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Abstract.  Hybrid systems evolve simultaneously in continuous and discrete state spaces.  An illustration of practical 
interest is realized by continuous systems for which decisions have to be made at discrete  times.  We set this problem as 
an optimal control problem, whereby the decisions become controls that are implemented in order to optimize a certain 
desired outcome.   Due to the intertwining between continuous and discrete dynamics, the derivation of the adjoint and 
optimality systems is different from the purely continuous or discrete cases.  We obtain the necessary optimality 
conditions and, for a few typical illustrations, we obtain also explicit expressions for the optimal controls. 

 
 
 
 
1. Introduction 
 
Engineering design, materials processing, resource 
allocation, investment strategies, etc. are complex 
activities that pertain to large, distributed systems.  In any 
of these activities, the decision maker is repeatedly called 
upon to choose among various possible and  sometimes 
competing prospective  solutions to a practical question 
with a consequential outcome.   While the specifics of the 
problem depend on application, context, and additional 
constraints, the ultimate - albeit imprecise - goal in all 
these activities is to "optimize performance", i.e., to have 
maximal success, profit, or return with minimal time, 
effort, or investment. Therefore, a crucial point in 
decision-making is properly understanding and 
quantifying the various trade-offs, including all their 
future relevant consequences.   

To illustrate the approach, we assume that one deals with 
a system consisting of only two levels.  At the lower 
level, the underlying physical and engineering processes 
are ruled by complex dynamics. This dynamics can be 
described by continuous and/or discrete, analytic and/or 
computer models.  At the higher level, the process may 
be viewed as comprised of a finite number of discrete 
nodes, which represent its major articulations and crucial 
decision points.  Based upon these decisions, one may 
alter the course of the system’s dynamics and steer it 
towards the desired outcome.  As mentioned, the ultimate 
goal is to improve decision making (i.e., to reduce the use 
of resources and to maximize the expected result) by 
fully taking advantage of the information provided by the 
dynamics at the lower level.  Setting this requirement into 
a mathematically well posed and hopefully tractable  

 

 

 

problem, depends crucially on the selection of a suitable 
objective functional (OF), which properly quantifies 
“effort” and “success”.  The fundamental difficulty in 
choosing an appropriate objective functional stems from 
the fact that  “assigning value” to an object, action, or 
feature is not a purely logical, but an axiologic process, 
whereby subjective determinations are weighed against 
each other [1 - 7].    

The framework above leads naturally to a multi-criteria 
optimization problem, where one seeks for the optimal 
solution under a set of existing constraints.  (We note 
that, in general, this problem includes a probabilistic 
component, dealing with risk and various sources of 
uncertainty.  This optimization problem can  be solved  
by various optimization algorithms, or by optimal control 
(OC) methods.  The complete solution of the OC problem 
for continuous systems described by ordinary differential 
equations (ODEs) was developed in the late ‘50’s by L. 
S. Pontryagin and his co-workers [8, 9], in the form of 
Pontryagin’s Maximum Principle (PMP).   Later, the 
PMP was generalized to cover also discrete time systems 
[10].  Generalization to distributed systems, described  by 
partial differential equations is more difficult, but a 
general framework was developed during the ‘60’s by J.-
L. Lions and co-workers in which OC problems for such 
systems can be properly set and analyzed [11, 12].  An 
additional challenge is presented by hybrid systems [13 – 
16], in which continuous and discrete dynamics occur 
simultaneously and oftentimes intertwined. 

In this paper, we present a generalization of OC to hybrid 
systems, with particular emphasis on decision making 
processes.  The lower level (underlying) dynamics may 
be discrete or continuous, while the decision making 
process usually takes place at discrete times and is 
superimposed upon the original underlying dynamics.   



