1

C++ and Generic Programming for Rapid
Development of Monte Carlo Simulations

Gregory Brown!?2, Hwee Kwan Lee3, and Thomas C. Schulthess!

! Center for Computational Science, Oak Ridge National Laboratory,
Oak Ridge, TN 37831-6164, USA

2 School of Computational Science and Information Technology,
Florida State University, Tallahassee, FL 32306-4120, USA

3 Department of Physics, Tokyo Metropolitan University,
Tokyo 192-0397, Japan

Summary. Flexible coding techniques are important for enabling the solution of
many problems with one application or the rapid construction of new applications
through code reuse. Generic programming offers the high-performance computing
community an excellent method for code reuse without loss of efficiency. Here, solu-
tions to both problems from the ¥—Mag toolset are presented. The class EHModel
and its associated EHTerms can be used to calculate energies in a wide variety of
spin models. An allied generic programming solution for applying Metropolis Monte
Carlo to estimation of thermodynamic quantities is also given.

1.1 Introduction

In a wide variety of science and engineering topics, rapid advances in compu-
tational resources make possible calculations that were impossible only a few
years earlier. Frequently, the codes performing these calculations have been
developed by one or two scientists interested in the calculation. While such
codes may enable reuse of an entire application through flexibility in input,
these codes rarely reuse existing code fragments or even produce fragments
suitable for later reuse. Achieving better efficiency often requires the efforts
of several programmers, some skilled in computational science but not the
science investigated through the calculation. In this environment, production
of efficient codes requires development of flexible code fragments that can be
reused quickly by people who did not develop them.

Here we discuss a generic programming approach to high-performance
computing. In the definition popularized by Austern [1], generic program-
ming is an extension of object-oriented programming that focuses on “the set
of requirements” which a data type must fulfill to qualify as an implemen-
tation of a particular abstraction. The set of requirements defines a concept,
and an implemented data type which meets those requirements is called a

2 Gregory Brown, Hwee Kwan Lee, and Thomas C. Schulthess

model of the concept. A good example of a concept is Container, which is a
collection of elements that can be iterated over. The addition of requirements
leads to the refinement of one concept into another. Container can be refined,
for example, into concepts such as Sequence, in which elements can only be
accessed in some particular order, Random-Access Container, in which the
elements can be indexed by an integer type, and Associated Container, in
which elements can be indexed by an arbitrary type. Concepts such as these,
along with algorithms such as Count, Copy, and Sort can be recognized as
commonly recurring themes in computational science. The Standard Template
Library (STL) defines many such concepts and algorithms. STL provides both
the tools to simplify the implementation of high-performance codes and the
inspiration to solve problems in a generic, problem-independent manner. The
result is code that can easily be reused to create new applications.

To be useful for high-performance computing, the flexibility of generic pro-
gramming must come without sacrificing efficiency or clarity. Using templates
in C++ [2] is one programming paradigm in which this can be achieved. In fact,
STL was first implemented as templated C++ classes [1]. Direct comparison
has shown that, in general, modern C++ compilers generate executables with
no performance penalty with respect to procedural languages such as FOR-
TRAN. See, e.g., Ref. [3]. Templates, in particular, defer the specification of
types associated with a function or class until compilation, but at no cost to
execution speed. For example, a templated sorting function can use a template
parameter for the type being sorted in the same manner as subroutines use
variable arguments. Whether the type being sorted is a floating point number
or an integer is specified at compilation, but the resulting machine code is not
affected by the fact that a templated function was used to generate it.

The 1)— Mag project [4] is an effort to foster a community approach to code
sharing and reuse in computational materials science. One goal of the project is
developing specifications for important concepts for computational materials
science in general and computational magnetism in particular. These concepts
are then translated into implemented C++ models. Here we discuss the effort
within the ¥»— Mag project that is concerned with the generic implementation
of Monte Carlo methods [5], which can be used in the context of computational
magnetism to quickly develop new applications.

