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Abstract

The Cray X1 in the Center for Computational Sci-
ences at Oak Ridge National Laboratory is enabling
significant new science in the simulation of high-
temperature “cuprate” superconductors. We de-
scribe the method of dynamic cluster approximation
with quantum Monte Carlo, along with its computa-
tional requirements. We then show the unique capa-
bilities of the X1 for supporting this method, porting
experiences, performance, and the resulting new sci-
entific results.

1 Introduction

Despite years of active research, the understand-
ing of superconductivity in the high-temperature
“cuprate” superconductors (HTSC) remains one of
the most important outstanding problems in mate-
rials science. A complete theoretical understanding
of cuprate superconductors could lead to the ability
to design and synthesize room-temperature super-
conductors, which would have tremendous techno-
logical implications. In the superconducting state
of a material, electrons form so-called Cooper pairs,
allowing them to condense into a coherent macro-
scopic quantum state in which they conduct electric-
ity without resistance. In conventional superconduc-
tors, pairing results from an attractive interaction
between electrons that is mediated by lattice vibra-
tions (phonon-mediated pairing).

The consensus today is that the pairing mecha-
nism in high-temperature superconductors is of an
entirely different nature and is probably related to
strong correlations between electrons, a feature that
distinguishes these materials from conventional su-
perconductors. To address the problem theoreti-
cally, one must solve the quantum many-body prob-

lem for a macroscopic number of electrons without
being limited to the typical single-particle approxi-
mations, such as Hartree-Fock or the local density
approximation to density functional theory. A re-
cent concurrence of new algorithmic developments
and significant improvements in computational ca-
pability has opened a clear path to solving the quan-
tum many-body problem for high-temperature su-
perconductors.

2 Hubbard model

The characteristic feature of all HTSC is a strongly
anisotropic layered perovskite-like crystal structure
with conducting CuO2-planes separated by insu-
lating layers of other elements (see right part of
Fig. 1). Superconductivity takes place within the
two-dimensional CuO2 layers with the insulating
barriers only providing charge carriers, usually holes
to the layers and thus controlling the doping of CuO2

planes.

First-principles calculations for HTSC compounds
provide evidence that the band which crosses the
Fermi surface has mainly CuO2 character (see e.g.
[1] and references therein). To reduce the complexity
of the problem it thus seems reasonable to restrict
calculations to a two-dimensional model with elec-
trons moving in a single CuO2 layer. Justified by the
strong in-plane CuO bonds, the complexity may be
further reduced by constructing a model that treats
a whole CuO2 plaquette as a single site. The result-
ing two-dimensional Hubbard model [2] is believed
to capture the essential physics of HTSC [3, 4, 5]. A
schematic of its Hamiltonian,

H = −t
∑

〈ij〉
c†iσcσ + U

∑

i

ni↑ni↓ (1)
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Figure 1: Crystal structure of YBa2Cu3O5 and two-
dimensional Hubbard model of the hole doped CuO2

planes, with nearest neighbor hopping integral t and
on-site Coulomb interaction U .

is illustrated in Fig. 1. The fermionic operator c†iσ
(ciσ) creates (destroys) an electron on site i with

spin σ, and niσ = c†iσcıσ is the corresponding num-
ber operator. The first term describes the hybridiza-
tion between sites with amplitude t, and the second
term the Coulomb repulsion between two electrons
residing on the same site. Because of screening, the
magnitude of longer-ranged interactions is believed
to be small compared to the on-site interaction.

Despite decades of intensive studies, this model
remains unsolved except in one or infinite dimen-
sions. Analytical methods based on a perturba-
tive approaches suffer from the large magnitude of
U , which renders these calculations at least ques-
tionable. Many theorists have turned to numeri-
cal approaches to close the gap between the model
defined by its Hamiltonian and its properties. A
large body of work has been devoted to a direct (nu-
merically) exact solution of finite-size systems us-
ing exact diagonalization or Quantum Monte Carlo
(QMC) methods (for a review see [6]). Exact diag-
onalization, however, is severely limited by the ex-
ponential growth of computational effort with sys-
tem size, while QMC methods suffer from what is
known as “the sign problem” at low temperatures.

