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Outline

Coherent beam coupling

— Incoherent beam addition and coherent beam coupling

— Synchronization of multiple lasers for coherent coupling
Experiments on synchronization of broad-area
semiconductor lasers

— Spectral/spatial properties

— Coherence of injection-locked lasers

— Temporal dynamics

— Amplification of injection signal

Nonmonotonicity and transient behavior in coupled lasers
Concluding remarks



Synchronization
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Coherent Beam Coupling of Laser Array

Laser array

IIlCOheI'ent Coupling a«— On-axis intensity I ~N

N incoherent laser sources

On-axis intensity I ~ N2

N coherent laser sources

Applications:

Space Communications, Material Processing, Directed Energy
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Our Research: Synchronization of laser
array for coherent beam coupling

Conditions for coherent beam coupling
—Frequency locking

—Phase locking

Laser array synchronization
—Scalability to high power
—Maintaining high coherence and high beam quality
—Cost effective
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Broad-Area Semiconductor Laser Array

100(,)0 , Maximum power: >1W (each laser)
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125 T Wavelength: 806~810 nm
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500 Linewidth: ~2 nm

Experiments on Broad-Area Lasers

Single Broad-Area Laser Diode aperture < 100 um x1 pum, power: <1 W
Laser Array overall array aperture < 100 um x1 um

total output power < 1.2W

Our Objective
Synchronization and coherent coupling of a broad-area laser array
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Experimental Setup of Injection Locking
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» Separate Injection Access to each Laser
« Ability to Split and Control Injection
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Wavelength Span of all 19 Lasers
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Frequency Matching for Injection Locking
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Condition for Injection Locking

 Matching Between the Injection and Slave Laser Frequencies
» Less than 5 mW of Injection Power !
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Narrow Line Width of Injection-Locked Lasers
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Spectrum Bandwidth of the Order of 10 MHz
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Injection Locking Range
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* Stable Locking Range
e At Low Drive Current, the Frequency Range for
Stable Locking is Linear with the Injection Strength
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Far-Field Pattern at Injection-Locking

S i an ection-locked

o)

g

3

o

A~

=

&

5 m“A ; Free-running

M %)04‘4‘9
-3 -2 -1 0 1 2 3
Angle (degree)

Far-field angle after injection locking: 0.4° (close to the diffraction
limit from a 125-mm-wide emitting region
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Simultaneous Injection Locking of Two Lasers
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* Equally Split Injection Power into Two Lasers
e Control the Strength of Injection
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Interference Between Injection-Locked Lasers

Before Injection Locking After Injection Locking

Stable Phase Relationship Between Lasers
Locking of Spatial Modes

Y. Liu, H. K. Liu, and Y. Braiman, Applied Optics LP 41 (2002)
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Parameter Dependence

04
03 + ¢
b [ J
= o
202+ .
Z
[ J
0.1
°® [ ]
0 d \. | | [
-1.5 -1 -0.5 0 0.5

Frequency Detuning (GHz)

Sensitive dependence of simultaneous injection locking on
frequency matching
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Temporal Dynamics
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Spatial-Temporal Dynamics
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Experimental Setup of Measuring Temporal
Waveform of Different Spatial Modes
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Optical Spectrum Far-Field Pattern
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Temporal Dynamics of Different Spatial Modes
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Self-injection Locking of Coupled Individual Broad-Area
Lasers



Experimental Scheme
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Our Experimental Design

*Since the broad-area laser emitter has a very asymmetric emission
aperture (125 umx1 um), the laser output shows different beam
qualities along fast and slow axes.

*Along the fast axis direction, the emission size (~ 1 um) is close to
the laser wavelength (around 0.8 um) and the output beam shows a
fundamental Gaussian mode with a large divergence angle.

*The beam collimation along the fast axis is conducted by a gradient
index (GRIN) cylindrical lens with a very short focal length (1.3 mm)
and large numerical aperture (0.5).

*Along the slow axis direction, the emission size (125 um) is much
larger than the laser wavelength and the output beam exhibits higher
order modes with multiple lobes in the far-field pattern.

A cylindrical lenslet array to collimate the array output in the slow-
axis direction. The separation between each lens is designed to
match the laser array.



High Power Laser Array
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Figure 1a. Spectrum of all 19 emitters in
a free running mode.
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Figure 1b. Spectrum of all 19 emitters in the
synchronized mode.
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Accomplishments:

* Demonstrated single mode emission from high power laser array
* Demonstrated wavelength tunability over the range of 10 nm

Future work: achieve synchronization of stack arrays to coherently
combine power from large laser arrays
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Figure 2. Far-field pattern from the free Figur.e 3. Power spectrum of laser array
running (blue line) and the synchronized showing tunable wavelengths over 10nm
(red line) array. range.
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Effects of Feedback on Specific Laser
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Self-injection Locking of Nanosecond Pulsed Broad-Area
Laser



Outline

 Nanosecond pulse generation in broad-
area lasers

* Frequency locking of lasers with external
cavity

* Synchronization of pulsed broad-area
lasers



Nanosecond Pulse Generation in
Broad-Area Lasers

Broad-Area

oy

Pulse
Generation “ “

Circuit
~ ns-Pulse
Driver
Timing
Control
Circuit

Adjustable pulse amplitude, pulse duration, and repetition rate
Pulse amplitude: 0~40 A (40 W)
Pulse duration: 5~1000 ns
Repetition rate: 4 KHz~1 MHz




Spectrum of Nanosecond Pulses

Pulsed (6ns @10KHz)
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Linewidth in enhanced more than 4 times!



