
Harmonic Optimization of Multilevel Converters Using Genetic Algorithms

Abstract— In this paper, a genetic algorithm (GA) optimization
technique is applied to multilevel inverter to determine
optimum switching angles for cascaded multilevel inverters for
eliminating some higher order harmonics while maintaining
the required fundamental voltage. This technique can be
applied to multilevel inverters with any number of levels; as an
example in this paper, a 7-level inverter is considered, and the
optimum switching angles are calculated offline to eliminate
the 5th and the 7th harmonics. Then, these angles are used in
an experimental setup to validate the results.

I. INTRODUCTION
Multilevel inverters have been drawing growing attention

in the recent years especially in the distributed energy
resources area due to the fact that several batteries, fuel
cells, solar cell, wind, and microturbines can be connected
through a multilevel inverter to feed a load or the ac grid
without voltage balancing problems. Another major
advantage of multilevel inverters is that their switching
frequency is lower than a traditional inverter, which means
they have reduced switching losses.

The output waveforms of multilevel inverters are in a
stepped form; therefore they have reduced harmonics
compared to a square wave inverter. To reduce the
harmonics further, different multilevel sinusoidal PWM and
space-vector PWM schemes are suggested in the literature
[1,2]; however, PWM techniques increase the control
complexity and the switching frequency. Another approach
to reduce the harmonics is to calculate the switching angles
in order to eliminate certain order harmonics. Chiasson et.
al. [3-5] derived analytical expressions using the
mathematical Resultant Theory to compute the optimum
switching angles. These expressions were polynomials of
22nd degree, are difficult and time consuming to derive, and
for any change of levels or voltage inputs, new expressions
are required.

In this paper, a general genetic algorithm (GA) approach
will be presented, which solves the same problem with a

simpler formulation and with any number of levels without
extensive derivation of analytical expressions.

GA is a search method to find the maximum of functions
by mimicking the biological evolutionary processes. There
are only a few examples of GA applications for power
electronics in the literature [6-8], but none on GA applied to
multilevel inverters.

II. CASCADED MULTILEVEL INVERTERS
The cascaded multilevel inverter is one of several

multilevel configurations. It is formed by connecting several
single-phase H-bridge converters in series as shown in Fig.
1 for a 7-level inverter. Each converter generates a square
wave voltage waveform with different duty ratios, which
together form the output voltage waveform as in Fig. 2. A
three-phase configuration can be obtained by connecting
three of these converters in Y or ∆.

For harmonic optimization, the switching angles θ1, θ2,
and θ3 (for a 7-level inverter) shown in Fig. 2, have to be
selected so that certain order harmonics are eliminated.

III. GENETIC ALGORITHM (GA)
Genetic algorithm is a computational model that solves

optimization problems by imitating genetic processes and
the theory of evolution. It imitates biological evolution by
using genetic operators like reproduction, crossover,

Burak Ozpineci1

1Oak Ridge National Laboratory
Knoxville, TN USA

Email: burak@ieee.org

Leon M. Tolbert1,2, John N. Chiasson2

2The University of Tennessee
Knoxville, TN USA

Email: tolbert@utk.edu, chiasson@utk.edu

V1

V2

V3

Vao

Fuel Cell
Module

a

o

Fuel Cell
Module

Fuel Cell
Module

Q11 D11 Q12 D12

Q13 D13Q14 D14

Q21 Q22 D22

Q23 D23Q24

Qn1 Qn2 Dn2

Qn3 Dn3Qn4

D21

D24

Dn1

Dn4

Cdc1

DFC1

Cdc2

DFC2

Cdc3

DFC3

Fig. 1. 7-level cascaded multilevel inverter

Prepared by the Oak Ridge National Laboratory, Oak Ridge, Tennessee
37831, managed by UT-Battelle for the U.S. Department of Energy unde
contract DE-AC05-00OR22725.

r

.

The submitted manuscript has been authored by a contractor of the U.S
Government under Contract No. DE-AC05-00OR22725. Accordingly, the
U.S. Government retains a non-exclusive, royalty-free license to publish
from the contribution, or allow others to do so, for U.S. Government
purposes.

mutation, etc.
Optimization in GA means maximization. In cases where

minimization is required, the negative or the inverse of the
function to be optimized is used.

