortran
implementation).

40

PSTSWM Implementation Comparisons on X1

Comparing performance
of different code versions
for one vertical level.
Code modifications are
crucial for this code.
Fixing vertical dimension
at compile time improves
performance for large
problem sizes. (Default
compiler optimization
were as good as more
aggressive settings.)

41

PSTSWM Implementation Comparisons on X1

Comparing performance
of different code versions
for 18 vertical levels.
Improvement due to fixing
vertical dimension at
compile time not as
dramatic as for one
vertical level.

42

PSTSWM Processor Benchmark

Comparing single
processor performance
with PSTSWM for 18
vertical levels. X1 MSP
version performance
scaling well with problem
size, and even
performance of SSP
version exceeds p690
processor performance
for the larger problem
sizes.

43

PSTSWM Processor Benchmark

Comparing single
processor performance
with PSTSWM for T85
horizontal resolution and
a range of numbers of
vertical levels.
Performance of SSP
version exceeds that of
p690 and Altix processor
performance for larger
numbers of vertical levels
due to the superior
processor/memory
bandwidth of the X1 .

44

PSTSWM SMP Node Benchmark

Comparing per processor
performance when
solving same problem
simultaneously on all
processors in SMP node.
X1 MSP data are only
data indicating no
performance degradation
when compared to single
processor experiment.
Appears to indicate
additional advantage to
X1 over other systems for
scale-up type
experiments (for this
code).

45

PSTSWM SMP Node Benchmark on X1

Comparing per processor
performance when
solving same problem
simultaneously on all
processors in X1 SMP
node. SSP mode sees
more contention, and
MSP mode achieves
better overall throughput
for larger problem sizes.

46

PSTSWM SMP Node Benchmark on Altix

Comparing per processor
performance when
solving same problem
simultaneously on all
processors in Altix SMP
node. dplace used to
force use of contiguous
processors. Most of
performance degradation
due to using neighboring
processors (sharing
access to local memory).
Rest of degradation due
to using processors in
same 4 processor C
brick.

47

Conclusions?
• Both systems work.
• We need more experience with application codes.
• Cray X1

– SHMEM and Co-Array Fortran performance can be superior
to MPI. However, we hope that MPI small message
performance can be improved.

– Both SSP and MSP modes of execution work fine. MSP
mode should be preferable for fixed size problem scaling, but
which is better is application and problem size specific.

– The X1 is a vector system, and there is no avoiding using
vector-friendly code in order to achieve good performance.

• SGI Altix
– Stability is poor (this week). This is a known OS issue, not

HW.
– Processor performance and scalability are very good (for a

nonvector system).

48

Questions ? Comments ?

 For further information on these and other
evaluation studies, visit
 http://www.csm.ornl.gov/evaluation .

