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Abstract— The decrease in manpower and increase in material 
handling needs on many naval vessels provides the motivation to 
explore the modeling and control of naval robotic and robotic 
assistive devices.  This paper presents a simple methodology to 
symbolically compute the dynamic equations of motion of a serial 
link manipulation system operating on the moving deck of a ship.  
First we provide background information that quantifies the 
motion of the ship, both in terms of frequency and amplitude.  
We then formulate the motion of the ship in terms of 
homogeneous transforms.  Likewise, the kinematics of a 
manipulator is considered as a serial extension of the ship 
motion.  We then show how to use these transforms to formulate 
the kinetic and potential energy of the arm moving on a ship.  As 
a demonstration, we consider two examples: a 1-degree-of-
freedom (DOF) system experiencing three sea states operating in 
a plane to verify the methodology and a 3 DOF system 
experiencing all six degrees of ship motion to illustrate the ease of 
computation and comple xity of the solution.  We provide a 
preliminary comparison between conventional linear control and 
repetitive learning control (RLC) and show how fixed time delay 
RLC breaks down due to the varying wave disturbance 
frequency. 
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I. INTRODUCTION 
While there has been ample research directed towards the 

design and control of surface vessels, underwater manipulators 
and vehicles, there has been surprisingly little effort devoted 
toward the design and control of robotic manipulation systems 
operating on a ship experiencing heavy sea states.  A recent 
exception is crane control on ships [1,2,3,4].  The general 
problem addressed with this research is that wave induced 
motion of a ship produces a low frequency disturbance on the 
motion of a crane.  A robotic system, operating under motion 
or force control on a ship, will likewise experience low 
frequency disturbances that can impact the precision and 
performance of the machine.  There is a growing need for 
robotics in the U.S. Navy.  Reduction in personnel with no 
tolerance for reduction in capabilities requires increased levels 
of both machine automation as well as advanced human 
assistive devices. One example was the development of the 
Next Generation Munitions Handler (NGMH) by Oak Ridge 
National Laboratory (ORNL) for the armed services [5].  

Traditionally, bomb-loading crews consist of anywhere from 
four to eight personnel to load bombs and missiles ranging 
from 500 to 2000 pounds.  The current technology is based on 
crude machines with names such as the “jammer” and “hernia 
bar.”  With existing and projected future reduction in military 
workforce, the armed services are exploring the development 
of technologies that enable fewer personnel to accomplish the 
same tasks in the less time.  There are a wide variety of 
potential applications of robotic and human assistive systems 
on a ship (munitions handling, maintenance, damage control, 
material handling to name a few).  However, the nature of the 
environment provides a host of unique problems.  Specifically, 
the environment in which the robot operates is continually 
moving.  The motion of the ship generates low frequency 
disturbance forces on the system, both in terms of inertial 
forces as well as shifts in the direction of gravity.  
Subsequently, there is a need for the development of advanced 
control methodologies to compensate for sea state disturbances.  
However, the nature of the environment makes it difficult to 
experimentally test competing control methodologies in a 
laboratory setting.  There are only a handful of sea state 
simulation platforms that have the capacity to hold a 
moderately sized robotic system.  However, much can be 
gained by having a high fidelity numerical simulation of a 
robot that includes ship motion disturbances. 

The objective of this paper is to formulate a simple and 
efficient methodology to derive the dynamic equations of 
motion for a multi-degree of freedom manipulator moving on a 
6-DOF platform.  We begin in Section II with a basic 
description of models used to describe a variety of sea states.  
This is followed in Section III by an abbreviated analysis of the 
motion of a marine vessel experiencing wave loading.  The 
results of this section provide some relevant information 
quantifying the amplitude and frequency of disturbances 
expected for a variety of vessels operating under various sea 
states.  In Section IV, we show how the classic homogeneous 
transform, combined with the energy approach can easily be 
configured to symbolically calculate the dynamic equations of 
motion.  We model the ship motion as a 6-DOF system.  The 
manipulation system is coupled serially to the ship model.  We 
then show how elements of the homogeneous transform can be 
used to symbolically compute the position, velocity, angular 
position, and angular velocity vectors of the center of mass of 
each link and the payload of the manipulator.  This basic 
methodology is applicable to any symbolic computation 
program.  However, we use Matlab and the Symbolic 
Toolbox and show through two examples how the resulting 
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symbolic equations of motion can be easily integrated with 
Simulink to provide a numerical simulation of the system.  
The motivation for this work is to develop a platform for 
testing control algorithms and alternative designs for ship-
board robotic and human assistive machines. 