To minimize a function, using GA, first,
each x

(k21 x,,x,xf K)
i is coded as a binary or floating-point string of length

m. In this paper, a binary string is preferred, e.g.
[]
[]

[]010111110x

1111000101x
0100110001x

k

2

1

K

KKKKK

K

K

=

=
=

 (1)

The set of {x1, x2,…,xk} is called a chromosome and xi are
called genes. The algorithm works as follows:

B. Initialize population
Set a population size, N, i.e. the number of chromosomes

in a population. Then initialize the chromosome values
randomly. If known, the range of the genes should be
considered for initialization. The narrower the range, the
faster GA converges.

Population, P= (2)

N,kN,2N,1

2,k2,22,1

1,k1,21,1

x,,x,x

x,,x,x
x,,x,x

K

KKKK

K

K

C. Evaluate each chromosome
Use a cost function specific to the problem at hand to

evaluate the fitness value (FV) of each chromosome,

()
()k21

k21

x,,x,xfFV
x,,x,xf

1FV

K

K

−=

= or
 (3)

Add all the FVs to get the total fitness. Divide each FV by
the total FV and find the weight/probability of selection, pi,
for each chromosome. The integer part of the product, piN
gives the number of descendents (offspring) from each
chromosome. At the end, there should be N descendent
chromosomes. If the number of descendents calculated is
less then N, the rest of the descendents are found randomly
considering the reproduction probabilities, pi of each
chromosome.

D. Crossover Operation

0 θ1 θ3θ2

V1

V1+V2+V3

V1+V2

V1

V2

V3

π 2π

-V1

-(V1+V2+V3)

-(V1+V2)

π/2

Fig. 2. 7-level cascaded multilevel inverter waveform generation

A floating number (between 0 and 1) for each
chromosome is assigned randomly. If this number is smaller
than a pre-selected crossover probability, this chromosome
goes into crossover. The chromosomes undergoing
crossover are paired randomly. In this case assume x1 and x2
are paired. The crossing point is randomly selected, assume
3 in this case.

Then, before crossover,
[]
[1111000101x

0100110001x

2

1
K

K

=
=

] (4)

and after crossover,
[]
[0100100101x

1111010001x

2

1
K

K

=
=

] (5)

As seen above, the bits after the 3rd one are exchanged.

E. Mutation Operation:
A floating number (between 0 and 1) for each bit is

assigned randomly. If this number is smaller than a pre-
selected mutation probability, this bit mutates. Assume that
the 2nd and 4th bits of x1 and 2nd, 3rd and 5th bits of x2
need to be mutated.

Then, before mutation and after crossover,
[]
[0100100101x

1111010001x

2

1
K

K

=
=

] (6)

and after mutation,
[]
[0100101000x

1111011011x

2

1
K

K

=
=

] (7)

Finally, the new population is ready for another cycle of
genetic algorithm. The algorithm runs a certain number of
times as required by the user. At the end, the chromosome
with the maximum FV is the answer.

IV. FORMULATING THE PROBLEM
GA algorithm explained in the previous section is the

same for any application. There are only a few parameters to
be set for GA to work. The steps for formulating a problem
and applying GA are as follows:

1- Select binary or floating point strings.

2- Find the number of variables specific to the problem;
this number will be the number of genes in a chromosome.
In this application, the number of variables is the number of
controllable switching angles, which is the number of H-
bridges in a cascaded multilevel inverter.

A 7-level inverter requires three H-bridges; thus, each
chromosome for this application will have three switching
angles, i.e. {θ1,θ2,θ3}.

3- Set a population size and initialize the population. In
this application a population size of 20 is selected. Higher
population might increase the rate of convergence but also
increases the execution time. The selection of optimum
sized population requires some experience in GA.

The population in this paper has 20 chromosomes, each
containing three switching angles. The population is
initialized with random angles between 0 and 90 degrees

taking into consideration the quarter-wave symmetry of the
output voltage waveform.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

20

40

60

80

Sw
itc

hi
ng

 a
ng

le
s

θ
1,
θ

2, a
nd

θ
3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.1

0.2

0.3

0.4

C
os

t f
un

ct
io

n

Modulation index, M

θ2

θ3

Fig. 3. Solutions for θ1, θ2, and θ3 and the cost function

4- The most important item for the GA to evaluate the
fitness of each chromosome is the cost function. The
objective of this study is to minimize some harmonics;
therefore the cost function has to be related to these
harmonics. As an example assume that the 5th and 7th
harmonics at the output of a 7-level inverter have to be
minimized. Then, the cost function, f can be selected as the
sum of these two harmonics normalized to the fundamental,

()
1

75
321 V

VV
100,,f

+
×=θθθ . (8)

where θi are the switching angles and Vn are the nth order
voltage harmonics.