The natural flexibility in scientific applications based on making as few
assumptions as possible is important. A thorough discussion of this point
is necessary for a proper comparison to generic programming. Applications
built with such flexibility can simulate many different problems, often with
the differences specified only in the input files. There are often significant
trade-offs between flexibility and computational efficiency, and making a few
assumptions can often greatly simplify an algorithm. Much of the art of sci-
entific programming involves optimizing among flexibility, speed, and coding
complexity.

The flexible classes in)—Mag that use object-oriented programming to
describe the energy and fields associated with spin models are described

1 C++ and Generic Programming 3

in Sec. 1.2. A set of generic-programming concepts for Metropolis-sampling
Monte Carlo is outlined in Sec. 1.3. In that section, some implementation de-
tails particular to 9—Mag are also discussed. Sec. 1.4 is a summary of this
work.

1.2 Flexible Energy Calculation

Flexibility built on avoiding assumptions is not limited to a particular pro-
gramming language and has been utilized throughout the history of computer
programming. Object-oriented programming facilitates this flexibility through
polymorphism [2], by which a set of types can be treated as equivalent even
though the members of the set implement very different behaviors. An object-
oriented approach, augmented by a trivial application of templates, is outlined
here for the calculation of energies in spin models.

The collective behavior of spin systems, such as the Ising and Heisenberg
models, has been studied extensively, often in the context of developing fun-
damental principles in statistical mechanics. See, e.g., Ref. [6]. In part, this
interest stems from the relative simplicity of the models. For example, the
Zeeman energy of a system of spins in a field is

N
E,=-> MH:s;, (1.1)
i=1

where the sum is over all spins, M; is the moment of the i-th spin, s; is the
orientation of that spin, and H is the applied field. The difference between
the two models lies principally in the nature of s; and H. For the Ising model
s; € {—1,+1}, but for the Heisenberg model s; € R with the constraint
|si|=1. Likewise, H € R for the former and H € R? for the latter. It is
thus possible to create one flexible C++ class to handle the Ising model and
the family of d-dimensional Heisenberg models if the class is templated on
the spin_type and field_type. In fact, maximum flexibility is achieved if
different containers are allowed. Therefore, templating on the type of container
holding the orientations of the spins and the type of container holding fields
provides maximum flexibility. The types of the individual spins and fields are
then the value_types of the containers.

As an example of avoiding assumptions, consider exchange interactions.
In most simple models, each spin interacts with a well-defined (often small)
subset of the other spins. If J;; is the interaction energy between the i-th and
Jj-th spins, then the set of all interactions for a particular problem is {J;;},
and the exchange energy is

B =—

N N
ZZJUSZ' 'Sj. (12)
i=1 j=1

N~

4 Gregory Brown, Hwee Kwan Lee, and Thomas C. Schulthess

Frequently {J;;} can be simply constructed, e.g. nearest-neighbor interactions
on a cubic lattice. A function which uses such an assumption can calculate the
energy using a geometry-dependent rule that calculates the neighbors {j} on
the fly quite easily. However, each particular geometry will require a separate
function. A more flexible approach is to explicitly store {j} and J;; for each
spin 4, so that one function can calculate the energy for any geometry. All
information about the dimension and symmetry of that lattice, as well as
boundary conditions, are conveniently incorporated into the set {j} for which
Jij are nonzero, and any other variations in exchange strength into an explicit
list of {J;;}. Such flexibility greatly enhances code reuse-ability and decreases
development time for new codes.

With these two contributions to the energy of spin models in mind, it
is possible to define a generic-programming concept of Energy. First define
orient_container to be the type used to contain the orientations of an entire
system of spins, field type to be the type used to represent the direction
and strength of a field, and field_container to be the type used to contain
the field at the location of each spin. The required member functions are as
follows.

Real energy(Real time, const orient_container& spin)
Calculates the total energy for the configuration of the system speci-
fied in spin.

