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Abstract. Identifying the specific DNA-binding sites of regulatory proteins is es-
sential to understanding gene expression in the biological cell. Rather than em-
ploying statistical bioinformatics tools, we choose an atomistic approach based on
the protein-DNA co-crystal structure and binding energies obtained from the AM-
BER force field. Our method uses the deterministic dead-end elimination and A*
algorithms to search a library of discrete amino-acid sidechain rotamers and DNA
basepairs for the optimal binding conformations. As an example, we search all pos-
sible 10-basepair DNA sequences (4'°) of Zif268, a well-studied mouse regulatory
protein.

1 Introduction

Gene expression is regulated by proteins which bind to the DNA in the vicin-
ity of the gene. However, these proteins can regulate many different genes by
binding to different, albeit similar DNA sequences. Fast methods to deter-
mine binding sites are demanded in order to keep up with the sequencing of
new genomes, and the desire to find new therapeutics for diseases.

While experimental methods based on DNase I footprinting [1] and DNA
microarrays [2] are laborious and error-prone[3], standard statistical bioinfor-
matics tools like the consensus sequence and the weight-matrix require prior
knowledge of a lot of binding sites to succeed [4]. Both methods make the
approximation of treating each DNA-sequence position as independent[5].

In contrast to these methods, we emphasize that protein-DNA binding is
based on physical interactions at the atomic scale, i.e. electrostatic, van-der
Waals, and hydrophobic interactions as well as (water mediated) hydrogen
bonds. The deformability of DNA is also an important part of the binding
specificity, since a protein-induced deformation of DNA upon binding will oc-
cur more readily for certain DNA sequences [6]. Previous atomistic methods
have focused on this aspect of binding, but either neglected the protein com-
pletely [7] or modeled it as a rigid object[8]. We were therefore motivated
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to develop a predictive theory of protein-DNA interactions which includes
protein-sidechain flexibility in a fully atomistic description.

Our model consists of the fixed protein and DNA backbones obtained
from a relevant co-crystal structure as shown in Fig. 1. For the unbound
system we take a canonical B-DNA form, widely separated from the pro-
tein. No explicit water molecules are included in the current approach. To
find preferred binding sites, we search the combined space of all DNA se-
quences and a library of discrete sidechain rotamers for the DNA-contacting
amino acids[9,10]. Since temperature-dependent statistical algorithms often
fail to find the global minimum on rough potential energy surfaces[11], we
resort to the deterministic dead-end elimination (DEE) [12] and A* algo-
rithms [13]. Binding energies are evaluated using the molecular-mechanics
package AMBER 7 (parm99 force field) [14]. An initial fast search for pre-
ferred DNA sequences is made using vacuum energies, but the final ranking
is done with the generalized-Born implicit-solvent model (GB/SA) [15]. The
AMBER force field is able to capture the fine structure of DNA, including the
A- to B-DNA transition, even with the implicit-solvent model [16]. The same
force field and conformational-search algorithm have been used successfully
for protein design [13].

2 Numerical Methods

To find the highest-affinity binding sites, we use the dead-end-elimination
(DEE) [12]. If it converges, DEE deterministically finds the global energy
minimum. As a necessary condition to apply DEE, the total binding energy
is decomposed in a pairwise fashion,

P

AE™ =3[ Acin) + 3 Aelir i), (1)

i=1 j=i+1

where P = Ny, + Npp is the sum of the total numbers of protein amino
acids Ng, and DNA basepairs Ny,. The quantities Ae(i,) and Ae(iy, js) are
the self-energies and interaction energies of rotamers/basepairs of the bound
minus unbound structures, where r and s describe rotamers/basepairs, while
i and j are protein/DNA sequence positions. The resulting number of all
possible conformations is extremely large, O(n?), if n is the average number
of rotamers/basepairs at each position. Since a pairwise expression for the
binding energy is strictly only correct in vacuum [17], we pre-calculated
the self-energies and interaction energies without the solvent.

