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Abstract

The diffusion of transition metal solutes in nickel has
been studied using quantum-mechanical first principles
methods, and the predictions compared critically with
the experimental data available in the literature. For
the 4d and 5d rows which contain Ru and Re respec-
tively, diffusion rates are largest for elements at the far
west and far east of the d-block of transition metals.
The calculations reveal that this is due to a significant
barrier energy for solute-vacancy exchange for elements
residing at the centre of the period, e.g. Ru and Re, de-
spite their displaying atomic sizes which are closest to
that of Ni. Thus it is demonstrated conclusively that the
underlying electronic bonding controls the rate of diffu-
sion. Elements such as Ru and Re are amongst the most
dense and least compressible of the transition metals due
to their configuration of electrons – when alloyed with
Ni this causes directional and incompressible Ni-Ru and
Ni-Re bonds to be formed which hinder vacancy migra-
tion. These effects dominate over any differences in the
vacancy-solute binding energy and any influence of the
atomic radius of the solute. In this respect, the results
disprove the traditional view that diffusion of substitu-
tional solutes is least rapid when the size misfit with the
host is the greatest. The trends for the 3d row are also
studied, and it is shown that magnetism has a profound
effect. Finally, if the theoretical results are to be ratio-
nalised with the experimental data, it is demonstrated

that the correlation factor should be included in the
model particularly for elements such as Hf and Au. The
results explain why some elements – for example Re –
have a profound effect on the properties of the superal-
loys, and provide insights which will be useful for future
alloy design efforts.

Introduction

The nickel-based superalloys are required to operate at
elevated temperatures, often very close to their melting
point. Under these conditions, a number of degradation
mechanisms can arise which are usually mediated by
diffusional processes. For example, creep deformation
occurs at a rate dependent upon diffusional rearrange-
ments at dislocation cores [1]. Directional coarsening of
the γ′ phase (the so-called rafting effect) requires mass
transport on the scale of the periodicity of the γ′ precipi-
tates [2]. Single crystal superalloys can interdiffuse with
coatings applied to them [3] and oxidation occurs at a
rate which is diffusion-controlled [4]. Clearly, the retar-
dation of diffusional processes is important if the very
best properties are to be attained. Despite this fact,
superalloy metallurgists know remarkably little about
the rates of diffusion of the substitutional solutes added
to their alloys. Indeed, the processes used to design
new alloys still tend to be rather Edisonian in their ap-
proach, with considerable use made of trial-and-error
procedures.



However, recent work has quantified the rates of interdif-
fusion of the 4d and 5d transition metals in nickel [5,6],
see Figure 1, by analysing diffusion couples exposed to
elevated temperatures. The concentration profiles ob-
tained were measured using electron microprobe analy-
sis and the interdiffusion coefficients deduced using the
Sauer-Freise method.

Figure 1: Variation of measured [5] interdiffusion coefficients

with nickel for various substitutional solutes: (a) 4d row, (b) 5d

row and (c) corresponding variation of the Goldschmidt radii for

the solutes. The atomic numbers of the 4d and 5d rows are given

at the top and bottom of (a) and (b) respectively.

Figure 2: Variation of measured [5] activation energy for interdif-

fusion with Ni, with the pre-exponential coefficient D0 constrained

to be 5 × 10−4 m2/s. Note that the correlation factor f is taken

to be unity.

A remarkable and surprising result was found: alloy-
ing additions taken from the middle of the transition
metal block display the slowest rates of diffusion, de-
spite exhibiting atom radii which are the closest to that
of nickel (0.125 nm), see Figure 1. Elements from the far
west and far east of the transition metal block exhibit
the greatest rates of diffusion, although they possess the
greatest lattice misfit with the nickel solvent. Both the
second (4d) and third (5d) transition metal rows were
found to display this effect. Moreover, it was suggested
that this dependence resides in differences in the ac-
tivation energy rather than the pre-exponential term,
see Figure 2. Recently, it has been demonstrated that
quantum-mechanical first principles methods are capa-
ble of rationalising these effects [7].

In [5], the first row (3d) transition metals were not con-
sidered. Indeed, it appears that no attempt has been
made so far to identify a systematic correlation between
the positions of the solutes in the d-block and the rates
of interdiffusion with nickel. Here, this situation is reme-
died. To facilitate a critical evaluation of the modelling,
various data have been collected and collated: for the
interdiffusion of Ti [8], V [9], Cr [10], Mn [11], Fe [12],
Co [10] and Cu [13] with the nickel host. Data for the
self-diffusion of nickel are available in [14].