Real energy(Real time, const orient_container& spin,
size_type ispin)

Calculates the energy associated with the i-th spin for the system con-

figuration specified in spin.

void field(Real time, const orient_container& spin,

field container& h)
Calculates the field affecting each spin in the system. The calculated
fields are added to h. The form of the field affecting the j-th spin
should be the negative of the functional derivative of the energy with
respect to s;, which enforces E(s;)=—h, - s;.

void field(Real time, const orient_container& spin,
size_type ispin, field_type& h)

Calculate the field affecting only the i-th spin. Add the calculated field

to h(s;).

Here Real is a floating-point type, and size_type is an integer type appro-
priate for indexing (it may be nonnegative). Note that the simulation time
is made a parameter of the function call to allow for the possibility of, for

1 C++ and Generic Programming 5

example, time-dependent applied fields H(¢). Two method functions are re-
quired for calculating energies. The first one calculates the total energy of the
system, while the second calculates only the energy associated with the i-th
spin. The latter method is required for efficiency in algorithms that consider
only one spin at a time, such as the local update Monte Carlo discussed in
the next section. Note that summing the E(s;) of the latter function over all
the spins in the system will not, in general, give the E of the former function.
Double counting in FY, which is related to the two-bodied nature of exchange,
is a prime example of this fact. Methods for calculating the field at each spin
site h(s;) are also included in the concept definition. Some algorithms for
highly efficient Monte Carlo sampling, such as overrelaxation [7], and numer-
ical approaches like micromagnetics [8,9] use this field. The inclusion of both
quantities in the Energy concept is also intended to enforce the fundamen-
tal definition H;=—0E/Js;. The flexibility outlined here is maximized when
the inclusion or exclusion of particular contributions is not determined until
the code is executed. Outside the object-oriented paradigm, such flexibility
has been mimicked through logical flags or by setting all interactions, such
as {Ji;}, to zero. Using object-oriented polymorphism is much more efficient.
The ¥—Mag toolset contains a class EHModel which is a model of Energy, but
sums over contributions calculated by other models of the Energy concept.

Since the purpose of EHModel is to accumulate different energy contribu-
tions, it is derived from a container of pointers to those contributions. See
Fig. 1.1. Since all of the pointers must be of the same type, a base class
EHTerm, which is a model of Energy, is the target of those pointers. Each
particular energy contribution is constructed as a derived class which inherits
from EHTerm. For this polymorphism to work properly, the member functions
of EHTerm must be virtual functions. The key property of a virtual function is
that it actually calls the equivalent function in the derived class. For EHModel,
this means that the appropriate function will be called for each term. The flex-
ibility inherent in this approach is that different energy contributions can be
incorporated into EHModel’s container as the program is executed.

Templating is also required for EHModel, since different types may be em-
ployed to represent spins and fields in different models. Since virtual functional
calls must be employed in calculating the particular energy contributions, and
virtual member functions cannot be templated, the classes EHModel, EHTerm,
and the derived classes must all be templated. The templating of so many
classes is undesirable as it increases code-complexity, but in this situation it
is unavoidable.

EHModel and its associated classes obviously allow any number of different
contributions to the energy. In addition to the Zeeman and exchange energies
defined above, common contributions are the uniaxial anisotropy

By =— ﬁ:K (1 si- ﬁi]2) (1.3)

6 Gregory Brown, Hwee Kwan Lee, and Thomas C. Schulthess

where n; is the axis of anisotropy for the i-th spin, and K, is the strength of
that anisotropy, and dipole-dipole interactions

1o 38,1, — 1
p— 71'] /LJ . .
Bn=—3 §‘ 1§‘ lMlM]sJ < .) s; (1.4)
i

j

with r;; the displacement vector between the i-th and j-th spins. Extensibility
is easily achieved, because new derived classes can be created without modify-
ing the existing code. In addition to energy contributions not mentioned here,
this can be exploited to increase the generality or the specificity of the energy
contributions. As an example of the former, the toolset already contains an
EHTerm-derived class for which J;; can be a tensor. This is appropriate for
anisotropic exchange. As an example of the latter, a derived class could be
created for which J;; is the same for all nearest neighbors. The advantage of
this kind of specificity is that it can enhance the efficiency of the program.
Such general or specific classes can be added to the toolset as the need for
each is identified.