II. WAVE MOTION 
We begin by considering the source of our problem, wave 

motion.  There has been considerable effort devoted towards 
the modeling and analysis of wave motion.  An irregular wave 
pattern can be generated through a combination of sinusoidal 
waves of different amplitudes and frequencies.  Since standard 
waves are characterized as a combination of wave amplitudes 
and frequencies, it is standard practice to model wave motion 
as an energy spectrum.  The actual units of the spectral model 
are normalized with respect to water density and gravity, thus 
the units are in terms of displacement squared over frequency.  
One popular model is the two-parameter Bretschneider wave 
spectral model used to define the frequency content of random 
sea waves.  The two parameters are, by definition, the 
significant wave height (H1/3) in centimeters, and the modal 
wave period (T) in seconds.  This significant wave height is 
defined as the average height of the top 1/3 highest waves.  The 
wave spectral density, S(ωw), is defined in Equation (1). 
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It is common to describe the wave conditions, which 
include H1/3  and T, in terms of a specific “sea state.”  Table 1 
provides a condensed version of the relevant data from the 
popular Pierson-Moskowitz sea condition definition [6].  Figure 
1 shows a representative spectrum for sea state 4. 

Table 1:  Sea State Definition 

Sea 
State 

Description Wind 
velocity 
(knots) 

Significant 
wave height 

(ft) 

Average 
period (sec) 

0 Ripples with appearance of 
scales, without foam crests 

0-2 0-0.01 0.5 

1 Small wavelets, short but 
pronounced crests do not 
break 

5-8.5 0.5-1.3 1.3-2.3 

2 Small waves becoming larger 10-13.5 1.8-3.3 2.7-3.6 
3 Fairly frequent “white horses” 14-16 3.6-4.7 3.8-4.3 
4 Moderates waves, taking a 

more pronounced long form. 
18-20 5-6.6 4.8-5.1 

5 Large waves begin to form. 22-24 7.3-10.5 5.4-6.4 
6 White crests are more 

extensive everywhere. 
25-28 10.9-14.3 6.6-7.5 

7 Sea heaps up and white foam 
from braking waves blown in 
streaks along wind direction 

30-40 16.4-29.1 8.0-10.7 

8 High waves.  Sea begins to 
roll.  Visibility affectes. 

42-54 40.8-67.4 11.3-14.5 

9 Rolling of the sea becomes 
heavy and shocklike. 

>54 >72.5 16-17.2 

 

 
Figure 1 :  Sea state spectrum 

The distribution of wave spectral energy as a function of 
ship heading is considered either to be unidirectional (long 
crested) or spread ±90° about a predominant direction (short 
crested).  Equation (2) accounts for the spread of the energy, 
transforming from long crested to short crested wave models, 

)()(cos)/2(),( 2 ωµνπνω SS −=  (2) 
where µ is the predominant heading of the wave front 
containing the principal amount of energy and a ν represents 
the variation of wave energy as a function of the predominant 
direction of the wave front.  There are a variety of methods 
available for the computation of the wave amplitude time 
history.  It is common practice to quantize the above energy 
spectrum into N equally spaced elements.  The amplitude, ζk, 
at the discrete frequency ωk, is extracted from the spectral 
energy in Equation (1) and Figure 1.  Equation (3) is the 
discretized expression for long crested waves 
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where ωEk is the encountered wave frequency and γk is a 
random phase angle.  The encountered wave frequency is 
actually a doppler shift in the wave frequency, ω, as a function 
of ship speed (V) and heading (µ). 
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The component amplitude, ζk, is computed by 
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The number of frequencies, N, used to compute the wave time 
history should be large enough to obtain a representative 
Raleigh distribution of single amplitudes.  Likewise, the 
increment in frequency, dω, is equal to the range of 
frequencies (ωmax-ωmin) divided by N where ωmax and ωmin are 
based upon the frequency range that provides ample 
representation of the total wave energy.  The computation of 
short crested wave time history is slightly more complex, 
accounting for angular spread in wave energy.  The previous 
description provides the background necessary for the 
computation of wave time histories. 



 

III. SHIP MOTION DUE TO SEA STATE 
There has been a great deal of effort devoted towards 

modeling ship motion due to wave loadings.  However, the 
primary focus had been directed towards ship design [7,8,9].  
Our motivation for understanding ship motion is to quantify the 
expected magnitude and frequency of disturbance loads for a 
motion and/or force controlled manipulation system. 
Subsequently, this section will provide an abbreviated 
explanation of one of the techniques presently used to model 
ship motion.   

