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ABSTRACT: This paper describes the development and use of a “Speed of Service” Fixed Wing to Ground simulation 
model incorporating decision field theory to provide a bounded variable analysis of latency in the FCS system.  Latency 
is described in terms of Time-to-ID based on a CID notional model – CID need, transponder internal delays and duty 
cycle, digital transmission time, CID message extraction time, data link (shooter–target–shooter–ground station), time 
to ground platform display, and human decision-making.  Simulation runs demonstrate effects of target density, 
confidence, and network delay on total latency and number of decision cycles.  The results of the model will be applied 
to technology requirements and specifications. 
 

1. Introduction 
 
In November 2001, DARPA (PM Objective Force) 
established a Future Combat Systems (FCS) Integrated 
Support Team (FIST) to support their analytic efforts in 
developing the basic constructs of the FCS System.  The 
Team was composed of Department of Energy 
Laboratories (INEEL, ORNL, SNL), MITRE, IDA, and 
other organizations.  One functional team within FIST, 
the Combat Identification Team, has a mission to support 
DARPA/PM with analytic studies in the area of Combat 
Identification (CID).  Specifically, its mission is to 
conduct technology analysis and trade studies, develop 
specifications from functional requirements, develop CID 
notional architecture(s), and conduct FCS System of 
Systems studies and analyses to assess impact and 
affordability of any proposed CID solution on the FCS.   
 

The FIST CID team participated in the CID Working 
Group chaired by PMTIMS.  The Phase I effort of the 
WG culminated in the development and recommendation 
of the FCS CID Increment 1 Notional Architecture.  The 
notional architecture consists of millimeter wave for 
vehicle-to-vehicle, laser RF for vehicle-to-dismount and 
back, radio-based combat identification (RBCI) for rotary 
aircraft and UAVs–to-ground, and radar tag technology 
for fixed-wing-to-ground CID (Figure 1).  The notional 
architecture represents a strict mapping of technology 
solutions onto FCS platform requirements (ground-to-
ground, ground-to-air, air-to-ground).  What is missing is 
supporting analysis to determine if this is a workable 
solution and, if it is, what impacts it will have on the FCS 
C4ISR architecture (network).  This paper describes an 
initial modeling and simulation effort by the FIST CID 
team to address one of the major aspects of the system 
operational issues – what are the time requirements for 
CID air-to-ground data/information flow across the 
network?  In this model, this event is called the 



  

 
Figure 1.  FCS Combat Identification Increment 1 Notional Architecture showing technology solutions and links 
to operational platforms. 
 
Speed of Service (SoS). The parameters of interest 
include latency (or time lags), network configuration, 
interrogator/transponder relationships, and the human-
decision process.  The human-decision process is modeled 
using decision field theory [12], which provides both 
latency and outcome predictions on binary decisions 
made under time pressure and uncertainty.  The following 
provides details on the model and results from an initial 
simulation for an NLOS engagement. 
 
2. Speed of Service/Human Decision-Making 
Model 
 
Figure 2 shows the general structure of the Speed of 
Service/Human Decision-Making (SoS/HDM) model.  
There are four major network nodes with associated links.  
The nodes/links are (1) interrogator to transponder and 
back, (2) interrogator to source node, (3) source node to 
C2 node, and (4) C2 node to shooter node.  Each 
node/link pair has a descriptor detailing the parameters 
associated with the model.  These parameters are either 
directly used in the calculations or are aggregated into the 
probability distribution function representing that 
particular element of the network.  A close examination of 
one of the nodes will show the level of detail available in 
the model.  Using the Command and Control node as the 
example one can see the three processing steps contained 

within the node.  The first step deals with message 
extraction and display and is characterized by message 
extraction, processing by tactical decision aids, and 
reformat and display.  The next step is the ‘commander’s 
decision’ process which is modeled by the incorporation 
of decision field theory. One important aspect of this node 
is the bi-directional flow of information.  If the 
commander’s confidence in the data is low, or the data are 
not within some time window of the current event, the 
commander can retask to increase confidence in the 
decision.  This allows the commander to use situational 
awareness (SA) to increase confidence in CID 
assessment.  The final step at the C2 node is ‘message 
format for retransmit’ on network.  Although simple in 
construct, the model can be easily reconfigured to provide 
a different representation of the FCS network. 
 