We implemented several levels of DEE algorithms as recently described
in Refs. [18,19], including the so-called super-rotamer approach [20]. Just to
mention two illustrative examples of DEESs, there is Desmet’s original dead-
end elimination criterion [12] which is the least-efficient but best scaling DEE
algorithm regarding CPU-time, ~ O(P2n?). It uses the fact that a potential
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Fig. 1. Overview of atomistic method to identify DNA binding sites. (As an exam-
ple, we choose the protein Zif268 whose “ribbon”-structure is shown.)

rotamer /basepair i, is inconsistent with binding energies within E, of the
global minimum and hence can be eliminated (i.e. is a “dead-ending single”
or DES), if its best possible energy contribution to the total binding energy
is still worse than the worst possible energy contribution of an alternative
rotamer /basepair ¢ at the same position ¢ by more than E.,

P P
Ae(iy) + Y min Ae(ir, js) > Ae(iy) + Y max Ae(iy, js) + EB.. (2)
J#i J#i

Here, min (max) is the minimum (maximum) interaction energy between ro-
tamer /basepair i, (i;) and all possible rotamers/basepairs at position j. Our
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second example is Goldstein’s [20] sharpest but worst scaling, ~ O(P3n’),
criterion for identifying so-called “dead-ending pairs” (DEPs). Pair Ae(ir, js)
is dead-ending, if

P
Ae(iy, ja) = Ae(in, ju) + Y, min{Ae[(ir, js), ki] — Ae[(iu, ju), ke]} > B, (3)
k#£i,j

where A€[(iy/u; Js/v); kt] = A€(irju, k) + A€(js /v, kt). These DEPs cannot be
eliminated directly, but do not need to be included in subsequent calculations
of the minimum in Eq. 2. As illustrated in Fig. 2, the DEE/E, algorithms
for DESs and DEPs are applied iteratively until no further DESs can be
eliminated. Note, however, that according to Eq. 2 the energy cut-off E, is
applied to each position i separately. Consequently, even with perfect con-
vergence of the DEEs, the resulting total binding energies can still be many
times E,. above the global minimum. The number of unwanted, high-energy
rotamer and basepair combinations can be further reduced by combining
rotamers/basepairs from different positions to super-rotamers [20]. For in-
stance, pairing rotamers/basepairs from two different positions eliminates all
of their previously flagged DEPs, and effectively applies the energy cut-off to
the two positions simultaneously, leading to a stricter enforcement of the cut-
off criterion. Unfortunately, the memory requirement for storing the increased
number of interaction energies is a limiting factor. After several rounds of
DEE algorithms and of forming super-rotamers, the remaining combinatorial
space can be searched using the graph-search A* algorithm [13]. In principle,
this pre-screening procedure returns an exhaustive list of rotamer-DNA
sequence combinations with vacuum binding energies within E. of the best.

Finally, we re-rank the best vacuum protein-DNA conformations using
the solvated binding energy AE = Ej, — E,, where E;, and E, are the total
energies of the bound and unbound protein-DNA systems in implicit solvent.
Since the re-ranking in solvent is likely to change the order of the binding
energies compared to vacuum, the cut-off E. has to be chosen large enough
to include the top solvated configurations.

3 Results and Discussion

As an example, we apply our method to the mouse protein, Zif268 (PDB file
1AAY, Fig. 1). Zif268 has a tandem repeat of three specific binding motifs,
so-called zinc fingers, each stabilized by a zinc ion (for a review see Ref. [3]).
A high resolution co-crystal structure is available [21] with the protein bound
to its consensus sequence, GCGTGGGCGT [22].

The best calculated binding sequence in solvent was TGGTGGGCGG,
the 10th was GCGTGGGCGA, while the 17th matches the experimental
consensus GCGTGGGCGT, as indicated by the underlining. Note that
the 10th (last) base position of the binding sequence is experimentally only
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Fig. 3. (a) Zif268 10-base sequence

G GG G logo from experiment [22], and (b)
from our calculation. Figure pre-
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weakly conserved, and was not considered part of a previously derived con-
sensus sequence [23].

Fig. 3 compares the experimental logo (a graphical presentation of the
weight-matrix [24]) (a) with our calculations using the 30 best binding se-
quences (b). The logos clearly show strong similarities, but the lack of explicit
water molecules in our model, end-effects caused by the short DNA segment,
and an additional approximation (see caption of Fig. 2) lead to some dis-
agreement - particularly at the DNA-positions 1 and 2 contacted by the zinc
finger which has the most water-mediated contacts [25].

In summary, we have introduced a novel methodology for identifying po-
tential protein-DNA binding sites through a global search of DNA sequences
and DNA-contacting-sidechain conformations. We tested performance by cal-
culating the DNA-sequence logo for the mouse transcription factor Zif268,
and found good agreement with experiment.
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