 
 
2. Optimal Control Background 
 
The behavior of the underlying dynamical system is 
described by a state that belongs to a certain functional 
space.  We assume that there is a way to modify the state 
by acting upon it with a suitable control.  Thus the 
(dynamics of the) state, x, depends on the control, u.  The 
possible types of evolution of the state system include:  
(i) continuous time evolution 
 
  ( , , )x g t x u′ =    
(ii) discrete time evolution 
 

  1
( ), ,

n n n nx x g u x n
+
= +    

or (iii) a combination thereof.  The goal is to adjust the 
control, u, to maximize a given objective functional, 

( ( ), ( ), )J u t x t t , that balances judiciously the desired 
goal and the cost needed to reach it.  In general, the 
functional J depends on the control and the state.  Note 
that since the state x depends on the control, u, the 
functional J depends in fact only on the control u. The 
optimal solution is obtained when the “maximal” goal is 
obtained with “minimal” cost.   In the following, we shall 
briefly review some of the main results of optimal control 
theory for continuous and discrete systems [8, 9, 15].  
  
For the continuous time case, when evolution is described 
by ODEs, the OC problem reads:  
Find a piecewise continuous control, ( )u t , and its 
associated state variable, ( )x t , which maximizes the 
objective functional 

0

T

f ( t , x( t ),u( t ))dtJ( u ) = ∫  

subject to  

   
0

( ) ( , ( ), ( ))
(0)

( ) - not specified,

x t g t x t u t
x x

x T

′ =

=  

over the set of all admissible controls.  Note that 
minimization problems can be handled likewise, since 

( ) ( ( ))
u u

min J u max J u− = − .   

This problem is solved by using PMP which converts the 
maximization of the “integral” objective functional, J, 
subject to the constraints above into maximizing the 
Hamiltonian H.   

( , ( ), ( ), ( )) ( , , ) ( ) ( , , ).H t x t u t t f t x u t g t x uλ = + λ  
point-wise with respect to the control.  PMP ensures that 
if * ( ), * ( )u t x t  are optimal, then there exists an adjoint 
variable ( )tλ  such that 

( , *, , ) ( , *, *, ), [0, ].H t x u H t x u  for all t Tλ ≤ λ ∈  

Further,  ( ) ( , *, *, ), ( ) 0.
x

t H t x u T′λ = − λ λ =  
If the Hamiltonian is differentiable with respect to the 
control, one has also the optimality condition 

( ) 0uH t , x*,u*, .λ =  
We note that there are situations in which this condition 
is not satisfied (e.g., bang-bang controls).  The concavity 
or convexity of H with respect to the control determines 
whether a maximum or minimum of the objective 
functional is attained. 
 
To deal with discrete evolutions, PMP was generalized as 
follows [10].  The control has the form 

( )
1 1o N

u u ,u , ,u
−

= K ; the state ( )0 1 Ny y , y , y,= K  
satisfies the discrete evolution: 

( )1 0 1 1n n n n , , , Ny y f y ,u ,n ,     n
+

−= + = K  

with oy  given.  Once again, we note that the state y is 
dependent on the control, u. 
 
We adjust the control to maximize a given functional: 

( ) ( ) ( )
1

0

N

n n N
n

J u F y ,u ,n S y
−

=

= +∑  

The problem is to find u*  such that: 
( ) ( )

u
J u* max J u .=  

We denote by y*  the corresponding optimal state. 
For each 1, 2,..., 1,n N= −  we define the Hamiltonian 
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1
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If * *,n nu y are optimal, then the discrete version of the 

PMP ensures that there exists an adjoint variable, nλ , 
such that 

0 1

1

1

1

* * *

1 1
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3.  Optimal Control Formulation for Continuous 
Systems with Discrete Decision Making 
 
We consider now hybrid systems, with continuous and 
discrete variables.  Since PMP is not known for such 
general systems, we derive optimality conditions on a 
case by case basis, starting from the particular system 
under consideration and combine techniques from the 
discrete PMP [10] and the OC theory for partial 
differential or integro-differential equations [11, 12].  The 
results contained in this section represent an original 
contribution to the general theory of OC in hybrid 
systems. 
 