This general CID network model was chosen because it 
could be used to represent several echelons of CID 
function without major changes to the program.  These 
representations can include NLOS, BLOS, and LOS and 
are easily simulated by appropriate selection of network 
nodes and links and setting of appropriate parameters. 
Although originally developed to calculate overall 
latencies in fixed wing to ground CID, the model can be 
applied to ground-to-ground and ground-to-air 
simulations. 
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Figure 2.  CID SoS Model depicting network links and descriptors along with node parameters. 

 
3. Queuing and Renewal Theory in the 
SoS/HDM Model 
 
Section 2 described the general structure of the SoS/HDM 
Model.  There is a flow of events occurring where 
information/data packets are passed from interrogator to 
transponder, back to interrogator, and then pushed into the 
network for further analysis and decisions at higher 
echelons or nodes.  This flow can be thought of as a 
queuing process where each node receives information or 
data and works on it to extract the information of 
importance.  Upon extraction, analysis is performed with 
the outcome being a control decision.  This 
information/data is then reformatted, packaged and 
transferred through the network to the next node for 
higher levels of abstraction and processing.  The key 
parameter of interest in this model is the time between 
initiation of the CID process and the end of a cycle.  
Figure 3 shows the process flow diagram associated with 
the model.  A CID cycle is either terminated due to a 
retask of information, Battle Damage Assessment 
function invoked, or identification pushed onto a stack/list 
for future assessments. 
 
In the current model, each packet’s (information/data) 
time to next node and node processing times are 
independently distributed, i.e. its probability distribution 
function for transmission between nodes and the time for 
processing at each node (Nj) are independent of previous 
events. 

 

Figure 3.  CID process flow diagram representing 
human decision factors (enemy identified with intent 
to engage) and ending states for CID cycle.  Ending 
states are (1) request for BDA function, (2) retask, and 
(3) identified entity pushed to stack or list of future 
targets. 
 
With the above argument as a basis, the SoS/HDM model 
is developed as a queuing/renewal model.  Referring back 
to Figures 2 and 3, information/data flow from one point 
(node) to another and at arrival, request a form of 
processing or attention.  The taxonomy of this model is 
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designated as GI/GI/1.  Here GI in the first position is any 
general distribution of inter-arrival times which are 
independent; GI in the second position represents a 
general distribution of service times; 1 in the third 
position represents the number of parallel servers.  The 
specific details of queuing models can be found in [1] and 
[2].  In addition, times between events (time across 
network until arrival at a node and node processing times) 
are considered independently and identically distributed 
with arbitrary probability distribution functions.  This is 
the definition of a renewal process [3].  A variety of 
network configurations and probability distributions 
associated with network configuration and service along 
with processing times can be managed from this general 
model to allow different scenarios to be run. 
 
4. Human Decision-Making 
 
We now briefly review existing models in human-
automation interaction and their applicability to battlefield 
decision-making.  An important approach to qualitative 
aspects of decision-making in the battlespace is the 
naturalistic decision-making framework within which the 
well-known recognition-primed decision model was 
developed (e.g., [4]).  This model rests on the often-
documented observation that well-trained experts rely 
mostly on pattern recognition processes to prime 
decision-making in real time.  Cohen, et. al [5] expanded 
on that framework by describing a set of critical thinking 
or metacognitive strategies to augment recognition 
processes in uncertain environments.   
 
Another class of high-resolution models seeks to explain 
cognitive processes involved in decision-making, and 
typically describe the content of decisions as well as the 
processes themselves.  These models are typically highly 
parameterized, and considerable effort may be necessary 
to populate the models.  For example, the Situation 
Awareness Model for Pilot-in-the-Loop Evaluation 
(SAMPLE) is a pilot model of situation assessment [6].  
COGNET is a modeling framework for human operators 
in real-time multi-tasking computer environments [7].  
Finally, a system of computational agents called TAIPE, 
or Tactical Assistants for Interaction Planning and 
Execution, was implemented to aid human operators to 
manage multiple tasks [8]. 
 