While the particular class system associated with EHModel and EHTerm out-
lined in the previous section is itself quite flexible, the real power of generic
programming is associated more with the Energy concept itself. A complete
class system for lattice-gas simulations (LGModel) or for Lennard-Jones flu-
ids (LJFluid) are also possible. With generic programming, algorithms and
classes that use EHModel, LGModel, or LJFluid interchangeably are then pos-
sible.

1.3 Monte Carlo Concepts

By defining a set of generic-programming concepts associated with Monte
Carlo sampling, it is possible to create a large set of models which become
interchangeable tools and can be assembled quite easily into new Monte Carlo
simulations. This section provides one such set of concept definitions.

At its most fundamental, Monte Carlo is a technique for estimating the
integral

1= [o) (wyis (1.5)

by randomly drawing N values of x with probability density function (pdf)
f(z) and evaluating the mean

N

E=(1/N)Y glx). (L6)

=1

In the limit of large N, E~I [5]. Monte Carlo techniques usually outperform
deterministic quadrature techniques when the dimensionality of z is large, as

1 C++ and Generic Programming 7

EHModel<orient_container, field_container> \ ExchangeScalar
Real energy(Real time, orient_container& s) '\\\ EHTerm<OC,FC>
Real energy(Real time, orient_container& s, \\\
size_type ispin) \ \ | AnisotropyUniaxial
void field(Real t, orient_container& s, \-. 1 EHTerm<OC FC>
field_container& h) \
void field(Real t, orient_container s, \[.ZeemanField
size_type ispin, field_type& h) { EHTerm<OC,FC>

Fig. 1.1. Schematic representation of the polymorphism used in EHModel. EHModel
is a container of pointers to EHTerm, and the various energy terms inherit from
EHTerm. Virtual function calls, with the same interface as those in EHModel, enable
EHModel to access the method functions of the derived classes

is usually the case in statistical mechanics where one is interested in high-
dimensional phase spaces.

Randomly drawing values of z from f(x) is, in general, not easy. Although
it is possible to find simple algorithms for particular forms of f(z), one often
has to resort to importance sampling techniques. One important example is a
technique due to Metropolis, et al., [10] which produces a Markov chain of x;
distributed proportionally to f(x). The Metropolis algorithm is based on the
idea of detailed balance, specifically that the probability of making a transition
from state z to x’ in the Markov chain must be equal to the probability of
making the transition from 2’ to . In the Metropolis approach, see Ref. [5],

A(@'|2)T () f () = Alz|2")T (2]2”) f ('), (1.7)

where T'(z'|x) is the probability of “proposing” the transition from z to «,
A(z'|z) is the probability of accepting the transition, and f(z) is the desired
pdf. This can be rearranged to give a constraint on A,

oy TGS
AWla) = TS Alela') = a(e') Alela). (1)

8 Gregory Brown, Hwee Kwan Lee, and Thomas C. Schulthess

It is obvious from Eq. (1.8) that g(z’|x) = 1/g(z|z’). This constraint does not
completely specify A. Two commonly used forms that satisfy Eq. (1.8) are the
Metropolis acceptance probability Ayy=min(g, 1) and the Glauber acceptance
probability Ag=¢/(1+ q). In condensed-matter physics, the situation is often
much simpler because the transitions in the Markov chain are chosen such
that T'(z'|x)=T(z|z"), then g=f(z")/ f(z).

For a generic approach to Metropolis sampling, several concepts need to
be defined. The first concept covers Monte Carlo sampling in general, and
Markov-chain importance sampling in particular. In the ¥—Mag toolset, we
define a class MetropolisSampling to implement a generic Monte Carlo con-
cept, labeled MCSample, as follows.