Figure 3: Definition of the diffusion energy barrier Eb, for va-

cancy displacement along the < 110 > direction. Filled circles:

solute atoms. Unfilled circles: solvent atoms. Squares: vacan-

cies.

Background

The interaction of substitutional solutes with vacancies
in a solvent such as nickel is in fact rather complicated
[15]. According to the five-frequency exchange model
developed by Lidiard [15,16], five different atom-vacancy
exchanges can be identified – each leading to a different
local configuration of vacancy, solute and solvent atoms.
However, to a first approximation it may be sensible
to assume that the frequency Γs of solute-vacancy ex-
changes controls the rate of interdiffusion, with its mag-
nitude depending on a barrier energy Eb, see Figure 3.
The diffusion coefficient D is then given by [16]

D = fa2Γspv (1)

where

Γs = νo exp
{
−Eb

kT

}
(2)

Here, f is a correlation factor, νo is the Debye frequency
and a is the lattice parameter. The term pv is the
probability that the site next to a solute atom is va-
cant; it depends upon the energy necessary to create
a neighbouring vacancy, denoted EV

f , such that EV
f =

Evac,Ni
f + ∆E∗

V where Evac,Ni
f is the vacancy formation

energy in pure nickel and ∆E∗
V is the solute/vacancy

binding energy. Thus

pv = Co exp

{
−EV

f

kT

}
(3)

where Co is a constant. It follows that

D = fa2νo exp
{
−Eb

kT

}
× Co exp

{
−EV

f

kT

}
(4)

which has the familiar Arrhenius form

D = fDo exp
{
− Q

kT

}
(5)

with Do the pre-exponential term and the activation en-
ergy being given by Q = Eb +EV

f . Note that for reasons
that will become apparent later in the paper, the cor-
relation factor f is not included in the pre-exponential
term Do. It is clear then that the activation energy for
diffusion depends upon the sum of two terms, one corre-
sponding to the barrier energy and the other the energy
for the formation of a vacancy next to the solute atom.

Computational Methods

Quantum-mechanical first principles calculations were
carried out using density functional theory within the
local spin density approximation [17]. The total energy
and forces were obtained by solving the local-density-
functional equation using the ultra-soft pseudo-potential
method [18,19]. The host nickel lattice was represented
by a face-centered cubic (FCC) supercell consisting of
32 atoms, with one nickel atom replaced by a solute
atom. For the estimation of the vacancy-solute inter-
action, a vacancy was introduced in a site next to the
solute atom. To calculate the energy barrier for diffusion
Eb, the solute atom was displaced towards the adjacent
vacancy along the < 110 > direction, the lattice vector
relevant to diffusional flow, see Figure 3. At each point
the position of the solute atom was fixed and all host
Ni atoms were allowed to relax; the energy barrier is



then the total energy difference for the solute atom at
the saddle point and at the initial lattice site. To esti-
mate the diffusion rate, the diffusion activation energy
Q was approximated as the sum of the diffusion energy
barrier Eb and the energy for formation of a vacancy
next to a solute atom, denoted EV

f . As a benchmark,
the energy barrier for self-diffusion and the vacancy for-
mation energy were determined for pure Ni: values of
120 kJ/mol and 164 kJ/mol respectively were obtained.
The calculated activation energy for self-diffusion is then
284 kJ/mol which is in excellent agreement with the ac-
cepted value [14].

To estimate the pre-exponential term, transition state
theory was employed: the migration entropy was esti-
mated by determining the vibration degrees of freedom
associated with a collection of classical harmonic oscil-
lators. Consistent with the available experimental data
[5], these considerations suggest pre-exponential factors
Do in the range 5 × 10−5 to 1 × 10−4 m2/s, see [7].