Another difficulty of these methods arises from their
strong finite-size effects, often ruling out the reliable
extraction of low-energy scales, which are important
to capture the competition between different ground
states often present in correlated electron systems.

3 Dynamical Cluster Approxi-
mation

Mean-field theories are defined in the thermody-
namic limit and therefore do not face the finite-size
problems. Generally, mean-field theories divide the
infinite number of degrees of freedom into two sets.
A small set of degrees of freedom is treated explicitly,
while the effects of the remaining degrees of freedom
are summarized as a mean field acting on the first
set. The Dynamical Mean-Field Theory (DMFT)
[7, 8] (for a review see citegeorges:dmftrev) for itin-
erant correlated systems (such as the HTSC or sys-
tems described by the model Eq. (1)) is analogous to
the coherent potential approximation for disordered
systems [9, 10, 11]. It retains the dynamics of local
degrees of freedom by mapping the lattice onto an
impurity self-consistently embedded in a dynamical
mean-field host.

Despite its success in the description of many cor-
related phenomena such as the Mott-Hubbard tran-
sition, the DMFT and CPA share the critical flaw of
neglecting the effects of non-local fluctuations. Thus
the DMFT is unable to capture the effects of e.g.
spin-waves in magnetic systems, localization in dis-
ordered systems, or spin-liquid physics in correlated
electron systems. Furthermore it cannot capture
phase transitions to states with non-local order pa-
rameters, such as the d-wave superconducting phase
in the HTSC. Non-local corrections are required to
treat even the initial effects of these phenomena.

Here we use the Dynamical Cluster Approxima-
tion (DCA) [12, 13, 14, 15] (for a review see [16]) to
study the properties of the Hubbard model, Eq. (1).
The DCA extends the DMFT by non-local correla-
tions. Instead of mapping the lattice onto a single
impurity, the system is mapped onto a periodic clus-
ter of size Nc coupled to a mean-field host represent-
ing the remaining degrees of freedom (see Fig. 2). As
a result, dynamical correlations up to a range lim-
ited by the cluster size are treated accurately, while
the physics on longer length scales is described on
the mean-field level. Translational invariance of the
original system assures that the quantity describ-

2



Figure 2: Schematic illustration of the DCA formal-
ism. The model is mapped onto a finite-size cluster
self-consistently coupled to a mean-field host. Cor-
relations within the cluster are treated accurately
while the physics on length scales beyond the clus-
ter size is described on the mean-field level.

ing the mean-field host can be self-consistently de-
termined from the solution of the cluster problem.
The complexity of the original problem with an in-
finite number of degrees of freedom is thus reduced
to a self-consistent finite-size cluster problem with
Nc degrees of freedom. The remaining cluster prob-
lem may then be solved numerically by a number
of techniques including the QMC method [15] used
here.

4 Small Clusters

Computations with a cluster of only four sites, the
smallest cluster that can capture superconductivity
with a d-wave order parameter, on the IBM p690 at
the Center for Computational Sciences (CCS) show
very good general agreement with HTSC. These
results are summarized in the temperature-doping
phase-diagram shown in Fig. 3 (see also [17, 18]).
At low doping, δ, the system is an antiferromag-
netic insulator below the Neél temperature TN. At
finite doping, δ ≤ 0.3, an instability is found at the
critical temperature Tc to a superconducting state
described by a dx2−y2-wave order parameter. In
the normal state, low-energy spin excitations be-
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Figure 3: DCA/QMC Temperature-doping phase di-
agram of the two-dimensional Hubbard model when
t = 0.25 eV, U = 2 eV for a 4-site cluster. Consis-
tent with experiments on HTSC, regions of antifer-
romagnetism, d-wave superconductivity and pseudo-
gap behavior are found.

come suppressed below the crossover temperature
T ∗. Simultaneously the electronic excitation spec-
trum displays a pseudogap, i.e. a partial suppression
of low-energy spectral weight. Consistent with opti-
cal experiments, computations for a four-site cluster
show that the superconducting transition is accom-
panied by a lowering of the electronic kinetic energy
[19]. This result further shows the unconventional
character of superconductivity in these systems. It
is fundamentally different from the BCS theory for
conventional superconductors [20], where pairing oc-
curs through a reduction of the electronic potential
energy accompanied by a slight increase in kinetic
energy.