Computational models have the advantage of providing 
numerical predictions of decision-making.  Therefore, 
they can be tested using actual data from laboratory or 
field situations, and improved or modified to better 
account for data.  Parasuraman [9] surveyed a number of 
computational models of decision-making.  
Computational models tend to be process-based, and can 
provide quantitative predictions requiring only a moderate 

effort in parameterization.  For a recent introduction to 
decision theory in a psychological context, refer to [10]; a 
comprehensive overview of decision-making with 
military applications is in [11].  The study of decision-
making in uncertain environments has a long history in 
the psychological literature.  Early researchers sought 
prescriptive models to instruct decision-makers regarding 
optimum techniques to arrive at good decisions.  The 
basic idea was to maximize the expected value of a 
decision, if the decision were to be repeated in similar 
contexts on numerous occasions.  Here we focus on 
computational models that grew out of an expected value 
maximization approach to decision-making. 
 
We began the current modeling effort with a few general 
observations about the commander’s decision process for 
CID: (1) high costs associated with errant decisions; (2) 
uncertainty about targets and related information; (3) 
limited time for deliberation; (4) presence of electronic 
decision aids; (5) availability of additional contextual 
information; and (6) delayed feedback of effects of firing 
on targets.  We concluded that the naturalistic decision-
making framework was not well-suited for decision-
making under uncertainty or prediction of decision-
making latency. 
 
Busemeyer and Townsend [12] developed decision field 
theory (DFT) in order to understand the motivational and 
cognitive mechanisms that guide decision-making under 
uncertainty. Built on a foundation of random, subjective-
expected utility (SEU) theory, DFT lends itself 
particularly well to situations involving deliberation under 
uncertainty, where the human decision-maker’s task 
requires accepting or rejecting a binary choice presented 
by an automated aid, such as in automated target 
recognition or battlefield-damage assessment.  
 
 The main emphasis in DFT is on the deliberation process 
itself, instead of the specific content of deliberation. 
According to Busemeyer and Townsend, deliberation 
involves information seeking, weighing of consequences, 
and conflict resolution, and “is manifested by 
indecisiveness, vacillation, inconsistency, lengthy 
deliberation, and distress.” 
 
SEU theory summarizes a binary choice under uncertainty 
in a 2 X 2 matrix (Figure 4).  The basic mathematical 
model of choice can be represented as a weighted sum of 
benefits and costs.  Suppose a battlefield commander 
faces a decision to act on information provided by a CID 
decision-aiding system.  A device has identified an object 
as friendly.  There is an implicit binary choice here; the 
commander must accept or reject the friendly designation.  
Ground truth dictates that the object is actually friendly or 
a masked enemy.   
 



  

Weights are assigned to the amount of attention allocated 
to the possibility that an object is friendly (WS1) or an 
enemy target (WS2).  The preference state (strength of  
 

 
Figure 4.  2 X 2 Cost matrix from SEU theory shows 
example gains (black) and penalties (red) associated 
with row choices (A1, A2) as a function of column 
ground truth (S1:Friendly, S2:Enemy). 

each decision alternative) is calculated as a linear 
combination of weights and costs, and expressed in 
subjective units that are not directly observable.  Suppose 
we arbitrarily assign WS1 = 0.4 and WS2 = 0.6.  The 
preference for A1 is (0.4)*(2) + (0.6)*(-8) = -4.0, and the 
preference for A2 is (0.4)*(-10) + (0.6)*(4) = -1.6.  In this 
example rejection of the friendly tag is regarded as less 
negative than accepting the friendly designation.  
However, different values for weights and costs could 
result in qualitatively different predictions.  
 
Different scenarios may have large effects on the values 
of utilities in the cost matrix.  For example, we expect that 
the miss penalty u(1,2) will be subjectively greater in a 
LOS engagement as compared to an NLOS engagement. 
 
In mathematical terms the strength of the preference for 
A1 or A2 is: 
 

Vi = WS1*u(i,1) + WS2*u(i,2)   [1] 
 
where u(i,j) is the utility of Ai given that Sj actually 
occurs. The weight is sometimes considered a probability 
of occurrence, or alternatively the amount of attention 
given an outcome during the decision process.  In the 
former case: WS1 + WS2 = 1.  The model selects the 
direction of the outcome with the greater preference value 
(Vi):  
 

d = V1 – V2     [2] 
 
The first action A1 is chosen when d>0; the alternative 
action is chosen when d<0.  Recently, Sheridan and 
Parasuraman [13] applied expected value analysis to 

decide whether to automate a function or allocate it to a 
human operator. 
 