Figure 2 shows a simplified model of a ship with the 
corresponding displacements due to wave motion.   The motion 
of the ship is defined by six displacements (surge, sway, heave, 
roll, pitch, and yaw) at the ship’s longitudinal center of gravity, 
from which motions at all other locations on the ship can be 
developed.  While there are a number of techniques to simulate 
ship motion, the strip theory of Salvensen et al. is one of the 
more popular approaches to modeling the 6-DOF response for 
a ship advancing at a constant forward speed with arbitrary 
heading in regular sinusoidal waves [10].  In its simplest form, 
a ship acts as a set of filters, called the Response Amplitude 
Operators (RAOs), that transforms wave motion into the six 
degrees of motion (surge, sway, heave, roll, pitch and yaw).  
Each motion has its own characteristic RAO.  As illustrated in 
the previous section, there is ample information for 
characterizing the frequency content of the waves.  The 
challenge is to design accurate models of the ship that 
faithfully characterizes the behavior of the ship.  Strip theory is 
able to provide reliable estimates of sea keeping performance 
for a wide range of hull forms and sea conditions.  Calculations 
are made in the frequency domain with the warping of the 
excitation frequency accounting for forward speed and 
heading, Equation (4).  There are three main stages to 
computing the motion response of the ship.  First, divide the 
ship into a number of transverse sections (or strips), generally 
from 10 to 40, and compute the two-dimensional 
hydrodynamic coefficients such as added mass, damping, wave 
excitation, and restoring force.  Next, integrate these values 
along the length of the vessel to obtain global coefficients for 
the coupled motion of the vessel.  Finally, the equations of 
motion for the ship can be solved to give the amplitudes and 
phases of the heave, surge, sway, yaw, pitch and roll motions.  
Clearly, the motion of a ship is a complex phenomenon and the 
above description is merely a simplified explanation of one 
method used for modeling ship motion.  The above description 
is intended to only provide insight into the problem of ship 
motion simulation.  The interested reader is referred to the 
following list of articles and text for a deeper understanding of 
ship motion simulation [11,12,13].  Fortunately, there are a 
number of commercial software packages available for the 
analysis and simulation of marine vessels.  The level of 
sophistication, as well as magnitude of cost, varies 
dramatically.  The package used for the analysis in the paper is 
the Simulation Time History (STH) and Access Time History 
(ACTH) programs developed at the Naval Surface Warfare 
Center in Bethesda Maryland and are available through the 
National Technical Information Service. Table 2 provides a 
general description of the expected motion of a ship based 
upon the sea state and vessels length and beam dimensions 

[15].  A listing of naval and commercial vessels with their 
respective displacement, length and beam dimensions follows 
in Table 3.  A full listing of the data on each of the above navy 
war ships is available through a navy web site [16]. 

 

Figure 2 :  Ship displacements 

Table 2:  Ship response as function of sea state 

 

Table 3:  Ship size/displacement 

Type of Ship Displacement (tons) Length (ft) Beam (ft) 
Aircraft Carrier 97,000 1092 134 
Queen Elizabeth II 66,000 887 103 
Battleship 59,000 860 108 
Amphibious Assault  40,500 844 106 
Ammunition ship 18,000 564 81 
Command Ship 14,640 520 84 
Cruiser, Destroyer 9600 567 55 
Frigates 4100 445 45 
Rescue, Salvage 3280 255 51 
Coastal Patrol 331 170 33 

 