The apparent violation of the Mermin-Wagner
theorem [21], according to which no phases with con-
ventional long-range order can occur at finite tem-
peratures in the two-dimensional Hubbard model, is
a consequence of the small cluster size, and hence
large mean-field character, in these simulations. In
the case of antiferromagnetism, the Mermin-Wagner
theorem thus necessarily translates to TN = 0 for the
two-dimensional system. Superconductivity how-
ever can exist even at finite temperatures as topo-
logical order below the Kosterlitz-Thouless transi-
tion temperature [22]. Therefore, larger-cluster-size
studies are needed to see if the simulations recover
the Mermin-Wagner theorem and if superconductiv-
ity survives as topological order in the infinite cluster
size limit where the DCA becomes exact.
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In the HTSC, on the other hand, a small but finite
coupling between the two-dimensional CuO2 layers
induces long-range order at finite temperatures.

5 Porting and Performance

The central quantity of the DCA code is the single-
particle cluster Green function Gc, which is a matrix
of size N ×N [15]. Here N = Nc ×Nl where Nl is
the number of “time-slices” in the time direction.
The majority of the CPU time is spent in the in-
ner loop of the QMC simulation, which updates the
Green function matrix according to the vector outer
product

G′ = G + a ∗ bT , (2)

where a and b are two vectors of dimension N .
This computation is handled by the BLAS [23] call
DGER, which performs a double-precision rank-one
matrix update representing O(N 2) operations. Each
iteration requires N such calls, however, resulting in
O(N3) operations.

Another CPU-intensive task is the evaluation of
two-particle correlation functions. In the QMC tech-
nique this reduces to evaluating products of Green
functions and thus to computing matrix products.
This is done by using the BLAS call CGEMM,
which performs single-precision complex matrix-
matrix multiplication, and one call again is O(N 3).

Porting and tuning the DCA implementation on
the Cray X1 was straightforward. The port re-
quired no changes beyond the “Makefile”, and
tuning involved performance profiling and adding
“concurrent” directives to one file. This file con-
tains a number of nested loops using indirect ad-
dressing, or index arrays. The bulk of the tuning
effort was in determining which loops did and did
not iterate over repeated indices.

The Cray X1 has a number of advantages over
general-purpose systems in performing DCA com-
putations, particularly with increasing cluster size.
This advantage is demonstrated in Fig. 4, which
compares runtimes of some early DCA runs on the
X1 and the IBM p690 in the CCS, using 8 and 32
processors (MSPs) on each.The figure shows run-
times for production runs with a fixed value of
Nc = 64 and increasing values of Nl and thus N ,
where the value of N is shown. Eight X1 MSPs
easily outperform thirty-two 1.3-GHz Power4 pro-
cessors for the larger problem sizes.

As discussed above, the DCA implementation in-
cludes two O(N3) computations built on the BLAS

Figure 4: Runtimes for a series of DCA production
runs. Each run is indicated by its value of N =
NcNl. The lines connecting the data points are only
guides to the eye.

calls CGEMM and DGER. CGEMM is a BLAS3
call, which implies that it can be blocked effec-
tively for cache memory, and many modern general-
purpose processors can perform the operations near
their peak. The X1 processors can also, but they
have the added benefit of a very high peak rate aug-
mented by the ability to perform single-precision op-
erations at twice the rate of double-precision.

The X1 has a more significant advantage over
the prevailing cache-dependent architectures in the
DGER operations. Each call depends on the results
of the previous call, so the operations cannot be in-
terleaved. DGER is a BLAS2 call, which implies
that it does much fewer computations per memory
access than CGEMM, and thus is typically limited
by memory bandwidth.

We conducted separate DGER benchmarks to
measure the advantage of the X1 in this operation,
and results for the CCS Cray X1, SGI Altix (1.5 GHz
Itanium2), and IBM p690 (1.3 GHz Power4) are in
Fig. 5. The vendor-optimized DGER was used for
each system. The figure shows the performance of
DGER for a matrix of size N = 64 × 70 = 4480,
which is representative of large DCA runs. Sepa-
rate DGER instances were run concurrently across
increasing numbers of processors (MSPs), mimick-
ing the processes of a Monte-Carlo simulation. The
X1 memory system is able to maintain performance
and efficiency with added processors, while the p690
steadily degrades. The Altix degrades going from
one to two processors because memory bandwidth is
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Figure 5: Per-processor performance of concurrent
DGER calls using N = 4480 matrices.

shared between processor pairs. The X1 maintains
8–25 times the performance and 4–10 times the effi-
ciency of the other systems.