Results: 4d and 5d Rows

Results for the calculated activation energies of diffu-
sion for the 4d and 5d solutes in Ni are given in Fig-
ure 4. The predictions indicate that the activation en-
ergy varies across the transition metal rows in an un-
expected and counterintuitive way: larger atoms (ele-
ments at the far east and west of the d-block of ele-
ments) have lower activation energies than the smaller
atoms (at the centre). The contributions from the va-
cancy formation energy and the diffusion energy barrier
are shown in Figure 4b and 4c. The vacancy forma-
tion energy displays the expected trend, i.e. the higher
lattice strain induced by larger solute atoms such as Hf
and Au causes EV

f to be lower for those elements. Given
that the vacancy formation energy for pure Ni, Evac,Ni

f ,
is about 164 kJ/mol, one can see that the vacancy-solute
binding energy ∆E∗

V varies from about −10 kJ/mol for
Re to about −40 kJ/mol for Hf and Au. However, the
dependence of EV

f on atomic number is relatively weak;
the major contribution to the variation of the activation

energy Q arises from the strong influence of the atomic
number on the diffusion energy barrier Eb. Particularly
notable is the prediction that the Q’s are systematically
greater for the 5d row than for the 4d one. This is
consistent with the experimental values of the apparent
activation energies – see Figure 2 – although in deriving
these the reader should be aware that f is taken to be

Figure 4: (a) Variation of the calculated activation energies

Q for diffusion for the 4d and 5d transition metal solutes; the

corresponding contributions from Eb and EV
f are given in (b) and

(c) for the 4d and 5d rows respectively.



Figure 5: The valence charge density of Hf, Re and Au, repre-

senting the variation of the chemical bond across the 5d row, in

the {001} plane of the Ni solvent, together with the corresponding

variation of the electronic density of states with energy. The zero

in the left hand panel corresponds to the Fermi energy.

unity, so that any possible effects of correlation are ig-
nored. As will be shown in the last section of the paper,
a direct comparison of theory and experiment is then
not strictly valid. The calculations shed light on the
reasons for the differing behaviour of the solutes. Con-
sider Figure 5 which shows the valence charge densities
surrounding each of Hf, Re and Au atoms which are rep-
resentative of the variation of chemical bonding across
the 5d row. In each case, a section on the {001} plane is
shown with a solute atom at centre and a vacant neigh-
bouring site. The corresponding variations of the elec-

tronic density-of-states with energy are given in the left
hand panel of Figure 5. The calculations demonstrate
that (i) the d-electrons of Hf do not participate in direct
bonding with the neighbouring Ni atoms (ii) the charge
density of Re exhibits a preference along <110>, indi-
cating the development of a directional bond and (iii)
the d-electrons of Au are highly localised and chemi-
cally inactive – as confirmed by the narrow d-band and
the spherical charge distribution. The variation of the
Ni-solute bond as one crosses the 4d and 5d transition
metal rows is thus in many ways analogous to the differ-
ent bonding characteristics of the pure transition metals
– for the mid-row 4d and 5d solutes one has a signifi-
cant attractive partial pressure due to the directional
bonding developed within the d-states, balanced by a
repulsive partial pressure arising from the contribution

Figure 6: Variation of the bulk elastic moduli [20] of the 4d

and 5d transition metals with atomic number: (a) compressibility

(inverse bulk modulus), and (b) Young’s modulus.



from the s-electrons. Consequently, the equilibrium Ni-
X interatomic distance is amongst the smallest when
X=Re, just as elements such as Re display an atomic
volume which is amongst the smallest in the 5d row,
the least great compressibility and the greatest Young’s
modulus – see Figure 6. Similar arguments apply for
the 4d row. These considerations make it clear that
elements such as Re resist diffusion because of the nature
of their bonding with the solvent Ni, which is such as
to make the solute-vacancy exchange difficult. Hence
it is the Ni-solute bonding characteristics which are of
importance in controlling the rate of diffusion.

That the misfit strain between the solute and solvent is
not a major contributing factor can be confirmed in the
following way. The contraction in the nearest neighbour
nickel-solute distance as the solute atom migrates into a
vacancy via the saddle point position, see Figure 3, falls
out of the calculations. Only a very weak dependence on
the size of the solute is found – the contraction is 6.8%
(0.17Å), 6.3% (0.15Å) and 5.6% (0.14Å) for Hf, Re and
Au respectively. Therefore, the size of the solute atom
and thus the lattice misfit has little effect on the energy
barrier Eb.