The basic SEU model can account for preference 
direction but it is deterministic.  Real decision processes 
are characterized by switching attention among possible 
events during a sequence of discrete ‘trials’.  On one trial 
the decision-maker may focus primarily on S1, and 
another trial the attention may switch back to S2.  
Attention is therefore better described as a random 
sequence of transitions among states, and preferences may 
change from trial to trial as we might expect in real 
decision-making under uncertainty.  We express the 
preference state as: 
 

P = V1 – V2 = d + ε    [3] 
 
and ε is the trial-to-trial fluctuation of preference state.  
Random SEU theory can account for both direction and 
strength of decisions. 
 
According to random SEU theory, a single preference 
‘sample’ is taken on each trial.  The sample reflects the 
static allocation of attention toward events for that 
particular trial.  DFT is a sequential SEU model in that it 
views deliberation as a sequence of samples that are 
accumulated leading up to a single decision or choice.  
The sequence of samples reflects the switching of 
attention from one event to another as the decision-maker 
weighs the consequences of various choices.  The 
accumulation of evidence is mathematically represented 
as a diffusion process [14], where results of a current 
sample are added to the previous preference state.  Each 
sample is a random variable, and the current preference 
state takes a random walk due to momentary fluctuations 
in attention and preference.  Preferences are updated as 
follows: 
 

P(n) = P(n-1) + [V1 – V2]    [4] 
 
Since each sample is a random variable, the preference 
state takes a random walk, reflecting search for 
information, and momentary fluctuations in attention and 
preference.  However, the fluctuation of the decision 
process must terminate in finite time.  An inhibitory 
decision threshold is used to force a decision after the 
magnitude of the current preference state reaches a critical 
value (θ) in either direction.  A small inhibitory threshold 
mimics the effect of time pressure by forcing a decision 
immediately following a weak accumulation of evidence 
in one direction.  A large inhibitory threshold relaxes the 
process, allowing deliberation to continue until a 
sustained momentum is achieved in a particular direction. 
This formulation allows DFT to predict decision latency 
as well as choice.   
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The DFT model uses several parameters when updating 
preference during deliberation.  These parameters reflect 
cognitive characteristics of individual commanders or 
biases introduced by prevailing conditions in the decision 
environment.  Humans often either underutilize or overly 
rely on automated aids [15].  Recently, it has been 
suggested that humans adopt a ‘perfect automation’ 
schema that when contradicted by apparent errors, result 
in an overemphasis on the failure and strong negative bias 
toward the automated aid [15].  Similarly, in another 
recent study, when a diagnostic aid committed an error on 
an ‘easy’ problem, trust in the aid was subsequently 
undermined [16].  At least one study has examined 
partnering of college students and automated aids in a 
static laboratory CID-type task [17].  It was found that 
participants tended to overutilize the BCIS-type system, 
and that increasing the reliability of the automated aid did 
not affect performance or increase utilization.  Decision-
maker bias with respect to automated aids is represented 
in the model by an additional parameter (z) that initializes 
the deliberation process at an anchor point rather than a 
neutral position.  Decision-making often does not begin 
with a neutral disposition toward either alternative.  
Typically deliberation begins with a preference in a 
certain direction due to either prior knowledge, past 
experience, or a generalized (dis-)trust in automation.  
Allowing for initial bias toward automation provides the 
model enough flexibility to account for preference 
reversals resulting from interactions between time 
pressure and preference strength.  A decision-making 
error in the form of a preference reversal can occur when 
inappropriate bias with respect to automation exists in a 
high time pressure context. 
 
The amount of trust in automated aids is also embedded in 
attentional weight parameters assigned to the binary cost 
matrix.  For example, an enduring distrust in positive 
Blue force (friendly) identification from a BCIS-type 
system is likely to be expressed in greater weight given to 
consideration of the enemy (S2) outcome, combined with 
reduced weight for the friendly (S1) outcome. 
 
Decision-making is also affected by serial position in the 
sequence of preference samples.  Primacy prevails when 
information has greater influence if it occurs early within 
a deliberation sequence.  Conversely, information 
attended to later carries more weight whenever a recency 
effect is operational.  A grow-decay rate parameter (s) is 
used to simulate serial position effects.  If 0<s<1, recency 
effects are produced; if s<0, primacy effects dominate.  If 
s=0, serial position effects are absent. 
 