Despite the Monte-Carlo nature of the DCA algo-
rithm, the X1 also has an important scalability ad-
vantage over systems with weaker processors. Each
DCA process has a significant fixed start-up cost,
which favors splitting the Monte-Carlo iterations
across fewer, faster processors.

Another option would be to multithread each
Monte-Carlo process, effectively using an SMP as
a large single “processor”. We explore this possibil-
ity in Fig. 6, which shows the performance of IBM’s
multithreaded DGER on a p690, again using a ma-
trix size of N = 4480. Fig. 6. The dashed line
shows the per-MSP performance of an X1 perform-
ing concurrent DGER operations on 32 MSPs, thus
simulating a loaded system. The solid line shows
the performance of a 32-processor p690 loaded with
concurrent DGER computations, but using different
numbers of processors per DGER process.

The left-most point thus shows the performance
of a single processor when all 32 processors of the
p690 are performing independent DGER operations,
while the right-most point shows the aggregate per-
formance of dedicating all 32 processors to a single
DGER. The figure indicates that dedicating a full
IBM p690 to each DGER does not match the per-
formance of a single X1 MSP. No threaded version
of vendor-optimized DGER was available for the Al-
tix or the X1 at the time of this test. Tests of un-
tuned DGER implemented with Fortran loops and
OpenMP showed little improvement on the X1 for

Figure 6: DGER performance of a fully loaded
IBM p690 using different numbers of processors per
threaded process. The dotted line is the per-MSP
performance of loaded X1 nodes.

matrices of size 4480, and the Fortran/OpenMP im-
plementation on the Altix was not competitive with
the single-threaded vendor-optimized DGER.

The significant performance advantage of the X1
for DCA computations, as illustrated by its domi-
nance in DGER performance, has allowed us to per-
form simulations that are out of the reach of other
systems, all without having to resort to hybrid paral-
lelization. In particular, the X1 has provided the ca-
pability needed to perform DCA computation with
much-larger cluster sizes.

6 Larger Clusters

As discussed in Sec. 4, the DCA retains a large
mean-field character at small cluster sizes and con-
sequently yields long-range order at finite temper-
atures. Long wave-length modes which destroy
long-range order at finite temperatures in two-
dimensional systems are neglected. With increas-
ing cluster size, however, the DCA progressively in-
cludes these longer-ranged fluctuations. These are
expected to drive the Neél temperature systemati-
cally to zero and thus recover the Mermin-Wagner
theorem in the infinite cluster size limit where the
DCA becomes exact.

Fig. 7 displays the DCA results for the Neél tem-
perature TN as a function of the inverse of the linear
cluster size Lc =

√
Nc. With increasing cluster size,

TN rapidly decreases and extrapolates to TN = 0
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Figure 7: Neél temperature at 5% doping as a func-
tion of the inverse linear cluster size 1/Lc = 1/

√
Nc.

in the infinite cluster size limit consistent with the
Mermin-Wagner theorem. The data points scatter
about a curve linear in 1/Lc, except for the “spe-
cial” cluster sizes Nc = 1, 2 and 4. For Nc = 2 a
local singlet is formed on the cluster. When Nc = 4
the ground state of the periodic cluster is a resonat-
ing valence-bond state [24] with fluctuating singlet
bonds between the cluster sites. Hence antiferro-
magnetic order is suppressed for these cluster sizes,
and the results thus do not fall on the curve.

As discussed in Sec. 4, superconductivity may per-
sist in the infinite cluster size limit as topological
Kosterlitz-Thouless order, although no conventional
long-range order is allowed.