IV. DYNAMIC EQUATIONS OF MOTION 
At this point, we have an ability to model the motion of a 

ship as a function of the sea state and vessel.  We now are 
interested in understanding the impact this ship motion has on 
the dynamics of a general manipulation system.  Our approach 
to modeling the dynamics of a robot on a moving platform, 
such as a ship, consists of: modeling the ship motion and robot 
kinematics with homogeneous transforms, constructing kinetic 
and potential energy terms using these transforms, and 
symbolically computing the dynamic equations of motion via 
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the Lagrange approach.  First, as a review, the homogeneous 
transform is expressed using the traditional Denavit-Hartenberg 
(D-H) representation found in most robotics texts where the 
four quantities θi (angle), αi (twist), di (offset), ai (length) are 
parameters of link and joint i[17, 18]. 
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The conventional use of the homogeneous transform treats 
each subsequent transformation as a body fixed rotation and 
translation.  However, the sea state is generally described in 
terms of a space fixed displacements.  For example, all of the 
translations and rotations are with respect to the same space 
fixed reference frame.  Referring to Figure 2, roll and surge are 
about a fixed X-axis, pitch and sway are about a fixed Y-axis 
and yaw and heave are about a fixed Z-axis.  We begin by 
constructing a homogeneous transformation using space-fixed 
rotations and translations for a transformation from the sea 
coordinate frame to the base of the robot.  Equation (7) is the 
final expression for the displacement of the base of a robot with 
respect to a sea state where cθ is cos(θ) and sθ is sin(θ).  
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We assume for now that the sea states are defined with 
respect to the base of our robot.  If necessary, additional 
transformations can be included from the coordinate system of 
the sea state to the base of the manipulator.  We also assume 
that we can define homogeneous transforms from each joint to 
a point on each link where the associated mass properties (mass 
and inertia matrix) are known.  So, our basic methodology 
consists of using the homogenous transforms to identify the 
displacements and velocities, both translation and rotation, of 
the center of mass of each link and payload with respect to the 
manipulators state and the sea state.  We extract out of the 
transforms the vertical displacement of each center of mass for 
an expression of the total potential energy of the system.  
Likewise, computation of the system’s kinetic energy is based 
on computing the linear and angular velocity of each link’s 
center of gravity (c.g.) with respect to the inertial frame.  Once 
the kinetic and potential energy terms are derived, we simply 
use the jacobian() function to symbolically calculate the mass 
matrix and nonlinear dynamic terms following the Lagrange 
formulation.   

First, the position of the center of mass for each link, with 
respect to the system’s inertial coordinate system, is computed 
by post multiplying the homogeneous transform from the robot 
base to the link’s c.g. by Hsea. 
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The potential energy due to gravity for link i is the vertical 
component ( i

seaz in direction of gravity) of i
seax times the mass 

of the link.   
i
seai

i gzmV =  (9) 

To compute the kinetic energy, we must first derive 
expressions for the linear and angular velocity of the center of 
gravity for each link as a function of the sea state and states of 
the manipulator.  We have an expression, i

seax in Equation (8), 
for the position of the c.g. of link i with respect to the sea 
inertial frame.  The velocity vector, iv , is computed by 
multiplying the Jacobian (with respect to the combined states 
of the manipulator q ) of i

seax , )q, ( i
seaxJ , by the state velocity 

vector, q& .  

][q 

],,,,,[q with
 ]q q[q where

q)q, (

q 
q 

 

 t
 

10
i
sea

i
sea

i6

1j
j

j

i

i
sea

i
sea

i
sea

i

qqqand

heaveswaysurgeyawpitchroll

xJ

x

xv

K

&

&

=

=
=

=

∂
∂=

∂
∂=

∑
+

=
 (10) 

The rotational velocity is a little more involved, but can be 
simplified by again using the homogeneous transform and 
starting at the base of the robot and working forward to the c.g. 
of each link.  We begin by defining the base rotational velocity. 

[ ]yawpitchrollbase θθθω &&&    =  (11) 

We combine the rotational velocity of the first link (with 
respect to the link), 1q& , with the projection of ωbase to the 
center of mass of the link, again using the rotational component 
of the homogeneous transform in Equation (7). 

basebaseRq ωω 1
11 += &  (12) 

Each subsequent joint consists of projecting the total 
angular velocity vector of the previous joint to the current 
joint’s coordinate system, using the rotational component of 
that joint’s homogenous transform, and adding the joint 
angular velocity.   
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We now have expressions for the linear and angular 
velocity of the center of mass for each link.  The total kinetic 
energy of the system is  
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where mi is the mass of link i and Ii is the inertia matrix of link 
i about the center of gravity.  As a final step, we add external 
forces applied to the system.  For now, we assume forces are 
applied only to the joints and tip of the robot.  We use the 
principle of virtual work to lump these terms together. 
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 Equations (9) and (14) provide expressions for the kinetic 
and potential energy of the system.  We start with the classic 
definition of the Lagrange equations of motion. 
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The first term in Equation (16) can be expanded using the 
chain rule. 
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Substituting Equation (17) into (16), 
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As with the velocity computation in Equation (10), we can 
exploit the jacobian() function in Matlab for the evaluation of 
many of the terms in Equation (18).  First, the term ∂T/ q&∂  is 
the differential of the scalar kinetic energy term with respect to 
the full state velocity vector defined in Equation (10).  This 
results in the vector, Lv, in the script files in a technical 
report.[18]  We then take the Jacobian on Lv with respect to the 
full state vector and full state velocity vector to the first and 
second terms in Equation (18).  Likewise, the 3rd and 4th terms 
in Equation (18) are evaluated using the Jacobian function on 
the kinetic and potential energy terms respectively.  Thus, it 
should be clear that once the kinetic and potential energy terms 
are defined, it is straightforward to symbolically evaluate the 
dynamic equations of motion using Matlab’s jacobian() 
function.  The Jacobian for projecting external forces to the 
generalized coordinates can similarly be computed using the tip 
position of the robot and the Jacobian function. 

