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The Advanced High-Temperature Reactor
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Fuels

Only One Type of High-Temperature Nuclear Fuel Has 
Been Demonstrated on a Significant Scale
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The AHTR Uses Coated-Particle Graphite Fuel Elements
(Peak Operating Temperature: 1250ºC; Failure Temperature: >1600ºC)

• Fuel particle with multiple 
coatings to retain fission 
products

• Fuel compact contains particles

• Compacts inserted into graphite 
blocks
− Several options for graphite 

geometry (prismatic, rod, pebble 
bed, etc.)

− Base design uses prismatic; 
other options are viable

• Graphite blocks provide neutron 
moderation and heat transfer to 
coolant 

Same Fuel as Used in Gas-Cooled Reactors



Molten Fluoride Salt Coolants
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Only Two Coolants Have Been Demonstrated to Be 
Compatible with High-Temperature Graphite Fuels 

Helium
(High Pressure/Transparent)

Molten Fluoride Salts
(Low Pressure/Transparent)
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The AHTR Uses a Molten Salt Coolant

Good Heat Transfer, Low-Pressure Operation, 
and Transparent (In-Service Inspection)

Molten Fluoride Salts Were Used in 
Molten Salt Reactors with Fuel in Coolant 

(AHTR Uses Clean Salt and Solid Fuel)

Molten Fluoride Salts Have Been Used 
for a Century to Make Aluminum in 

Graphite Baths at 1000°C
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The AHTR Is Not a Molten Salt Reactor
Cooled with a Clean Molten Salt, Not Fuel in Salt

Aircraft Nuclear 
Propulsion Program

Molten Salt Breeder 
Reactor Program

MSR
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Liquids Remove Heat More Effectively than Gas:
Cooler Fuel for the Same Coolant Exit Temperatures
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For Any Coolant Exit Temperature, the Average 
Temperature of Delivered Heat (the Product) Is Higher 

with Liquid Coolants than with Gas Coolants

03-240
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Molten Salts Have Superior 
Capabilities for Transport of Heat

03-258
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AHTR Peak Temperatures Are Much Lower Than 
Gas-Cooled Reactors for Heat 

Delivered At the Same Temperatures
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Facility Design

AHTR: A Low-Pressure, 
High-Temperature Liquid-Cooled Reactor
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Proposed AHTR Facility Layouts Are Based 
on Sodium-Cooled Fast Reactors

Low Pressure, High Temperature, Liquid Cooled

General Electric S-PRISM
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In an Emergency, Decay Heat Is Transferred to 
the Reactor Vessel and Then to the Environment

• Similar to GE S-PRISM (LMR)

• Liquid transfers heat from fuel to wall 
with small temperature drop (~50ºC)

• Argon gap: Reactor to guard vessel
−Heat transfer:  ~T4

−Thermal switch mechanism

• Heat rejection: Vessel temperature 
dependent
−LMR: 500-550ºC [~1000 MW(t)]
−AHTR: 750ºC [~2400 MW(t)]

• Lower vessel temperatures possible
−DRACS
−Cost: Higher heat losses during 

normal operation

Control
Rods

Hot Air Out

Air
Inlet

Fuel
(Similar to
MHTGR)
Reactor
Vessel

Argon Gap

Guard
Vessel
Insulation

Decay Heat from 
Vessel to 

Environment

Decay Heat 
from Core to 
Vessel Liner

Core

~50º C Difference 
in Molten Salt 
Temperatures
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2400-MW(t) AHTR Nuclear Island Is Similar in Size 
to 1000-MW(t) Sodium-Cooled S-PRISM Plant

• Differences from S-PRISM 
facility layout:
− No SNF storage in vessel
− No heat exchanger inside vessel
− Molten salt-to-gas heat 

exchanger in turbine hall

• Same vessel size
− Space for 2400-MW(t) AHTR 

core with low power density

• Similar equipment size
− Molten salt volumetric heat 

capacity > sodium

• Higher-capacity decay heat 
removal system
− Higher vessel temperatures

• Higher electrical output
− S-PRISM: 380 MW(e)
− AHTR: 1300 MW(e)

Reactor 
Cavity
Cooling 
Ducts

Reactor 
Core

MS-MS Heat 
Exchanger

Spent 
Fuel 
Storage

Turbine Hall With MS-Gas HX
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The Preliminary Economic Analysis Indicates 
Capital Costs of 50 to 60% per kW(e) Relative to 

S-PRISM and MHTGRs

• Economics of scale
− 2400 MW(t) vs 600 to 1000 MW(t)

− 1300 MW(e) vs 300 to 380 MW(e)

• Passive safety in a large 
reactor
− Liquid heat transport inside 

reactor vessel

− Higher temperatures (750ºC) 
increase heat rejection 

• Higher efficiency (multi-
reheat Brayton cycle)

• No large pressure vessel
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AHTR Characteristics Relative to 
Other Reactor Concepts

03-243R
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AHTR Summary
• Goals: Develop an economic reactor (the 

AHTR) with three characteristics
− High temperatures (efficient)
− Large (economics)
− Passive safety (match or exceed MHTGR)

• Technical approach to reach goals
− High-temperature graphite coated-particle fuel
− Molten salt coolant
− Passive decay-heat cooling system
− Brayton power cycle

• New concept: Significant work remains
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The AHTR:

A good idea that 
still needs some 

work
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Advanced High-Temperature Reactor



25

High-Temperature, Low-Pressure Liquid Coolants Enable 
the Design of Large Reactors with Passive Safety

03-149R
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The R&D Requirements for the Molten-
Salt- Cooled AHTR and the Helium-Cooled 

VHTR Have Much In Common

03-152

AHTR VHTR

COMMON R&D
• Nuclear Fuels
• Higher-Temperature 

Materials
• Electricity Production

− Brayton Helium Cycle
• Hydrogen Production

− Reactor-to-Hydrogen
Heat Transfer

− Production Systems

Molten Salt
Coolant

System
Studies

Helium
Coolant

System
Studies
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Global AHTR R&D Perspective
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Three times more 
electrical output 
than from a similar-
sized facility

High-temperature 
coated-particle fuel 
for high efficiency

Brayton 
power 
cycles for 
lower costs

GE Power Systems MS7001FB

General Electric S-PRISM

04-011

The Economic Goal Is To Drive Costs 
Significantly Below $1000/kW(e)
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AHTR 9.0-m Vessel Allows 2400-MW(t) Core 
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(26% larger than 600 MW GT-MHR)


