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The ability to accurately estimate and possibly reduce the uncertainties associated with predictions from nonlinear 
models is a critical component of every scientific and engineering endeavor. At the theoretical level, uncertainties arise 
from unavoidable simplifications carried out in the modeling process.  At the experimental level, they occur due to 
noise, imperfect conditions and equipment, uncontrollable factors, operational biases, or simply mistakes.  

The objective of this paper is to demonstrate the potential reduction of uncertainties that can be achieved by consistently 
combining model predictions and sensor measurements. This uncertainty reduction is illustrated using a few parameters 
and responses from the US Naval Observatory (USNO) astronomical refraction code based on the Hohenkerk and 
Sinclair refraction model.1 We use automatic differentiation to calculate the sensitivities needed to propagate 
uncertainties through the model.  The real part of the atmospheric index of refraction is a complex nonlinear function of 
pressure, temperature, elevation, humidity, and wavelength. The index of refraction also depends on atmospheric 
density and the density of the atmosphere strongly depends on altitude. Therefore, light propagating in the vertical 
direction is typically bent towards higher density/lower altitude.  The density of the atmosphere does not vary 
significantly in the horizontal direction and hence only the vertical refraction effect needs to be considered. Accurate 
estimation of this refraction effect is essential for extrapolating the actual position of a target from its observed or 
apparent position. Significant effort has been expended towards developing accurate algorithms for refraction 
calculation. These algorithms have been adopted for applications in missile defense, airborne sensor measurement, 
astronomical observation, and naval research.  Atmospheric refraction is divided in three categories: astronomical, 
terrestrial, and geodesic. Astronomical refraction addresses ray-bending effects for objects outside the earth’s 
atmosphere relative to an observer within the atmosphere. Terrestrial and geodesic cases consider lower altitude 
refraction.  The core of the USNO astronomical code is the evaluation of the refraction integral  of Eq. 1.  
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The integration is performed using numerical quadrature. The quantity ξ  is the refraction angle, z  is the zenith angel, 
r  is the vertical distance, and n  is the index of refraction. This integral is evaluated separately for the troposphere and 
the stratosphere. Many interesting low altitude refractive effects exist because of tropospheric variation in density and 
water vapor partial pressure as a function of position. Due to the complex dependence of n  on atmospheric parameters, 
typical variations in the atmospheric conditions cause an uncertainty in refraction correction angles. Furthermore, 
dispersion of the refractive index causes the refraction correction angle to vary slightly over different frequency ranges. 
In addition, at infrared through ultraviolet frequencies, refraction depends strongly on the vertical temperature profile. 
Therefore, sensitivity and uncertainty analysis of the USNO refraction code is crucial for the development of a more 
accurate refraction model and robust algorithms that, in turn, will aid in the progress of surveillance technology 
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Sensitivities are defined as the derivatives of computed model results (usually referred to as system responses) with 
respect to intrinsic model parameters and external inputs to the model (referred to as system parameters). Sensitivities 
can be used to determine and rank the importance of system parameters, and to accurately propagate uncertainties from 
the system parameters to the system responses.  Most current efforts in sensitivity analysis have focused on the use of 
Automated Differentiation (AD) tools. In particular, we recently conducted a study in support of the Missile Defense 
Agency (MDA) that involved very large datasets (over one million parameters) associated with the MODTRAN code2. 
The AD technology produces an enhanced code, which, in addition to computing the nominal outputs of the regular 
code, also provides the exact local derivatives of the computed results with respect to the code parameters.  To enable 
accurate decisions, a completely general uncertainty analysis (UA) must address five key capabilities. First, no 
important effects should be overlooked, which means that the complete set of sensitivities with respect to all system 
parameters is needed. Second, we require an efficient computation of the sensitivities, since, in general, large data sets 
have to be processed. Large codes can take direct advantage of the efficiency and accuracy of AD technology.  Third, 
since in nature linearity is most often the exception rather than the rule, the methodology should allow for a systematic 
treatment of nonlinearities. The fourth criterion imposes the complete treatment, where relevant, of full time 
dependence; this includes model inputs, parameters, and responses. Finally, one requires a consistent methodology for 
combining experimental (i.e., sensor-measured) data and model results, the primary goal being to reduce the 
uncertainties of system parameters and responses. 