Real mc_time(Real val)

This sets the “simulation time” in the sampling algorithm. The time
is given in units of Monte Carlo steps (mcs). The simulation time is
frequently needed. For instance, it is needed for measuring the corre-
lation between the samples generated by the Metropolis method, and
may be employed in algorithms such as simulated annealing.

Real mc_time() const
Returns the “simulation time” associated with the sampling object in
units of mcs.

int operator() (RNG& urng, TransitionOp& op, Weight& f,
System& x, int ntransition=1)

Performs ntransition Monte Carlo steps to generate a new config-
uration of the system to be used in Monte Carlo integration. The
parameter x contains the initial configuration when the function is
called and the new configuration upon return. Here a function ob-
ject f(t,x) is used to determine the weight of configuration z at time
t, with ¢ the time (in mcs) supplied by the MCSample class. For ex-
ample, for the canonical ensemble, the weight is exp [-BFE(t, z)]. The
transitions associated with each mcs are accomplished via a model of
TransitionOp, and random numbers are supplied by a model of RNG.
The return value of the function is the number of accepted mcs, which
can be used to calculate the acceptance rate.

Essentially MCSample is a function object that uses one function object as a
uniform random number generator on [0,1) for making choices and another
function object for determining the weight f(t, z) of particular configurations.
Note that the acceptance probability A is not passed as a function parameter.
Instead it assumed to be an integral part of the sampling concept. In the
C++ implementation of ¥—Mayg it is a template parameter. MCSampling also
defines a nontrivial transition concept which can generate the sequences of

1 C++ and Generic Programming 9

the Markov chain. The MTransition concept, with element_type the type
used to represent the individual components of the system, is as follows.

Real step_size(Real val)

Set the size of change associated with each transition. The meaning of
this parameter is highly dependent on the individual transitions being
implemented.

Real step_size() const
Return the size of the change associated with each transition

size_type pick_dof (RNG& urng, Real time, const System& x)
Choose the index of a particular degree of freedom within z. This
usually becomes the trial move.

Real operator() (RNG& urng, Real time, System& x, size_type
idof)

Perform on x a transition associated with the i-th degree of freedom.
The return value is the ratio T'(z|z’)/T(2'|z), 4. e. the ratio of the
probability of attempting a move from z’ to = to the probability of
attempting a move the other way.

void undo(System& x)

Restores z to its configuration before the last move was made. This
can only be done for the last transition, repeated calls are not guaran-
teed to move the system backwards through all configurations visited.

MTransition provides for selecting a degree of freedom (dof) within the sys-
tem, performing a transition associated with that dof, and undoing that tran-
sition if it is not accepted.

Based on these concepts, the core of the generic single-site-update Metropo-
lis sampling code looks like

int dof = op.pick_dof (urng,time,x);
Real fPrev = f(time,x,dof);
Real tRatio = op(urng,time,x,dof);
Real fNew = f(time,x,dof);
Real q = tRatio*fNew/fPrev;
if (urng() < A(q))
isuccess++;
else
op.undo(x) ;

10 Gregory Brown, Hwee Kwan Lee, and Thomas C. Schulthess

This algorithm should work as well for quadrature as it does for simulations
of Ising models and compressible Lennard-Jones fluids. A cluster update al-
gorithm may require a different implementation, but could be a model of
MCSample and be able to easily use the all of the concepts employed here.

In condensed-matter physics the weight function is usually a Boltzmann
factor. In spin systems frequently f(¢,x)=exp[—BE(t,z)|, where E(t,z) is
the energy of configuration x at time ¢, and 3 = (kgT)~! is the inverse tem-
perature. For compressible fluids, however, f(z)=exp (—p[E(x) + PV (¢, z)]),
where the pressure P and volume V(¢,z) have to be introduced. Since the
weight concept only calls for a function object that takes ¢ and = as parame-
ters, both possibilities are allowed for, but the weight concept is then refined
into two cases. The incompressible refinement requires methods for setting
and accessing the temperature 1/3 and uses a model of the Energy concept to
calculate the energy associated with x. The compressible refinement requires
setting and accessing methods for both 1/8 and P, and needs to supplement
the Energy concept with a way to calculate V'(¢,2). This can be very easily
generalized to the grand canonical ensemble, and is a prime example of the
power of generic programming.

