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There is Renewed Interest in MSRs 
Because of Changing Goals and New 

Technologies (Since 1970)
• MSR is one of six Generation IV concepts

− Only liquid-fueled reactor selected
• Original basis for development

− Thorium-cycle breeder reactor (232Th + n → 233U)
− Backup for the liquid-metal breeder reactor program
− Program cancelled

• Decision to develop only one type of breeder reactor
• As a breeder reactor, MSR has a low breeding ratio, slightly above one

• Basis for renewed interest
− Thorium-based MSR produces wastes with a very low actinide content 

(reduced waste management burden)
− Breeder with low breeding ratio is acceptable
− Unique capability to burn actinides
− New technology (Subject of this talk)

• Reduces cost
• Reduces technical challenges
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Molten Salt Reactor
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Molten Salt Reactors
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Molten Salt Reactors Were Developed in the 
1950s and 1960s

Molten Salt Reactors: Fuel Dissolved in Coolant

Aircraft Nuclear 
Propulsion Program

← ORNL Aircraft 
Reactor Experiment:  

2.5 MW; 882ºC
Fuel Salt: Na/Zr/F

INEEL Shielded Aircraft 
Hanger→

Molten Salt Breeder 
Reactor Program
←ORNL Molten Salt 
Reactor Experiment
Power level: 8 MW(t) 

Fuel Salt: 7Li/Be/F 
Clean Salt: Na/Be/F

Air-Cooled Heat 
Exchangers→
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The Molten Salt Reactor Experiment 
Demonstrated the Concept

1960s Goal: Breeder
• Base technology established        

Today’s Option
• Actinide burning
• New requirements
• Changes in the base 

technology

Hours critical 17,655

Circulating  fuel loop time (hours)   21,788

Equiv. full power hrs w/ 235U fuel     9,005

Equiv. full power hrs w/ 233U fuel     4,167

MSRE power = 8 MW(t)          
Core volume  <2 cubic meters
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Three Technical Developments May 
Dramatically Improve MSR Viability

(Technologies Being Developed for High-Temperature Reactors)

• Brayton power cycles (aircraft derived)
• Compact heat exchangers (chemical 

industry)
• Carbon-carbon composite components 

and heat exchangers
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Brayton Power Cycle
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Molten Salt Reactor
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Brayton Cycles Eliminate Multiple 
Technical Challenges of the MSR

• Simplified tritium control
− Tritium in fuel salt may 

diffuse into power cycle 
via hot heat exchangers

− Tritium in steam cycle is 
difficult to manage

− Tritium in a dry Brayton 
cycle is easy to remove in 
the cold sections of the 
cycle

• No salt interactions if a 
heat- exchanger failure 
occurs
− Steam and salt slowly 

react
− Helium or nitrogen does 

not react with salt
• Higher efficiency

− High temperatures match 
salt properties (avoid 
freezing)

− Brayton cycles match 
preferred salt temperatures

Above: GE Power 
Systems 
MS7001FB

Left: GT-MHR 
Power Conversion 
Unit (Russian 
Design)
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Scaled Comparison of the 1380-MW(e) ABWR 
Turbine Building and ~1300-MW(e) MSR

• MSR turbine building must also contain crane, turbine lay-down 
space, compressed gas storage, and cooling water circulation 
equipment

• MSR requires ~1100 MW(t) of cooling water capacity, compared 
with 2800 MW(t) for ABWR; no low-pressure turbines (steam)

Advanced helium Brayton 
cycles can  likely achieve a 
substantial reduction of the 
turbine building volume

ABWR

Helium-Brayton Cycle with 
Three Power Conversion
Units (Similar to GT-MHR)
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Compact Heat Exchangers
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Compact Heat Exchangers May Reduce 
Fuel Salt Inventory by Up to Half

• MSRs of the 1970s used 
“tube-and-shell” heat 
exchangers

• New compact heat exchangers 
have been demonstrated 
− Temperatures to 900°C 
− Large units 
− >1000 psi

• Reduce size of heat exchanger 
by a factor of four
− Heat exchanger in hot cell

• Reduced salt inventory
− Half the fuel inventory
− Half the fuel salt to process

Structure of 
“Printed Circuit” 

Heatric® Heat 
Exchanger



14

Carbon-Carbon Composites
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Liquid Silicon Infiltration (LSI) Carbon-Silicon 
Composites (CSiC) Are Candidate Materials for 

Use with Molten Salts

• Allow higher-temperature operations
− Molten salt properties improve with 

higher temperatures
− Higher efficiency
− Option for thermochemical hydrogen 

production
• Reduce noble metal plate-out in the 

primary MSR system
− Some noble metal fission products 

plate out on metal heat exchangers
− Plate-out on carbon materials is 

much less pronounced
− Potential for efficient control of 

where noble metals plate out

IABG large furnace for CSiC fabrication

Highly complex part geometries
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Heat-Exchanger Monolith Can Be Formed 
by a Reaction Bonding Multiple Green 

Plates, a Standard LSI Technique

† M. Krödel, G.S. Kutter, M. Deyerler, and N. Pailer,  “Short carbon-fiber reinforced 
ceramic -- Cesic -- for optomechanical applications,” SPIE Optomechanical Design 
and Engineering, Seattle, Washington, July 7-9, 2002.

Milled or die embossed
 He flow channel

Reaction-bonded joint

Low-permeability coating
(optional)

Milled or die embossed
 MS flow channel
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Conclusions: New Technologies Being Developed 
for High-Temperature Reactors May Dramatically 

Improve the Viability of MSRs

Compact Heat Exchangers→

←Brayton Power Cycles

←Carbon-Carbon Composites