For each chromosome, a multilevel output voltage
waveform (Fig. 2) is created using the switching angles in
the chromosome and the required harmonic magnitudes are
calculated using FFT techniques.

The fitness value, FV is calculated for each chromosome
inserting (8) in (3). In this case,

 ()
1

75
321 V

VV
100,,FV

+
×−=θθθ (9)

is used. The switching angle set producing the max FV is
the best solution of the first iteration.

5- GA is usually set to run for a certain number of
iterations (100 in this case) to find an answer. After the first
iteration, FV’s are used to determine new offspring as
explained in Section II. These go through crossover and
mutation operations and a new population is created which
goes through the same cycle starting from FV evaluation.

Sometimes, GA can converge to a solution much before
100 iterations are completed. To save time, in this paper, the
iterations have been stopped when the cost function goes
below 1 in which case the sum of the 5th and the 7th
harmonics is negligible compared to the fundamental. As
seen in Fig. 3, GA resulted in cost functions even smaller
than 0.4.

Note that after these iterations, GA finds one solution;
therefore, it has to be run as many times as the number of
solutions required to cover the whole modulation index
range.

The MATLAB source code required to solve this problem
for any number of levels and up to any number of
harmonics is given in the Appendix at the end of the paper.
The MATLAB GA Optimization Toolbox still needs to be
downloaded from [9].

V. RESULTS
For the 7-level inverter, switching angles, which

minimize the 5th and 7th harmonics, are shown in Fig. 3.

Note that this plot is similar to the one in [3] but has more
solutions. The reason for this is that in [3], the solution only
includes angles that result in zero 5th and 7th order
harmonics. In this paper, however, as seen in the bottom
plot of Fig. 3, any solution that yields a cost function less
than 1 is accepted. This means that if low harmonics are
tolerable, then a wider solution space is available.

In this figure for certain modulation indices, several sets
of solutions are available. Either of these solutions can be
used to minimize the selected harmonics. Another
possibility [3] is to calculate THDs for each solution set and
use the set that gives the lowest THD.

As can be observed in Fig. 3, for some modulation
indices, no solution sets are available. This means that for
those modulation indices, either there is not a solution or
GA could not find one. The former reason is more of a
possibility than the latter.

Fig. 4 shows the experimental 7-level voltage waveform
for M=0.42. Fig. 5, on the other hand, shows the first 15
harmonics of the waveform in Fig. 4. As seen in this figure,
the 5th and the 7th harmonics of the voltage waveform are
negligible.

Fig. 6 shows the optimum switching angles when this
technique is applied to a 9-level inverter (4 H-bridges, 4
switching angles) to minimize the 5th, 7th, 11th, and 13th
harmonics. In this case, for the angles GA selected, the cost
function is bound at 0.2, which much lower than the
previous case.

θ1

C
o

st
 fu

nc
ti

on

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

20

40

60

80

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

0.05

0.1

0.15

0.2

θ2

θ3

θ4

Modulation index, M

S
w

itc
h

in
g

an
gl

es
θ

1,
 θ

2,
 θ

3,
 a

n
d
θ

4

Fig. 6. Solutions for θ1, θ2, θ3, and θ4 and the cost function.

P
ha

se
 V

ol
ta

ge
, V

Time, s

Fig. 4. Experimental output voltage waveform

VI. CONCLUSIONS
The comparison of the results in this paper to similar

work in the literature shows that the GA approach for the
harmonic optimization of multilevel inverters works
properly. As in this approach, GA can be applied to any
problem where optimization is required; therefore, it can be
used in many applications in power electronics. A freely
available MATLAB GA optimization toolbox [9] can be
used for any optimization needs. When the toolbox is used,
the only programming required for the GA application is
given in the appendix below.

REFERENCES
[1] L.M Tolbert, F. Z. Peng, T.G. Habetler, “Multilevel PWM methods at

low modulation indices,” IEEE Transactions on Power Electronics,
15(4), July 2000, pp. 719 – 725.