The decision-making literature often refers to a 
psychological phenomenon called the approach-avoidance 
conflict.  According to this hypothesis, consequences of 
an action become more salient as the possibility of taking 

action increases.  The attractiveness of a reward or the 
aversiveness of a punishment become more intense as one 
approaches the point of commitment to an 
action/decision.  The approach-avoidance conflict is 
modeled in DFT by multiplying a goal gradient parameter 
(c) with the current preference state to generate a new 
preference state during deliberation.  The parameter c 
combines approach and avoidance gradients, which are 
both functions of distance from the inhibitory threshold. 
In an avoidance-avoidance conflict, c is positive, causing 
the preference state to vacillate, thereby slowing the 
termination of deliberation.   For approach-approach 
conflicts, c is negative, and preference state races toward 
a decision boundary. 
 
We can now construct the entire updating rule for DFT 
model.  The preference state is a sequence of samples 
beginning at value P(0) = z.  The update rule is: 
 

P(n) = [1 – (s+c)]*P(n-1) + [δ + ε(n)]  [5] 
 
where δ is the direction of preference, s is the growth-
decay rate for serial position effects, c is the goal gradient 
for approach-avoidance, and ε is a random deviation with 
a mean equal to zero and variance equal to σ2.  The 
sequence of samples terminates deliberation when P(i) > 
θ, the inhibitory decision threshold. 
 
 In summary, additional parameters include an initial 
preference state to represent automation bias, a growth-
decay rate to account for serial position effects, a goal 
gradient to mimic approach-avoidance behavior, and 
random fluctuation to mimic the nondeterministic nature 
of deliberation under uncertainty.  Deliberation terminates 
when a freely-varying inhibitory decision threshold is 
crossed from the inside to simulate effects of time 
pressure.  The ability of the decision-making model to 
capture these well-known phenomena from several 
decades of laboratory research on human decision-making 
constitutes a significant first-order level of conceptual 
validation of DFT.   
 
The age of the timestamp from the CID system affects 
parameter settings by decreasing confidence: preference 
strength is decreased, and there is a shift from primacy to 
recency as a function of increasing age. 
 
A critical limitation of the original formulation of DFT is 
that it applies only to static decision-making, and cannot 
be used for decision environments that change during the 
deliberation process. Nor does it allow for active 
information seeking regarding specific details of a tactical 
situation to reduce uncertainty. The SoS/HDM framework 
provides a mechanism for dynamic decision-making 
through retasking when a final decision is not reached 



  

during a single decision cycle.  In essence, a third 
decision category representing ‘retasking’ was added to 
the binary choice to ‘shoot’ or ‘not shoot’.  However, 
DFT provides for only two possible outcomes that are 
reached by crossing a threshold preference strength on 
either the negative or positive side.  Although more recent 
formulations of DFT permit multiple outcomes [18], we 
extended the original model to capture the ‘special’ 
category of indecision leading to retasking.  A new 
parameter representing the indecision threshold was 
added to the model.  The indecision threshold (λ < θ) 
generates a tighter band around the null preference point 
that is contained within the band determined by the 
inhibitory decision threshold.  If the preference strength 
crosses this new threshold from the outside and remains at 
that level, thus exhibiting a weak preference for either 
alternative, then the current decision cycle exits in a state 
of indecision.  An indecisive outcome initiates a round of 
retasking which incurs additional delays from the 
network.  Entering the decision-making module again 
after retasking has the effect of strengthening the initial 
preference state.  This action increases the chance of 
reaching a decision on the next decision cycle.  Multiple 
retasking is possible until a definite choice is reached by 
crossing the choice threshold. 
 
The model currently implements a simple notion of the 
effect of retasking on decision-making; i.e., retasking 
increases confidence due to better situation awareness.  
But increased situation awareness does not always 
decrease uncertainty with respect to trust in automation.  
Cohen [19] presented a quantitative model of a 
commander’s knowledge of situation-specific automation 
performance.  Instead of developing an enduring bias 
toward automation, the decision-maker in uncertain 
environments learns through experience to formulate a 
context-sensitive attitude toward automation. The 
differentiated concept of trust states that people learn the 
situations for which automation can be trusted, and those 
situations that do not engender trust.  Cohen uses a 
decision tree model to encode the implicit situation-
specific knowledge the decision-maker builds regarding 
trust in automation.  The root of the tree represents the 
amount of trust present in the most general case, and 
increasing depth in the tree reveals trust associated with 
more specific situations.  Each link shows the subjective 
weight given to automation performance in the situation 
shown in the downstream node.  Implementation of a 
decision tree model of the commander’s knowledge of 
automation would allow for a more appropriate level of 
trust in a particular CID system to be reflected in a 
dynamic decision-making model. 
 