The control and state variables are discrete in time and 
continuous in the (n-dimensional) x-variable.  The x-
variable represents all the physical variables of the 
problem, including possibly the physical time, which is 
continuous, and is not to be confused with the decision 
making time variable, n, which is discrete.  
We  introduce the control vector 

0 1 1
( ) ( ( ), ( ), , ( ))

N
u x u x u x u x

−
= K   

and state vector 

0 1
( ) ( ( ), ( ), , ( )).

N
y x y x y x y x= K  

The state system reads: 

1

0

( ) ( , , , ),    0,1, , 1

     

given     

n n n

m

y x A y u x n n N

x

y

+
= = −

∈ Ω ⊂ ℜ

K

 

where, depending on the nature of the operator A, 
boundary conditions on the state y in the x variables may 
have to be added.  The objective functional is given by 

1

0

( ) ( ( ), ( ), , ) ( ( )) .
N

n n N
n

J u F y x u x x n dx S y x dx
−

= Ω Ω

= +∑∫ ∫  

The optimization problem is to find u* such that 

( *) max ( ).
u

J u J u=  

We briefly outline the procedure to derive necessary 
optimality conditions.  To  obtain  the  characterization of 
 u*, we differentiate  component-wise  the map 

( ).u J u→  This operation requires the differentiation of 
the control-to-state map ( ).u y u→  The sensitivity 
variables are directional derivatives of the map 

( )u y u→ : 

( ) ( )
,n n n

n
y u y u+ ε −

→ ψ
ε

l
as 0ε →  

Note nψ  may depend on  ,  ,  n nu y l , where nl  is the 
variation direction.  The sensitivity vector ψ  satisfies the 
system 

1 ( , , , , ) ( )n n n n nL u y x n g
+

ψ = ψ + l  

where L is a linear operator in ,nψ  but may depend 
nonlinearly on other variables. We introduce the adjoint 
variables 

1, 1

1 1 1

1

( , , 1)
* ( , , , , 1) ,

, ,1

( ( ))

n n

n n n n

n

N
N

N

F y u x n
L u y x n

y

n N

S y x

y

− −

− − −

−

∂ −
λ = λ − +

∂

=

∂
λ =

∂

K  

where *L  is the adjoint of the operator L. Using λ  and 
ψ  in simplifying the directional derivative of J with 

respect to the control at the OC *u : 

0

( * ) ( *)
0 ,

J u J u
im

ε→
+

+ε −
≤

ε

l
l  

we obtain the characterization of the optimal control in 
the form 

* ( *, *),u G y= λ  
where G is, in principle, an explicitly known function.  
The optimality system consists of the state and adjoint 
equations together with the above characterization. 
      
4. Illustration  
 
Example 4.1  
 
Given the control  0 1 1( ( ), ( ), , ( ))Nu u x u x u x−= K ,   the 
corresponding state vector and the evolution system are  
given by  

0

1

0 1

1

at time steps

( ) 0  for  ,    0,1, 2, ,

( )  given.

( ( ), ( ), , ( )),      

( ) ( ( ), ( )) ( ) ( ) ( )   

 0,1, 2, , 1

n

N

n
n n n n n

y x x n N

y x

y y x y x y x x

y
y x A y x u x u x y x x

x
n N

+

= ∈ ∂Ω =

= ∈Ω ⊂ ℜ

∂
= = +

∂

= −

K

K

K  

We seek to find min ( )
u

J u  i.e., to minimize the functional 

1
2

0

1
( ) [ ( ) ( ( )) ]

2
.

N

N n
n

J u y x u x dx
−

=Ω

= + ∑∫  



 
The sensitivity variables come from differentiating the 
control-to-state map ( ),u y u→  

( ) ( )
  as 0n n

n
ny u y uε

ψ ε
ε

+ −
→ →

l
 

and satisfy 

1

0

( )
( ) ( ) ( ) ( ) ( )

( ) 0,            1, 2, ... 1.

n
n n n n n

x
x u x x x u x

x
x n N

ψ
ψ ψ

ψ

+

∂
= + +

∂

≡ = −

l
 

The general operator L defined in the previous section, 
is identified here with  

n
n

n nL u
x
ψ

ψ ψ ∂
= +

∂
. 