[2] L.M. Tolbert, T.G. Habetler, “Novel multilevel inverter carrier-based
PWM method,” IEEE Transactions on Industry Applications, 35(5),

Sept.-Oct. 1999, pp. 1098 – 1107.
[3] J. Chiasson, L. M. Tolbert, K. McKenzie, Z. Du, “Eliminating

harmonics in a multilevel converter using resultant theory,”
Conference Proceedings of IEEE Power Electronics Specialists
Conference, 2002, vol. 2, 503– 508.

[4] J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, Z. Du, “A Complete
Solution to the Harmonic Elimination Problem,” IEEE Transactions
on Power Electronics, 19(2), March 2004, pp. 491 – 499.

[5] J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, Z. Du, “A Unified
Approach to Solving the Harmonic Elimination Equations in
Multilevel Converters,” IEEE Transactions on Power Electronics,
19(2), March 2004, pp. 478 – 490.

[6] B. Ozpineci, J. O. P. Pinto, L. M. Tolbert, “Pulse-width optimization
in a pulse density modulated high frequency AC-AC converter using
genetic algorithms,” Conference Proceedings of IEEE International
Conference on Systems, Man, and Cybernetics, 2001, pp. 1924 –
1929.

[7] A. I. Maswood, S. Wei, M. A. Rahman, “A Flexible Way to Generate
PWM-SHE Switching Patterns Using Genetic Algorithms,”
Conference Proceedings of IEEE Applied Power Electronics
Conference and Exposition (APEC), 2001, pp. 1130– 1134.

[8] M. J. Schutten, D. A. Torrey, “Genetic Algorithms for Control of
Power Converters,” Conference Proceedings of IEEE Power
Electronics Specialists Conference, 1995, pp. 1321– 1326.

[9] C. Houck, J. Joines, M. Kay, The Genetic Algorithm Optimization
Toolbox (GAOT) for Matlab 5,

 http://www.ie.ncsu.edu/mirage/GAToolBox/gaot.

θ1

5th 7th

a k/a
1

Frequency, Hz

Fig. 5. Normalized (with respect to the fundamental) FFT vs
frequency.

APPENDIX

A. Matlab source code for the menu
% Main menu to select the number of levels of the inverter,
% the number of solution sets required, the maximum
% number of iterations, the minimum error tolerable, and
% up to what number of harmonics will be minimized.
function [p] = mainmenu(px)
clc
disp(sprintf('1-Change the number of levels : %g',px(1)));
disp(sprintf('2-Change number_of_points : %g',px(2)));
disp(sprintf('3-Change the maximum number of iterations: %g',px(3)));
disp(sprintf('4-Change the minimum error (percent) : %g',px(4)));
disp(sprintf('5-eliminate (6n+1) harmonics. n : %g',px(5)));

p=input('Make a selection (1-4) or Press enter to run : ');
if (isempty(p)==1),p=0;end

B. Matlab source code for the main program
% Finds the optimum angles to minimize up to the 6n+-1th harmonics using
GA.
% Uses functions
% "fitness.m" to evaluate the fitness of the population
% "mainmenu.m" to display an options menu
%
% If the percentage of the sum of the selected harmonics is less than
% "minh", the solution is accepted, if not it is not accepted
%
% If some solutions are not accepted, then "number of points" will be
% different than the "number of iterations", otherwise they will be the
% same.
%
% For n cascaded converters, the number of levels is 2n+1
clear

global harm_n

p=100;
k=7;nop=2000;mnoi=20000;minh=2;harm_n=8;
px=[7 2000 20000 2 8];
while p~=0
 p=mainmenu(px);
 switch p
 case 0
 case 1
 k=(input('number of levels (default 7)= ')-1)/2;
 if isempty(k),k=3;end
 px(1)=2*k+1;
 case 2
 nop=input('number_of_points (default 2000): ');
 if isempty(nop),nop=2000;end
 px(2)=nop;
 case 3
 mnoi=input('maximum number of iterations (default 20000): ');
 if isempty(mnoi),mnoi=20000;end
 px(3)=mnoi;
 case 4
 minh=input('minimum error (default 2): ');
 if isempty(minh),minh=2;end
 px(4)=minh;
 case 5
 harm_n=input('eliminate (6n+1) harmonics. n (default 8): ');
 if isempty(harm_n),harm_n=2;end
 px(5)=harm_n;
 otherwise
 disp('Error 01:Enter a value between 0 and 4')
 disp('Press enter to continue')
 pause
 end
 end

k=(px(1)-1)/2;
 nop=px(2);
 mnoi=px(3);
 minh=px(4);

for i=1:k
 pool(i,:)=[.01 .99];
end

file='fitness';
n=100;

out=zeros(1,k+3);
it=1;
it_all=0;
flag1=0;