We provide two examples: a simple 1-DOF system 
operating in a plane and a 3-DOF system experiencing all six 
degrees of motion from the sea state.  The first example is 
simple enough to verify through hand calculations.  The second 
example is more complex, yet practical.  Figure 3 shows the 
basic kinematic model of the one degree of freedom system 
experiencing 3 sea states in the X-Y plane.  We are assuming a 
one DOF system with mass M and rotary inertia Iz located at 
the tip of a link of length L.  The system is experiencing only 
three of the six sea states:  surge (xs), heave (ys), and pitch (θs).  
The only external force applied to the system is a joint torque, 
τ, applied at joint 1.  The results are displayed in Equation (19). 
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Figure 3:  One DOF model 
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The power of this approach is more evident as we progress to 
more complex systems.  Additional degrees of freedom only 
require additional homogeneous transforms.  As a second 
example, we derive the dynamic equations of motion for the 3-
DOF system, shown in Figure 4, with the full 6-DOF from the 
sea state.  A listing of the code used for computing the 
dynamics of the strength amplifying machine on the deck of a 
ship is shown in the listing in Appendix A.  The resulting 
equations of motion can be partitioned into a compact form, 
Equation (20), 
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where Mrr is the 3x3 mass matrix for the robot with respect to 
the robot’s state acceleration, Mss is the 6x6 mass matrix of the 
robot with respect to the sea state acceleration, NLTr is a 3x1 
vector of the nonlinear terms (gravitational, coriolis, 
centripetal) as a function of both the robot’s state and the sea 
state and  Qr is the joint force input to the system, Fext is an 
external force vector applied to the end effector and Jt(qr) is the 
Jacobian from the end effector to the joint space.  In order to 
include the dynamic equations of motion in Simulink, we use 
Equation (21) to solve for the acceleration of the robot’s state 
vector as a function of all of the inputs (external forces and 
joint torques), system state (position and velocity) and external 
disturbances (sea state position, velocity, and acceleration). 
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Figure 4:  Strength amplifying machine 

Appendix A provides a listing of the Matlab code required 
to symbolically compute the dynamic equations of motion for 
the system displayed in Figure 4.  While the output of the 
single DOF, planar case can be listed in Equation (19), the 
results of the dynamic equations of motion for the second 
system generates eighty-four pages of c-code and would 
require considerable effort to derive by hand.  The first obvious 
question is the validity of the results.  For now, we can only 
verify the basic methodology by comparing to simple cases.  
To date, we have compared the methodology to a number of 
manipulators with stationary bases and achieve the same 
symbolic results.  In addition, we have considered only simple 
one and 2-DOF systems experiencing one to three degrees of 
ship motion.  In each case, the symbolic solutions are the same 
leading us to believe the methodology is sound.  The second 
obvious question is what can you do with eighty-four pages of 
c-code.  Fortunately, the code can be directly imported into 
Simulink through the S-Function builder.  Finally, one might 
ask how long does it take to simulate a system with eighty-four 
pages of c-code.  We will conclude the paper with some 
simulation results of our 3-DOF system experiencing 6-DOF of 
ship motion.  The simulation includes nonlinear dynamic 
modeling of the hydraulic system (servo-valve orifice 
equations, asymetric cylinders, fluid compliance…), controls 
and the dynamic equations of motion computed above.  The 
simulation was surprisingly fast.  It takes 178 seconds to 
execute a 120 second simulation with a fixed 0.01 second time 
step and 4th order Runge-Kutta integration, executed on a 750 
MHz Pentium III laptop. The motivation for computing the 
dynamics equations of motion are two fold.  First, by having 
the dynamics in a symbolic form, it is possible to aid in the 
design process, changing parameters to optimize the system.  
Second, a model of the system dynamics can aid in increasing 
the fidelity of simulation for control design and analysis.  As a 
concluding exercise, we demonstrate the dynamic model 
through simulation.  First, we have formulated the dynamic 
equations of motion so as to compute the joint accelerations as 
a function of the sea state, external forces applied to the tip of 
the arm, and joint torques, Equation (21).  The arm in Figure 5 
is hydraulically actuated.  The hydraulic actuator models 
generate force as a function of the servovalve current, actuator 
position and velocity.   