The structure of the Boltzmann-weight functions is particularly simple.
The various functions can be coded generically using the appropriate Energy,
Volume, and Number concepts as template parameters which set the poli-
cies [11] appropriate to specific models. In fact, in this decomposition of
the importance-sampling problem, all of the system-specific details have been
pushed into the weight function. This is not a particularly large burden, care
must simply be taken that the System passed to the Metropolis sampling ob-
ject be compatible with the Energy model that is waiting for it at the other
end of the function-call sequence. If the System and Energy objects are in-
stantiated together in the application code, the potential for problems will be
minimized.

To this point, the discussion has focused on the generic-programming con-
cepts associated with Monte Carlo sampling. To have an actual application
code, classes that are models of these concepts must be written, instantiated,
and assembled. Schematic representations of two different applications are
shown in Fig. 1.2. Figure 1.2(a) represents the simulation of a Heisenberg
spin model. It indicates that R1279, a lagged-Fibonacci generator, is used for
random numbers. The simulation is done in the canonical ensemble using a
class BoltzmannWeight with EHModel, as defined in Sec. 1.2, used to actually
calculate the energies. The transition model is a class that displaces a Heisen-
berg spin within some sphere around its current direction. The transition is
a property of the simulation that can be expected to change most frequently.
Finally, the Metropolis form of the acceptance probability A is used, in the
¥ —Mag toolset we have found it convenient to make the form of A a template
parameter of the MetrpolisSampling class.

Figure 1.2(b) represents canonical-ensemble simulations on a Lennard-
Jones fluid at constant pressure. Compared to part (a), the same random

1 C++ and Generic Programming 11

a) MetropolisSampling

Acceptance | Transition | Weight | RNG

b4
MetropolisAcceptance R1279
| ; |

|HeisenbergstepInSphere |BoltzmannWeight|

EHModel

b) MetropolisSampling

Acceptance | Transition | Weight | RNG

b4
| Gla.uberhcc;:ptance |

| DisplaceInSphere ‘ CannonicalWeight ‘

LJLiquid

Fig. 1.2. Schematic representation of the particular classes used in to different
Monte Carlo simulations assembled from the ¥—Mag toolset. (a) Simulation of a
Heisenberg model. (b) Simulation of a Lennard-Jones liquid

number generator is used and a trivial change to the Glauber form of A has
been made. However, this simulation requires a new class for calculating the
weight f(z), and LILiquid must therefore be capable of calculating both F
and V. Finally, since the rotation of a Heisenberg spin has no meaning in
this context, a class which displaces particles within a sphere centered on the
previous location has been used.

There is another indication of the power of generic programming tech-
niques. The schematics shown in Fig. 1.2 were inspired by a graphical interface
used for the Common Component Architecture (CCA) [12,13]. CCA is based
on the Scientific Interface Description Language (SIDL), and can be used to
bind together code not originally written to interoperate; even code written
in different languages. There is a very strong correlation between the SIDL
and generic programming concepts. Using a simple wrapping method [14], it
is possible to turn the Monte Carlo classes of the ¥ —Mag toolset into several
components which can be combined easily in a graphical format similar to
that shown in Fig. 1.2.