 
 
 

5. SoS/HDM Application Program 
 
The SoS/HDM model has been encoded using 
MATLABTM.  The program has a data hierarchy that 
coincides with the interrogator/transponder pair, 
command and control, and network configuration.  The 
program has two major processing nodes, direct 
interrogation and network.  For ‘direct interrogation’ the 
program provides further definition in terms of 
interrogator and transponder processing and distance 
(fixed calculation based on range to target).  The 
interrogator and transponder processing is further broken 
down into elements such as decode/encode, authenticate 
message, internal delays, and embed message, as 
examples.  Each allows a probability distribution function 
to be defined.  The ‘‘network’ is broken down into two 
major elements – one C2 node and a number of data links.  
Currently, the number of data links has only a probability 
distribution function (PDF) associated with them.  The C2 
node, on the other hand, allows input to describe human 
factors (decision and action) and C2 processing 
(extraction, formatting, and display).   
 
The application currently has algorithms that produce 
closed- and open- form PDFs.  The closed-form solution 
is produced by convolving input functions and plotting 
the result. The open-form solution is derived from a 
simulation that yields an array of data points, which is 
plotted using a histogram function.   

 
Although originally developed for an NLOS fixed wing to 
ground scenario, the program can be used to model many 
other scenarios by varying the number of comms network 
links and setting unused steps to 0.  The program also 
supports a scenario in which a retask decision is made at 
the C2 level.  A retask scenario is defined by the 
following model: direct interrogation, data link(s) to C2, 
C2 processing and retask decision, data link(s) to 
interrogator, direct interrogation, data link(s) to C2, C2 
processing and confirmation/rejection, data link(s) to 
COP.  The user has the option to use the same parameters 
for the retask as the original processing or enter different 
parameters.  The default parameters used in the human 
decision-making module, especially the cost matrix 
parameters, were estimated based on responses to a 
written survey given to three military subject matter 
experts.  For the runs described here, each new retask 
shifts the initial bias closer to the shoot decision boundary 
and increases the preference strength of the shoot choice. 
 
6. Methods and Preliminary Results 
 
The scenario modeled in this paper is shown in Figure 5.  
It has a forward element (dismounted soldier) gathering 
data (ISR) in the battlespace for an NLOS engagement.   



  

 

 
Figure 5. SoS model scenario.  Forward element uses 
OUAV in ISR and then relays information to UoA 
command on red element.  UoA Commander uses SA 
to make decision and calls for fire on red target. 
 
The asset available to the element is an organic UAV with 
a non-cooperative technology as part of its mission 
package.  Details provided by the technology only show 
that it is not Blue.  Upon receipt of this information the 
forward element encodes information in appropriate 
format and relays across the network to UoA commander.  
The UoA commander then proceeds to use SA to provide 
higher-level details to determine disposition and provide 
CID.  At this time, the CID cycle is complete, based on 
Figure 2.  There is still a need, though, to use the network 
to call for fires on the Red vehicle.  There is also the 
possibility of a retask to gather further information or 
data.  Retask could take place due to a need to gather 
further information or to reduce and/or eliminate any 
uncertainties in the information or data.  This could be a 
result of non-synchronous data in the distributed data 
base. 
 
The specific parameters assigned to the data hierarchy are 
shown in Table 1.  The number of network links to C2 
and the shooter was held constant at 10 links.  Results for 
each module are based upon 500 independent simulation 
runs.  A factorial design was implemented in the 
simulation runs with two independent variables: target 
density in the current region and human confidence in 
CID system.  Three levels of density were simulated: 
friendly (low), neutral (medium), and enemy (high).  The 
effect of increased density was to elevate the initial bias to 
shoot, and preference strength to shoot.  Trust or 
confidence in CID was low, medium or high. When the 
parameter values are set to low confidence, the model is 
biased toward recency and avoidance of negative 
consequences by making it harder to reach the decision 
threshold.  High confidence is characterized by a balance 
between primacy/recency, and approach/avoidance.  

Mathematically, the medium confidence condition is set 
halfway between low and high confidence. 