For our first simulation, we start with a sinusoidal models 
with a fixed frequency for each of the six sea states.  We 
assume a significant wave height of 7 ft and average period of 
6 seconds (sea state 5).  For demonstation purposes, the system 
has a 500 lb payload, has linear position control with a gain 

margin of 10 dB and phase margin of 60 degrees, and is 
commanded to stay at a specific position.  Under these sea 
states, the vertical and horizontal tracking error exceed 1 inch.  
We then introduce a Repetitive Learning Controller (RLC), 
Figure 5, with a fixed delay (Td) that is the same as our 
simulated wave period.  Details on the design of an RLC 
(specifically the filters q(s) and b(s)) can be found elsewhere in 
the literature.[19]  The results in Figures 6 and 7 show a 
reduction of the vertical and horizontal position error by over 
an order of magnitude with the introduction of the RLC. 

Figure 5:  Repetitive learning control 

 
Figure 6:  Horizontal response with 500 lb payload 

 

 
Figure 7:  Vertical response with 500 lb payload 

 
We now repeat the same series of simulations but introduce 

more realistic wave and sea state disturbances, generated for 
the same sea state as in Figures 6 and 7, but using the STH and 
ACTH programs.  Figures 8 and 9 compare the horizontal and 
vertical position of the arm, with the RLC disabled and 
enabled.  The delay time for the RLC was selected based on the 
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significant wave period.  Clearly, the variations in the wave 
period negatively impact the performance of the fixed time 
delay RLC.  There are some time segments (from 90 to 120 
seconds) where it appears there is some benefit to using RLC.  
These results provide the motivation for an exploration of ship 
motion compensation for robotic systems.  We anticipate that 
the impact will be more dramatic for force controlled devices.  
The interested reader can find greater details in a report 
covering the modeling, simulation and control of maritime 
manipulation systems.[18]  

 
Figure 8:  Horiz. response, realistic waves, 500 lb payload 

 

 
Figure 9:  Vertical response, realistic waves, 500 lb payload 

V. CONCLUSIONS AND RESULTS 
This article has described the fundamental problems 

associated with motion control of manipulation systems 
operating on the deck of a moving ship.  We provided a brief 
survey of present wave modeling techniques and ship motion 
simulation procedures.  This is followed by a methodology to 
compute the dynamic equations of motion, using energy 
methods, of a general serial link manipulator on a six degree of 
freedom base.  We provide as an example a three degree of 
freedom manipulator and show, through simulation, the impact 
of wave generated disturbance on the tracking control of this 
system.  Subsequent work is exploring adaptive learning 
control methodologies for compensating for the time varying 
periodic nature of these disturbances.  In addition, we are 
exploring the impact wave dynamics have on force controlled 

manipulation systems.  Here, the wave disturbance has a more 
dramatic impact with direct feedback of the force in the control 
algorithm.   
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VI. APPENDIX A 
syms ai alfai di thi mass g  
syms q1 q1_d q1_dd 
syms roll pitch yaw heave surge sway  
syms roll_d pitch_d yaw_d heave_d surge_d sway_d 
syms roll_dd pitch_dd yaw_dd heave_dd surge_dd sway_dd 
syms th1 th1d th1dd th2 th2d th2dd th3 th3d th3dd 
syms L1 L2 L3 L4 L1c L2c L3c L3x L3h L3y L4c 
syms m1 m2 m3 I1x I2x I3x I1y I2y I3y I1z I2z I3z 
pi = sym('pi'); 
 
% Symbolically derive motion of base of robot on deck of ship experiencing 
% 6 dof of sea motion (roll, pitch, yaw, heave, surge, sway).  Use DH parameters 
% to describe this motion in terms of homogeneous transforms. 
R1s=[1   0           0; 
     0   cos(roll)   sin(roll); 
     0   -sin(roll)  cos(roll)]; 
 
R2s=[cos(pitch)  0   -sin(pitch); 
     0           1   0; 
     sin(pitch)  0   cos(pitch)]; 
 
R3s=[cos(yaw)    sin(yaw)    0; 
     -sin(yaw)   cos(yaw)    0; 
     0           0           1]; 
 