VV=125*ones(1,k);

while (it<nop)
it_all=it_all+1;
if it_all==mnoi,return,end

if flag1==1
 it=size(out,1)+1;
 flag1=0;
else
 it;
end

% Create a random initial population of size 20.

initPop=initializega(20,pool,file);

for i=1:20
 initPop(i,1:k)=sort(initPop(i,1:k));
end

[x endPop] = ga(pool,file,[],initPop,[1e-6 1 1],'maxGenTerm',n);

if (-x(k+1)<minh)
 MM=x;
 N=4096;
 [fftvaoo vaoo]=modulation(N,MM,VV);
 vvv=abs(fftvaoo(2));
 sumhh=0;
for g=1:harm_n
 h55=abs((fftvaoo(6*g+1+1))); %(6n+1)th harmonic
 h77=abs((fftvaoo(6*g-1+1))); %(6n-1)th harmonic
 sumhh=sumhh+h55+h77;
end
 xx=sort(x(1:k))*90;
 out(it,:)=[xx(1:k) vvv/sum(VV) -x(k+1) 100*(sumhh)/vvv]; %The best found
 it=it+1;
 flag1=0;
else
 flag1=1;
end

if flag1==0
 figure(1)
 subplot(2,1,1),plot(0:N/2-1,abs(fftvaoo(1:N/2)));
 axis([0,50,0,(abs(fftvaoo(2))*1.01)])

 subplot(2,1,2),plot(vaoo)
 hold, plot(abs(fftvaoo(2))*sin(2*pi*(1:N)/N),'r'),hold

 figure(2)
 subplot(3,1,1)
 for i=1:k
 plot(out(:,k+1),out(:,i),'.'),
 if i==1,hold,end
 if i==k,hold off,end
 end
 subplot(3,1,2),
 plot(out(:,k+1),sum(out,2)/(k*90),'.'),hold,
 plot(out(:,k+1),4/pi-out(:,k+1),'r'),
 plot(out(:,k+1),1-out(:,k+1),'g'),hold,ylabel('overall M')
 subplot(3,1,3),
 plot(out(:,k+1),(out(:,k+2)),'.'),hold on
 plot(out(:,k+1),(out(:,k+3)),'.r'),hold off, ylabel('cost function')
end
drawnow
end

C. Matlab source code for the fitness evaluation
% Evaluates the fitness of the chromosomes

function [sol, val] = fitness(sol,options)

global harm_n
M=sol;
N=4096; %N is a power of 2
kk=max(size(sol))-1;
V=125*ones(1,kk);
[fftvao v]=modulation(N,M,V);

vv=abs(fftvao(2));
sumh=0;
for g=1:harm_n
 h5=abs((fftvao(6*g+1+1))); %(6n+1)th harmonic
 h7=abs((fftvao(6*g-1+1))); %(6n-1)th harmonic
 sumh=sumh+h5+h7;
end

val=-100*(sumh)/vv;

D. Matlab source code for creating output voltage
% Modulation creates the multilevel output voltage.

function [fftv,vao] = modulation(N,M,V)
nn=1:N;
vc(1:N/4)=nn(1:N/4)/(N/4);
vc(N/4+1:N/2)=fliplr(vc(1:N/4));
vc(N/2+1:N)=-(vc(1:N/2));
for i=1:max(size(V))
 v(i,1:N)=(M(i)<=abs(vc))*V(i);
end
vao=sum(v).*sign(vc);
fftv=2*fft(vao)/N;

	Introduction
	Cascaded multilevel inverters
	Genetic Algorithm (GA)
	Initialize population
	Evaluate each chromosome
	Crossover Operation
	Mutation Operation:

	Formulating the problem
	Results
	Conclusions
	Matlab source code for the menu
	Matlab source code for the main program
	Matlab source code for the fitness evaluation
	Matlab source code for creating output voltage