Locking Nanosecond Pulses with
External Cavity

Experimental Scheme Compact Package Using VBG
<6 cm '| Volume
BAL Lon BY - BAL Lens DBraggGrating
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/Spectrum/Time
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External cavity length: <5 mm

When the laser is operated at a pulse
mode, about 50% of the laser output was
collimated into a 50 um-core optical fiber.



Spectrum of Locked
Nanosecond Pulses
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Linewidth is reduced from 5 nm to less than 0.1 nm!



Output (arb.)

Linewidth Dependence on Peak Power

Optical Spectrum vs. Pulse Amplitude (100 KHz)

50
25.0
20.0 A E
O 45 -
15.0 = ®
10.0 §
. = °
N [\ 240 .
' —
0.0 T T J \
806.5 807.0 807.5 808.0 808.5 809.0 809.5 3 5 T T T
Wavelength (nm)
0 10 20 30
Pulse Peak Power (W)

Linewidth linearly depends on pulse peak power



Linewidth Dependence on
Repetition Rate

Optical Spectrumvs. Pulse Repetition Rate
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Output (arb.)

Linewidth Dependence on
Pulse Duration

Optical Spectrumvs. Pulse Duration (10 KHz, 6.3 W)
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Wavelength Tuning

[E—
-

>
o0
|

-
@)
\

| || 1 "

Output (arb. unit)
>
AN

=
(\)
|

UL UL

802 804 806 808 810 812 814
Wavelength (nm)

g
o

Wavelength tuning range >10 nm without significant
spectrum/waveform changes



Synchronizing Pulsed Laser Array

Experimental Scheme
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Pulse timing (pulse duration and repetition rate) of master and slave lasers is
synchronized with electrical circuitry;
Pulse phase (time delay) is adjusted to guarantee the unidirectional coupling.



Synchronized Pulsed Lasers
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Synchronized Pulsed Lasers
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Synchronization Performance
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Synchronization occurs at certain time lags!



Phase Model of Two Coupled Lasers

¢51 =0, + Kk (sin(¢;, — ¢,)) — 4, sin ¢,

¢.2 =0, + k(sin(¢, —¢,)) — A,s1n ¢,

Fixed Point Solutions
o1 + k(sin(¢ — ¢, )) — 4, singy =0

0y + K(sin(p, —¢y)) — A, sing, =0
Injection Tuning

5, +6,~0
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Analysis of the Phase Model

sin¢1 + sin¢2 =0
51 — 52 + 2K(sin(¢2 — ¢1 ))— Ae(sin ¢2 —sin ¢1) =0
The first equation implies that either (a) ¢, - ¢, = 2m+1)m,

or (b) ¢, + ¢, = 2mm, where m is an integer. Solutions of
class (a) imply: sin(9, - ¢,) = 0, yielding inconsistency.
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Nonmonotonicity Transition Point

f(p)=-0 — 2Ks1n¢ A s1n¢ =0

2
f(¢)——21ccos¢ — A cos¢2 0

g I2=2 s (5402 48/ A =0

D=(p/3)3+(q/2)2, p=—0481% and q=(5/41)+(S" /864K°)
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Nonmonotonicity
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Comparison of the Analysis with
Numerical Simulations
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Optimal Control of the Transient Behavior

1.00
0.4 -
0.75
« 2| 0.34
0.50- £ .
1 800 005 010 015
Time )
s
- ] \

Itotalllo
Optimal Control A

Time

0.254 0.1+ \
§
.\I
e,
0.00 T T T T T T T T T T 0.0 T T T T T T T T T
0.00 0.03 0.06 0.09 0.12 0.15 5 10 15 20 25
Time Upper Bound of the Optimal Control

E. Jung, S. Lenhart, V. Protopopescu, and Y. Braiman, Phys. Rev. E 67, 046222, (2003).



Summary

* Synchronization and coherent beam coupling of high-power laser
array (19 lasers) - high coherence, better directionality, high
intensity.

 Experimental setup of synchronizing high-power broad-area
semiconductor lasers via injection locking

— Conditions for injection locking of broad-area lasers.

— Simultaneous injection of two broad-area lasers in a 19-laser array.
 Experimental investigations and results

— Temporal dynamics of the injection-locked laser

— Amplification of the injection light

— Phase coherence between injection-locked lasers.

Challenges Future work
Array inhomogeneity Separate control of individual laser
Limited injection power Cascaded injection scheme
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