Table 1. Assigned Latencies* 

Transponder 0.5 
Interrogator 1.5  (0.2) 
Network links to C2 2.5 
C2 input processing 1  (0.5) 
C2 output processing 2 
Network link to shooter 2.5 

*Std. dev. shown in parentheses 

Results of the first simulation experiment are shown in 
Table 2.  Total CID latency equals all the system delays 
across the network enumerated in Table 1 plus human 
decision time.  The number of decision cycles is the 
original decision cycle plus the number of required 
retaskings.  The mean total latency ranged from 75 sec. to 
290 sec., and the number of decision cycles varied from 
1-4.  Statistical significance tests have not yet been 
performed, but standard errors are shown in parentheses.  
The effects of density and confidence are essentially the 
same for Total CID latency and number of decision 
cycles.  CID latency and the number of decision cycles 
apparently decreased as a function of increasing target 
density from friendly, neutral, to enemy regions.  Latency 
and the number of decision cycles also apparently 
decreased with increasing confidence in the CID system. 

Table 2. Mean Latencies (Sec.) Generated from 
Variable Density and Confidence 

Density in 
region 

Confidence No. of 
Decision 
Cycles 

Total 
CID 
Latency 

Low 3.69 
(0.02)* 

290.3 
(0.74) 

Medium 3.46 
(0.02) 

289.3 
(0.67) 

Friendly 

High 2.27 
(0.02) 

219.2 
(0.63) 

Low 2.62 
(0.02) 

218.7 
(0.59) 

Medium 2.14 
(0.02) 

148.7 
(0.53) 

Neutral 

High 2.14 
(0.02) 

148.2 
(0.51) 

Low 1.69 
(0.02) 

146.9 
(0.48) 

Medium 1.44 
(0.02) 

76.8 
(0.33) 

Enemy 

High 1.24 
(0.02) 

75.4 
(0.33) 

* standard error shown in parentheses 
 



  

 A second simulation experiment using the same scenario 
was conducted to estimate the effects of the number of 
network links.  Adding network links not only increases 
the number of steps across the network, but has a direct 
effect on deliberation as reflected in the model.  Recency 
bias increases while the strength of preference to shoot 
decreases as a function of the age of the timestamp of the 
CID presented in the COP.  Results in Table 3 suggest 
that both total latency and number of decision cycles 

Table 3. Mean Latencies (Sec.) Generated from 
Enemy Region under Medium Confidence with 

Variable Number of Network Links 

Number 
of Links 

No. of Decision 
Cycles 

Total CID 
Latency 

1 1.16  (0.02)* 47.0  (0.25) 
5 1.28  (0.02) 59.8  (0.28) 
10 1.47  (0.02) 76.1  (0.34) 
15 1.64  (0.02) 193.2 (0.55) 

* standard error shown in parenthesis 
 
increase as a function of age.  The range of total latency is 
from 47 to 193 seconds, whereas the number of decision 
cycles is contained within a narrow range (1-2) for this 
condition. 
 
7. Conclusion 
 
The SoS model has been verified in its operation based on 
the constructs of a realistic fixed wing to ground scenario.  
This verification includes a node-to-node check and 
overall system performance.  The latency calculations 
seem to be reasonable based on the input parameters but 
need to be vetted against parameters from real-world 
operations.  The effects of target density, confidence and 
network delay on total CID latency of number of decision 
cycles are also psychologically plausible.  The model 
does provide a venue to perform bounded variable 
assessments that would allow calculation of total latency 
budget and the identification of points in the network 
where the opportunity exists to reduce overall time-to-ID. 
 
We are currently integrating the SoS model into an FCS 
CID System of System application that will be used to 
assess how well a candidate technology supports the 
functional needs of FCS CID.  The model is used in 
conjunction with a technology data base to calculate 
latency and network impact in an Air-to-Ground Risk 
Assessment that is being conducted by the FIST CID 
Team. 
 
Latency predictions are likely to be sensitive to the exact 
values of some of the decision-making model parameters 
used in the implementation, indicating a need to collect or 
procure data for purposes of parameter estimation.  

Further model validation and refinement of decision-
making model parameters could be performed by 
conducting real-time, interactive, human-in-the-loop 
simulation experiments with CID systems as in [20]. 
However, much insight can also be gained from a study of 
the relative effects of approximate ranges of parameter 
values on latency, and sensitivity studies of decision-
making parameters on latency.  As an example of the 
latter, it would be important for system designers to know 
whether the extent of the CID latency budget depended 
critically on individual cognitive characteristics of 
commanders in the field. 
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