Results: 3d Row

The results presented so far indicate that the origin of
the higher diffusion energy barriers for the smaller 4d
and 5d solute atoms is the development of directional d-
bonding. It is interesting to examine whether the same
trends and mechanisms apply to the diffusion of the 3d
solutes in Ni. One should note however that there are
two principal differences between the 3d and 4d/5d so-
lutes. First, the size misfit with the Ni host is less pro-
nounced for the 3d solutes. Second, the effect of mag-
netism – which is intrinsic to the 3d transition metals –
adds complexity to the electronic structure. Thus one
is no longer treating the diffusion of very much larger
solute atoms in a smaller lattice, as before, with more
subtle effects likely to be present. For example, it is well
known that the effect of magnetism changes the char-

acteristics of chemical bonds; this should be reflected
in the calculated barrier energies Eb of the 3d solutes.
Indeed, our calculations reveal that the activation en-
ergies for diffusion of the 3d solutes display a complex
and intriguing dependence on the atomic number, see
Figure 7. As before, the solute-vacancy binding energy
EV

f exhibits a weaker dependence on the atomic number
than the diffusion barrier Eb. However, very unlike the
case of the 4d and 5d solutes, a local minimum in the
diffusion energy barrier profile is predicted to exist in
the middle of the 3d row, at the position corresponding
to Mn. Most significantly, the existence of a local min-
imum in the diffusion energy barrier is accompanied by
the occurrence of a maximum in the magnetic moment

Figure 7: (a) Variation of the calculated activation energy Q for

the diffusion of the 3d solutes in Ni, and the contributions from

the barrier energy Eb and the vacancy formation energy EV
f , (b)

variation of the Goldschmidt atomic radius of the 3d solutes with

atomic number, illustrating the anomalous behaviour of Mn.



Figure 8: Variation of the experimental values [8–14] of the

activation energy of interdiffusion for the 3d transition metals with

nickel. Note that the correlation factor is taken to be unity.

for the 3d row. It is found that Mn has the largest
magnetic moment of the 3d solute atoms: the magnetic
moments (evaluated within the Goldschmidt radii) are
−0.4µB , −1.2µB , 3.1µB , 2.7µB , and 1.7µB for the V,
Cr, Mn, Fe, and Co solutes, respectively. Note here that
the negative sign indicates that the moment is coupled
antiparallel to the moment of the nearest Ni neighbour.
These results demonstrate that magnetism plays a cen-
tral role in determining the magnitude of the energy
barrier for diffusion.

In the presence of the magnetic exchange interaction,
the d-band of the 3d solutes is split into majority-spin
and minority-spin channels. From Cr to Mn, the results
indicate that there is a change in the magnetic coupling
between the solutes and neighbouring Ni atoms – indi-
cating an abrupt change in the d-bonding characteris-
tics. In the case of Mn, the majority-spin d-states are
nearly fully occupied and do not participate actively in
the chemical bonding; on the other hand, the minority-
spin d-states are less than half-filled and the occupied
states do not have the < 110 > directional d-bonding
components. Thus, in the absence of <110> directional
bonds, the Mn solutes are easy to compress so that the
resulting energy barrier for diffusion is small. For Fe,
the minority-spin d-states with the directional bonding

characteristic become progressively occupied, which ac-
counts for Fe’s energy barrier Eb being greater than for
that of Mn. Interestingly, these results are consist with
the ‘anomalous’ trends in both the atomic radius and
compressibility for the 3d transition metals; in particu-
lar, the compressibility of Mn greatly exceeds that of its
adjacent atoms in the periodic table. Due to its com-
plex structure, the reported Goldschmidt radius of Mn
varies considerably in the literature and an error bar
represents the values in Figure 7. Again, a correlation
seems to exist between the diffusion activation energy
and the solute atomic size for 3d solutes, in the same
way as for 4d and 5d solutes.

In Figure 8, the experimentally determined values [8–
14] of the apparent activation energy for diffusion Q are
plotted for the 3d transition metals – derived by plot-
ting ln{D} vs 1/T with the correlation factor f assumed
to be unity. It is notable that the variation with atomic
number of the experimental values of Q determined in
this way is not as strong for the 3d row as for the 4d and
5d rows, see Figure 2 – and that the values are consis-
tently smaller than for the 4d and 5d solutes. Of interest
is the local minima which occurs at Fe – a feature which
is absent for the 4d and 5d solutes. The predicted vari-
ation of Q for the 3d solutes – see Figure 7a – shows
some similarity with the experimental one, although as

Figure 9: Illustration of the meanings of the exchange frequen-

cies Γs, Γ1 and Γ2 which correspond to the rate of solute/vacancy

exchange, and the rates of rotation and dissociation of the so-

lute/vacancy pairs respectively.



before the reader is cautioned that a direct comparison
of theory and experiment is hampered by the assump-
tion that f = 1. As it turns out, it is important to
account for correlation effects as will be demonstrated
in the following section.