The adjoint variables 

0 1( ( ), , ( ), , ( ))

( ) 1

satisfy the equations

N

N

x x x

x

λ = λ λ λ

λ =

K

 

*

1 1

( )
( ) ( ) ( ) , .....,1

( ) 0  for  ,              1, ....1, 0

,  n
n n n

n

x
x x u x n N

x
x x n N

− −

∂λ
λ = λ − =

∂

λ = ∈ ∂Ω = −
 

where the adjoint, *L , defined in the previous section 
was identified here with:  

1
*

n
n

n nL u
x
λλ λ−

∂
= −

∂
. 

By differentiating the maps, ( )u J u→  and 
( ),u y u→  with respect to u at u*, and using the adjoint 

equations, we obtain 
* *

1
           ( ) ( ) ( ),  0, , 1. (*)

n n n
u x x y x n N

+
= −λ = −K

The optimal control is represented in terms of the 
optimality system, the state and adjoint equations 
combined with characterization  (*). 
 
Example 4.2 
 
The state system reads 

1

1 1

1

(( ) ( ), ( ))

(1 ( )) ( , ) ( )

0, 1, , 1

with control   

( ( ), ( ), , ( )),  .

,
n n n

n n

o N

A yy x x u x

u x k x s ry s ds

n N

u u x u x u x x

+

Ω

−

=

= −

= −

= ∈ Ω ⊂ ℜ

∫

K

K

 

The objective functional is 

1
2

0

( ) ( , ) ( ) ( ) ( )
2

( )
N

n n n n

n

A u x k x s ry s ds u x

J u

dx
−

= Ω Ω

β
−

=

 
  

∑ ∫ ∫  

which is to be maximized over the set of admissible 
controls.  The adjoint system is 

( ) 0N xλ =  

1 1

1 1

( ) ( , ) (1 ( )) ( )

( , ) ( )

n n n

n n

x k s x r u s s ds

A k s x ru s ds

− −

Ω

− −

Ω

λ = − λ

+

∫

∫
 

The characterization of optimal control is 

*

1

1
( ) ( , ) ( )

0,1, 1

( ) ( ) ,   
n n n n

u A k x s ry s ds

n N

x x
+

Ω

= − λ
β

= −

∫

K

 

The optimality system is the state and adjoint equations 
together with the above characterization. 
 
Example 4.3 
 
In the two examples above, while discrete and continuous 
variables are mixed, the continuous variables do not 
explicitly contain time and thus, no initial conditions are 
needed (only boundary conditions have to be imposed on 
the state variables). The next example illustrates a more 
realistic situation for a typical hybrid system, whereby  
the continuous variables contain the time, and evolution  
takes place simultaneously in continuous and discrete 
times.   More precisely, we assume that upon the intrinsic 
continuous evolution of the system, a discrete decision 
making process is superimposed, at pre-determined 
times: 0, , 2 , .....( 1)T T N T− .  The time intervals for the 
continuous evolution  and the decision process do not 
have to be equal.  We denote the corresponding control 
and state variables by 

0 1( ( , ), , ( , ))   andNu u x t u x t−= K  

0 1( ( , ), ( , ), , ( , ))Ny y x t y x t y x t= K , 
respectively.  For  continuous  spatial  variables,  x,  and  
time  variable  t, ( , ) (0, )x t Q T∈ = Ω× ,  mΩ⊂ℜ , 
and decision time step n, we consider the state system: 

  1
1   in n

n n n

y
y u y Q

t
+

+

∂
= ∆ +

∂
 

where ∆ denotes the Laplacian in the space variables.  
The initial and boundary conditions are:  