Hsea=[[simple(R1s*R2s*R3s) [surge;sway;heave;]];[0 0 0 1]]; 
 
ai=-L1;alfai=pi/2;di=0;thi=th1; 
H1=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L2;alfai=0;di=0;thi=th2+pi/2; 
H2=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L2c;alfai=0;di=0;thi=th2+pi/2; 
H2c=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L3x;alfai=0;di=0;thi=th3-pi/2; 
H3=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L3h;alfai=0;di=0;thi=th3-pi/2; 
H3h=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L3c;alfai=0;di=0;thi=th3-pi/2; 
H3c=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
 
ai=L3y;alfai=0;di=0;thi=pi/2; 
H4=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 



 

     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
  
ai=L4;alfai=-pi/2;di=0;thi=th4-pi/2; 
H5=[cos(thi)   -sin(thi)*cos(alfai)     sin(thi)*sin(alfai)     ai*cos(thi); 
     sin(thi)   cos(thi)*cos(alfai)     -cos(thi)*sin(alfai)    ai*sin(thi); 
     0          sin(alfai)              cos(alfai)              di; 
     0          0                       0                       1]; 
  
H=simple(H1*H2*H3*H4*H5); % Homogeneous transform for the robot  
H_full=simple(Hsea*H);    % Full homogeneous transform of robot include sea state 
 
q=[th1;th2;th3];       % state vector of robot  
qd=[th1d;th2d;th3d]; % derivitive of state vector 
qs=[roll;pitch;yaw;heave;surge;sway]; % sea state vector 
qsd=[roll_d;pitch_d;yaw_d;heave_d;surge_d;sway_d]; % sea state velocity 
qsdd=[roll_dd;pitch_dd;yaw_dd;heave_dd;surge_dd;sway_dd]; % sea state acceleration 
 
% velocity computation.  Each velocity is the velocity of the cg of the line wrt base 
coordinate system 
% velocity of cg of 2nd link 
Ht=simple(Hsea*H1*H2c);  % homogeneous transform from base to cg of link 2 
R2c=Ht((1:3),4);    % pull out x, y, z (vector from base to link 2 cg) 
V2c=Jacobian(R2c,[q(1:2);qs])*[qd(1:2);qsd];    % calculate velocity of cg of link 2 wrt 
inertial frame (V = dR/dt = dR/dq * dq/dt) 
 
% velocity of cg of 3rd link 
Ht=simple(Hsea*H1*H2*H3c); 
R3c=Ht((1:3),4); 
V3c=simple(Jacobian(R3c,[q;qs])*[qd;qsd]); 
 
% rotation matricies from base to each associated coordinate system 
R1=transpose(H1(1:3,1:3)); 
R2=transpose(H2(1:3,1:3)); 
R3=transpose(H3(1:3,1:3)); 
 
% angular velocity of each link about cg wrt local coordinate frame 
Q1=[0;0;th1d]+qsd(1:3); 
Q2=simple(R2*R1*Q1+[0;0;th2d]); 
Q3=simple([0;0;th3d]+R3*Q2); 
 
% inertia matrix for each link about center of gravity wrt coordinate frame of line (same 
as homogeneous transform, translated to cg) 
I1=[I1x 0 0;0 I1y 0;0 0 I1z]; 
I2=[I2x 0 0;0 I2y 0;0 0 I2z]; 
I3=[I3x 0 0;0 I3y 0;0 0 I3z]; 
 
% Payload information (position/velocity) 
syms M_payload; 
Rtip=H_full(1:3,4); 
Vtip=Jacobian(Rtip,[th1;th2;th3;roll;pitch;yaw;heave;surge;sway])*[th1d;th2d;th3d;roll_
d;pitch_d;yaw_d;heave_d;surge_d;sway_d]; 
 
% total kinetic energy:  T = 1/2 qdot' * I * qdot + 1/2 V' M V 
T=(1/2*transpose(Q1)*I1*Q1 + 1/2*transpose(Q2)*I2*Q2 + 1/2*transpose(Q3)*I3*Q3 +     
1/2*m2*transpose(V2c)*V2c+1/2*m3*transpose(V3c)*V3c)+ 
1/2*M_payload*(transpose(Vtip)*Vtip);; 
 
% potential energy due to gravity 
V=m2*g*R2c(3)+m3*g*R3c(3)+M_payload*g*Rtip(3); 
 
% calculate dT/dqdot 
dT_qdot=Jacobian(T,qd); 
 
% extract out mass matrix 
MassMatrix= simple(Jacobian(dT_qdot,qd)); 
 
% now finish off with remaining terms 
NLT1=simple(Jacobian(dT_qdot ,[q])*[qd]); 
NLT2=simple(Jacobian(dT_qdot,transpose(qs))*qsd); 
NLT3=simple(Jacobian(dT_qdot,transpose(qsd))*qsdd); 
NLT4=simple(-1*transpose((Jacobian(T,q)))); 
NLT5=simple(((Jacobian(V,q)))); 
 