12

x? O OCComY O QO O oy - 7
u]

L] DD 4

L -) i
0.751 A |
n [m})
= r [m] b
0.5 o .
0.251 |
L o i

m ooo ooy

0 Lol | | | L
10" 10° 10° 10" 10’ 10'

kT/J

Fig. 1.3. Staggered magnetization, Mg, for a 6x6x6 Heisenberg model with
K=0.01 calculated at various temperatures using the scheme described here. The
implementation using MetropolisSampling and BoltzmannWeight as the model for
the Weight concept (squares) suffers from underflow at low temperatures, while
an implementation using MetropolisSamplingBoltzmann and EnergyWeight for the
model (circles) does not

The concepts developed here have been verified with actual simulations.
The results of simulations of a 6x6x6 Heisenberg antiferromagnet with
K;=0.01, n;=z, and J;;=—1 for i and j nearest neighbors are presented
in Fig. 1.3. The squares are the staggered magnetization estimated us-
ing the Monte Carlo scheme outlined here. The loss of order indicated by
the decrease in the staggered magnetization at very low temperatures is
caused by an underflow error in the exponentiation that occurs because in
MetropolisSampling g=exp [-BE(x')]/exp [—SE(z)]. The creation of two
new classes, one an MCSampling model that calculates using g=exp (—B[E(z’) — E(z)])
and one that makes f(x)=FE(x), solves this problem. The error-free results are
the circles in Fig. 1.3.

The results shown here highlight some cautions that must be kept in mind.
The most important is that generic programming will not enable nonexperts to
naively make calculations that would have been infeasible for them otherwise.
In fact, the opposite may be true. Expertise and a thorough examination of
the results may be required to validate an application assembled in this way.
It is precisely the knowledge that calculations can go wrong in many subtle
ways that makes the expertise so important.

1 C++ and Generic Programming 13

1.4 Summary

Applications of object-oriented and generic programming to Monte Carlo sim-
ulation of spin models have been presented. Using object-oriented polymor-
phism and explicit descriptions of details such as {J;;}, flexible calculations
of the energy and fields associated with the spin models are possible. The
concepts needed for a generic-programming implementation of Metropolis-
sampling Monte Carlo have been outlined. The ¥—Mag toolset implements
both solutions and has been used to successfully calculate thermodynamic
properties of spin systems.

Acknowledgments

This work was supported by the DOE Office of Science through ASCR-MICS
and the Computational Material Science Network of BES-DMSE as well as
the Laboratory Directed Research and Development program of ORNL under
contract DE-AC05-0000R22725 with UT-Battelle LLC.

References

1. M. H. Austern: Generic Programming and the STL (Addison-Wesley, Reading,
Mass., 1999)

2. B. Stroustrup: The C++ Programming Language (Addison-Wesley, Reading,
Mass., 2000)

3. J. R. Cary, S. G. Shasharina, J. C. Cummings, J. V. W. Reynders, and P. J.
Hinker: Comp. Phys. Comm. 105, 20 (1997)

4. http://www.ccs.ornl.gov/mri/psimag

M. H. Kalos and P. A. Whitlock: Monte Carlo Methods (Wiley, New York, 1986)

N. Goldenfeld: Lectures of Phase Transitions and the Renormalization Group

(Addison-Wesley, Reading, Mass., 1992)

F. R. Brown and T. J. Woch: Phys. Rev. Lett. 58, 2394 (1987)

W. Brown: Micromagnetics (Wiley, New York, 1963)

W. F. Brown: IEEE Trans. Magn. 15, 1196 (1979)

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller:

J. Chem. Phys. 21, 1087 (1953)

11. A. Alexandrescu: Modern C++ Design (Addison-Wesley, Reading, Mass. 2001)

12. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker,
B. Smolinski: in Eighth IEEE International Symposium on High Performance
Distributed Computing (IEEE, 1998) [Lawrence Livermore National Laboratory
technical report UCRL-JC-134475]

13. D. E. Bernholdt, W. R. Elwasif, J. A. Kohl, T. G. W. Epperly: in Proceedings
of the Workshop on Performance Optimization via High-Level Languages and
Libraries. Available at http://www.ece.lsu.edu/jzr/ics02workshop.html

14. W. R. Elwasif, G. Brown, D. E. Bernholdt, and T. C. Schulthess: (unpulished)

SE

o ©»