1 1,0( , 0) ( )n ny x y x+ +=   



 
1( , ) 0             on (0, )ny x t T+ = ∂Ω×  

We assume that the starting state, 0 ( , ),y x t  is known.  
The goal is to maximize the objective functional: 

1
2

0

( ) ( , ) ( , )
2

N
n

N n
n Q

J u y x T dx u x t dxdt
−

=Ω

β
= −∑∫ ∫  

over   the   available  control  space.    The sensitivity 
variables come from differentiating the control-to-state 
map, ( ),u y u→  

( ) ( )   as 0.n n n
n

y u y uε ψ ε
ε

+ −
→ →

l
 

The sensitivities nψ satisfy the system 

1
1 ,   1,... 1n

n n n n nu y n N
t

ψ
ψ ψ+

+

∂
= ∆ + + = −

∂
l  

with initial and boundary conditions 

1

1

( , 0) 0           on  

( , ) 0            on  (0, ).
n

n

x

x t T

ψ

ψ
+

+

= Ω

= ∂Ω×
 

Note that 0 ( , ) 0.x tψ ≡  
The adjoint vector function, 

0 1( ( , ), ( , ), , ( , ))Nx t x t x tλ = λ λ λK ,  
satisfies the system 

1   in ,    0,1, , 1n
n n nu Q n N

t +

−∂λ
= ∆λ + λ = −

∂
K  

supplemented with final and boundary conditions: 
 ( , ) 0 0,1, , 1n x T n Nλ = = −K  

( , ) 0 on (0, ),  0,1, , 1n x t T n Nλ = ∂Ω× = −K  
and with the additional evolution equation:   

                 0           in N
N Q

t
−∂λ

− ∆λ =
∂

 

  ( , ) 1,              N x T xλ = ∈Ω  

  ( , ) 0         on  (0, )N x t Tλ = ∂Ω×  

for the last element of the adjoint vector, .Nλ  The 
characterization of the optimal control is 

*
1

1 .n n n
n

u y += λ
β

 

 
5. Discussion 
 
From the applications standpoint, the crucial issue is the 
correct format of the objective functional, which is of 
paramount importance in determining the “winning” 
strategy.  Indeed, the results depend critically on the 
specific criteria used for optimization. 

 
From  the mathematical standpoint, the new formal 
results on hybrid systems, as outlined in Section 3 and 
illustrated in Section 4, have  to be developed and 
justified rigorously on a one-by-one basis.  Existence, 
uniqueness, and characterization of the optimal control 
and the format of the adjoint system must be established 
for specific systems and objective functionals.  Issues of 
compactness of maximizing sequences of controls and 
corresponding weak convergence results are crucial.  
Indeed, objective functionals and state systems do not 
always depend continuously on sequences of controls 
with weak convergence properties.  The rigorous 
justification, and corresponding application of OC for 
such hybrid systems would be an original contribution in 
applied mathematics, optimal control theory, and decision 
making theory.    
 
Numerical algorithms for solving the optimality systems 
involve the solution of a large nonlinear system of 
forward backward equations (two point boundary value 
problems).  These problems are notoriously unstable, 
particularly for high dimensional systems.  In principle, 
they can be solved using  iterative numerical schemes 
which start with an initial guess for the OC, after which 
the state system is solved forward in time and then the 
adjoint system is solved backward in time.  Using the 
updated state and adjoint values the control 
approximation is suitably updated and the forward and 
backward sweeps are completed again.  The procedure 
continues until convergence of the iterates occurs.   
 
Finally, the decision making (and associated OC) 
problems for hybrid systems become even more difficult 
if – unlike the example considered here  – the decision 
times are not pre-determined, but have to be found 
themselves as part of the OC strategy.  For instance, one 
possible situation would be to fix the number of decisions 
and vary the times at which these decisions are made.  
Then, one could tackle the even more difficult case in 
which both the number and the timing of the decisions 
have to be found as part of the solution of the problem.   
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