We collect the model parameters and inputs in the vector a . The responses calculated by the model are denoted by q , 
and the measured responses by r . Bold lowercase letters denote vectors, while bold uppercase letters refer to matrices.  
The symbol ~ will denote transposition. The nominal uncertainties in the parameters are quantified by specifying their 
covariance matrix, i.e.,  
                                            (2)= ∆ ∆Ca a a                     
In Eq. (2), ∆a  denotes a vector of standard deviations; in particular, i∆a  represents the standard deviation 
(uncertainty) of parameter i, and the brackets imply expectation.  Sensitivities provide a systematic way to propagate 
uncertainties in complex, non-stationary, nonlinear models. They may be efficiently computed using AD technology. 
For example, to first order in a stationary system, the sensitivity of calculated response n to parameter i evaluated at the 
nominal parameter values used in the model is given by  
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Using the sensitivity matrix, S , we can readily calculate the nominal covariance matrix of the calculated responses. 
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We now seek best estimates for the parameters and responses. We denote these quantities by â  and r . Their values are 
related to the current estimates by the sensitivities. To first order, 

                                            ( )ˆ (5)ˆ .             − = − + −r r q r S a a  

To obtain the best estimates, we must consistently combine computational results and experimental measurements. We 
achieve this by optimizing a generalized Bayesian loss function that simultaneously minimizes the differences between 
(i) the best estimate responses and the measured responses, and (ii) the best estimate and calculated parameters. The 
optimization process uses the inverse of a generalized total covariance matrix as the natural metric for the computation. 

It is convenient to define new variables: â ax = - , and ˆy = r - r . The discrepancy between calculations and measure-
ments is then expressed as e = q - r . Using the new variables, the local approximated functional relationship assumed 
in Eq. (5) between the system parameters and responses becomes y = S x + e . The loss function is then defined as: 
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In the above expression, rC  represents the covariance matrix of the measured responses, pC  the covariance matrix 
induced by the responses-parameters correlations, and the three-dot patterns  denote additional covariance and cross-
covariance contributions that may potentially be included, and which may account, for example, for method biases.   



The Bayesian loss function Q  must be constrained in terms of the functional relationship between parameters and 
responses. This relationship is locally approximated above to first order only.  However, if the responses are strongly 
nonlinear, an iterative procedure can be implemented. One then constructs an augmented Lagrangian,L , in the form  

                                        [ ] (7).TQ= + S x - y + eL λ  

where λ  denotes a vector of Lagrange multipliers. The necessary conditions for a locally-optimal solution are obtained 
by requiring that the partial derivatives of the augmented Lagrangian with respect to x and y be zero. We solve these 
equations in conjunction with the constraints satisfaction to obtain the optimal values of x and y, which determine the 
best estimates for both the parameters and responses and their associated covariances. For example, assuming no bias 
contribution to the optimization metric, we find, after some lengthy algebra not shown here, that the covariance matrix 
corresponding to the best estimates of the system parameters is given by the expression  

                                    1
ˆ (8)( )( ) ( ).−
= − − − − + −p r p p pC C C C S C SC C S S C S C SCa a a aa  

In a similar fashion, the covariance matrix corresponding to the best estimates of the responses is 
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Finally, the covariance matrix associated with the model responses recalculated using the best estimates of the system 
parameters is, to first order, simply 

                         ˆ ˆ ˆ ˆ (10),=qC S C Sa a a  

where the sensitivities must be reevaluated at the new parameter values â . 

In this paper, we combine AD technology with the above mentioned nonlinear uncertainty reduction method to analyze 
the outputs of the USNO astronomical refraction code as functions of model parameters temperature, wavelength, 
relative humidity, observer zenith angle, and altitude. The sensitivity and uncertainty analysis presented highlight the 
approximations/limitations inherent in this model and aid in the design of more accurate refraction algorithms.  
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