% translate to C-code 
MassMatrix_cc=ccode(MassMatrix); 
NLT1_cc=ccode(NLT1); 
NLT2_cc=ccode(NLT2); 

NLT3_cc=ccode(NLT3); 
NLT4_cc=ccode(NLT4); 
NLT5_cc=ccode(NLT5); 
 
% calculation of jacobian from tip frame to joint space 
LDRDJacobian=simple(Jacobian(H(1:3,4),[th1;th2;th3])); 
LDRDJacobian_cc=ccode(LDRDJacobian); 

VII. REFERENCES 
[1]  R. J. Henry, Z. N. Masoud, A. H. Nayfeh, and D. T. Mook, 
“Cargo Pendulation Reduction on Ship-Mounted Cranes Via Boom-
Luff Angle Actuation," submitted for publication, Journal of 
Vibration and Control. 
[2]  C-M. Chin, A. H. Nayfeh, and D. T. Mook, ``Dynamics and 
Control of Ship-Mounted Cranes," AIAA Paper No. 98-1731, 39th 
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference, Long Beach, CA, April 1998. 
[3]  W. Lacarbonara, R. R. Soper, A. H. Nayfeh, and D. T. Mook, “A 
Fully Passive Architecture for Pay-Load Pendulation Control in 
Cranes,” International Conference on Monitoring and Control of 
Marine and Harbour Structures, Genoa, Italy, 1999. 
[4]  B. Kimiaghalam, A. Homaifar, and M. Bikdash,  “Feedback and 
feedforward control law for a ship crane with the Maryland rigging 
system”, Proceedings of the 2000 ACC. 
[5]  T. Deeter, G. Koury, K. Rabideau, M. Leahy, and T. Turner, “The 
Next Generation Munitions Handler Advanced Technology 
Demonstrator Program,” Proceedings of the 1997 IEEE International 
Conference on Robotics and Automation, pp. 341-345, 1997. 
[6]  R. Bhattacharyya, Dynamics of Marine Vehicles, John Wiley & 
Sons, 1978. 
[7]  A. Engle, A. Lin, N. Salvensen, and Y. Shin, “Application of 3-D 
Nonlinear Wave-Load and Structural Response Simulations in Naval 
Ship Design,” Naval Engineers Journal, Vol. 109, No.3, May 1997. 
[8]  M. Abkowitz, “Applications of the Spectral Techniques to Design 
and Operation,” Proceedings of the Society of Naval Architects and 
Marine Engineers Sea Keeping Symposium, 1973. 
[9]  T. Lamb, "Organization Theory and Shipbuilding -- A Brief 
Overview," Marine Technology, April 1992. 
[10]  N. Salvensen, O. Tuck, and O. Faltinsen, “Ship Motions and Sea 
Loads,” Transactions of the Society of Naval Architects and Marine 
Engineers, Vol.78, pp.250-287, 1970. 
[11]  W. Price, and R. Bishop, Probabilistic Theory of Ship Dynamics, 
Halsted Press, 1974. 
[12]  W. Price, Dynamics of Ships, Scholium International, 1991. 
[13]  T. Ogilvie, “Fundamental Assumptions in Ship-motion Theory,” 
The Dynamics of Marine Vehicles and Structures in Waves, Edited by 
R.E.D. Bishop and W.G. Price, Institute of Mechanical Engineers, 
London, 1975, pp.135-145. 
[14] DOD-STD-1399, Interface Standard for Shipboard Systems, 
Section 301A. 
[15] http://www.chinfo.navy.mil/navpalib/factfile/ffiletop.html 
[16] Spong, M., and Viyasagar, M., Robot Dynamics and Control, 
John Wiley & Sons, 1989. 
[17] Yoshikawa, T., Foundations of Robotics:  Analysis and Control, 
MIT Press, 1990.  
[18] L.Love, J. Jansen, F. Pin, “Compensation of Wave-Induced 
Motion and Force Phenomena for Ship-Based High Performance 
Robotic and Human Amplifying Systems,” ORNL/TM-2003/233,  
Oak Ridge National Laboratory, Oak Ridge, TN, October 2003. 
 [19] K. Srinivasan and F. Shaw, “Analysis and Design of Repetitive 
Control Systems Using the Regeneration Spectrum,” Journal of 
Dynamic Systems, Measurement, and Control, Vol. 113, pp.216-222, 
1991. 
 

 