Discussion: Correlation Effects

For the accurate prediction of the diffusion rates using
these methods, it has been discovered that it is necessary
to take account of correlation effects. The correlation
factor in Equation 1 acknowledges the possibility that
a diffusing atom can jump back to its previous lattice
site if the solute-vacancy pair remains un-dissociated. It
can be evaluated from Lidiard’s five-frequency exchange
model [14,15] according to

f =
2Γ1 + 7Γ2

2Γs + 2Γ1 + 7Γ2

where Γ1 and Γ2 are the frequencies of exchange between
a vacancy and a nickel atom which results in rotation
and dissociation of a solute-vacancy pair respectively,
and Γs is the rate of exchange of vacancy and solute,
see Figure 9. The site-exchange rates Γ1, Γ1 and Γs can
be calculated via expressions such as Equation 2, once
the corresponding diffusion barriers have been evaluated
using the first principles methods.

To illustrate the important influence of the correlation
effects and because of the importance of Re as an alloy-
ing addition, attention is focussed here on the behaviour
of the 5d transition metals. For early and late 5d so-
lutes such as Hf and Au, the calculations predict that
Γs � Γ2 > Γ1. In fact, the data indicate that the energy
barrier in the Γ2 term differs insignificantly (to within
10 kJ/mole) from that of Ni self-diffusion, and is about
40 kJ/mole lower than that in the Γ1 term. The calcu-
lated correlation factors are then of the order of 10−3 for
Hf and 10−1 for Au at 1000◦C, so that in these cases the
correlation effect acts to reduce the diffusion coefficients
quite substantially. On the other hand, Γ1 � Γ2 � Γs

for mid-row solutes such as Re, so that f � 1. Thus

the rate-determining step for diffusion in this case is the
exchange of the solute-vacancy pair.

The computed diffusion coefficients of the 5d elements
and their variation with atomic number are given in Fig-
ure 10a – with the correlation effect ignored and there-
fore f = 1 in all cases – and in Figure 10b with the
correlation factor included properly. For the mid-row
elements, the correlation effect has little influence on
the predicted values of the diffusion coefficients, but for
elements to the far west or far east of the 5d row its

Figure 10: Predicted variation of the diffusion coefficient of the

5d elements in nickel: (a) without the correlation effect accounted

for, and (b) with the correlation effect included. The predictions in

(b) should be compared with the experimental data in Figure 1b.



effect is quite marked. With the correlation factor in-
cluded in the calculations, the predicted values are in
reasonable agreement with the experimental data given
in Figure 1. Moreover, it has been found that the pre-
dicted diffusion coefficients for the 3d solutes are in rea-
sonable agreement with the experimental values if the
correlation effect is included – due to space limitations
the full details will be given elsewhere.

Conclusions

First principles electronic structure calculations, using
the local density functional method, have been used to
study the diffusion of the transition metals in nickel.
From a practical standpoint, our most significant results
relate to the 4d and 5d elements. Rates of diffusion are
slowest for elements at the centre of the transition metal
block, e.g. Re and Ru, despite their having atomic sizes
which are the smallest and closest to nickel. Conversely,
elements at the far east or west of the rows diffuse the
fastest, although they possess the largest atomic radii.
These theoretical results are consistent with recent ex-
perimental data. The variation of the diffusion coeffi-
cient with atomic number is largely due to differences
in the barrier energy for diffusion along < 110 >, i.e.
for solute-vacancy exchange, and must be attributed to
differing characteristics of the bonding. Hence the size
effect – implying a size misfit – is not relevant; instead
it is electronic structure which is important. Dense ele-
ments such as Re and Ru possess small atomic radii and
their compressibilities are amongst the least great of all
the transition metals; alloying thus causes directional
and incompressible Ni-Re and Ni-Ru bonds, which do
not favour solute-vacancy exchanges. This effect domi-
nates over any influences of atomic radius, misfit strain
and small differences in the vacancy-solute binding en-
ergy. It is very likely that these results go a long way
to explaining the beneficial effects conferred by alloying
additions such as Re. They also point to ways in which
the creep resistance of single crystal superalloys might
be further improved.
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