The transition to a superconducting state with
d-wave symmetry is indicated by the divergence of
the pair-field susceptibility Pd, or equivalently by
the node of P−1

d . The DCA result for this quan-
tity at 5% doping is plotted in Fig. 8 for differ-
ent cluster sizes Nc. At finite cluster sizes Nc,
the critical behavior found in the DCA at tempera-
tures close to the transition temperature Tc defined
by the node in P−1

d has to be mean-field like, i.e.
P−1
d ∝ |T − Tc|, since the long-ranged physics is

treated on the mean-field level. At higher tempera-
tures however, where the correlation length is within
the cluster size, the true critical behavior may be
observed in the DCA. Therefore we fit the DCA re-
sults at intermediate temperatures with the function
χ = A exp(1B/(T −Tc)0.5), the critical behavior ex-
pected for a Kosterlitz-Thouless transition [25]. At
lower temperatures we expect the linear dependence
to connect smoothly to this behavior.
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Nc=16 ; A=0.037, ∆A=0.002, B=0.314, ∆B=0.011, Tc=-0.04, ∆Tc=0.002
Nc=18 ; A=0.054, ∆A=0.003, B=0.215, ∆B=0.013, Tc=-0.005, ∆Tc=0.002
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Fit with χ = A exp(2B/(T-Tc)1/2)

U=1.5, n=0.95

Figure 8: DCA/QMC result for the inverse d-wave
pair-field susceptibility as a function of temperature
for different cluster sizes at 5% doping when t = 0.25
and U = 1.5. Superconductivity is suppressed at
cluster sizes Nc > 4.

When Nc = 4, the DCA predicts a transition to
a d-wave superconducting state at a finite tempera-
ture Tc

1. When Nc > 4, however, the results seem
to indicate the absence of a finite temperature tran-
sition to a superconducting state at 5% doping.

Fig. 9 shows the results for the 15% doped system.
Again, for Nc = 4 a superconducting transition is
obtained at a finite temperature. In contrast to the
5% doped case, the results are almost converged, i.e.
independent of cluster size, when Nc > 4. This is a
clear indication that at this doping correlations are
short-ranged and do not extend beyond the cluster
size at the temperatures studied. Clearly, the re-
sults are incompatible with superconductivity at fi-
nite temperatures at 15% doping, even if the lowest
temperatures data points are extrapolated linearly.

Based on these results we infer that, despite its
tendency to exhibit d-wave pairing, the purely two-
dimensional Hubbard model is not enough to de-
scribe high-temperature superconductivity. We con-
clude that either a coupling to the third dimension,
a more realistic modeling of the electronic structure,
the additional inclusion of lattice degrees of free-
dom or even a combination of these extensions is
necessary to stabilize superconductivity in the infi-
nite cluster size limit. Work along these lines is in
progress.

1Note however that the fit function for temperatures close
to Tc changes curvature and therefore underestimates the ac-
tual Tc predicted by the DCA
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Figure 9: DCA/QMC result for the inverse d-wave
pair-field susceptibility as a function of tempera-
ture for different cluster sizes at 15% doping when
t = 0.25 and U = 1.5. The results are almost
converged for Nc > 4, where superconductivity is
strongly suppressed

7 Summary and Conclusions

The Cray X1 in the Center for Computational Sci-
ences at Oak Ridge National Laboratory has en-
abled significant new progress in the understanding
of HTSC within a minimal microscopic model, the
two-dimensional Hubbard model. DCA/QMC sim-
ulations at small cluster size Nc = 4 show very good
general agreement with HTSC, including supercon-
ductivity at high temperatures. Due to the small
cluster size however, the results violate the Mermin-
Wagner theorem, according to which no long-range
order is allowed at finite temperatures in the two-
dimensional model. The significant performance ad-
vantage of the X1 for the DCA/QMC computations
has provided the capability to study much larger
cluster sizes. Recent runs on the Cray X1 show that,
with larger clusters, relevant longer-ranged fluctu-
ations are captured, and the Mermin-Wagner the-
orem is recovered. Furthermore, the results show
the absence of a finite-temperature superconducting
transition, and thus are incompatible with a possi-
ble Kosterlitz-Thouless transition to a phase with
topological order.

These problems in the description of HTSC may
be overcome by carrying out fully three-dimensional
calculations with an infinite set of Hubbard planes
coupled along the third dimension. To eventually
enable the design of new and optimized supercon-
ductors, we further plan to parameterize the model

with ab-initio electronic-structure calculations and
to generalize the method to include multiple bands.
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